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ABSTRACT

Sequential quadratic programming (SQP) algorithms are wi-
dely recognized to be among the most successful algorithms
for nonconvex optimization. This paper attempts to develop
an SQP-based method for frequency-response-masking
(FRM) filters. We explain how the complementarity con-
ditions in the SQP algorithm help reduce the amount of
computation required to update the Lagrange multipliers in
a significant manner. Simulation results are presented to
demonstrate the algorithm’s performance that compares fa-
vorably with several existing design methods.

1. INTRODUCTION

The frequency-response-masking (FRM) technique origi-
nated in [1] has proved to be effective for the design of
digital filters with narrow transition bands. Several design
methods for linear-phase and low-group-delay, FIR and IIR,
basic and multistage FRM filters have been investigated in
the past, see [1]–[13] and the references cited there. Among
others, available design methods include joint optimization
of all subfilters using semidefinite programming (SDP) [11]
and second-order cone programming (SOCP) [12][13]. Al-
though these methods work well in general, a problem with
them is the large number of constraints that inevitably ef-
fects design efficiency and, in the case of high-order FRM
filters, may cause numerical difficulties.

In this paper, the joint optimization of subfilters is ap-
proached in a rather different way, namely, via an enhanced
sequential quadratic programming (SQP) technique. Al-
though, to the best knowledge of the authors, it appears to
be the first attempt to use SQP for the design of FRM fil-
ters, SQP algorithms are widely recognized to be among the
most successful algorithms for nonconvex constrained opti-
mization problems [14]. Since the minimax design of an
FRM filter can be formulated as a nonconvex constrained
minimization problem, SQP is a natural candidate tool for
the design. However, our primary reason to develop an
SQP-based design methodology is that the complementar-

ity conditions in an SQP formulation are found to be ef-
fective in reducing the number of constraints that actually
participate in the optimization. Our design method is rather
general in the sense that it is applicable to both basic and
multistage FRM filters with linear phase response or low
group delay. Because of space limitation and for illustration
clarity, however, our attention here is focused on the class
of basic, linear phase FIR FRM filters. Technical details of
the proposed method are given in Secs. 2 and 3. Design ex-
amples with performance comparisons are presented in Sec.
4.

2. PROBLEM FORMULATION

Following [1], the reader is referred to the structure in Fig. 1
where all filters are assumed to have linear-phase responses,
and the lengths of the masking filters are either both even
or both odd. The transfer functions of the prototype and
masking filters are respectively denoted by

Ha(z) =
N−1∑
k=0

hkz−k, Hma(z) =
Na−1∑
k=0

h
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Fig. 1. A basic FRM filter structure.

In what follows, Ha, Hma and Hmc are referred to as
subfilters. Without loss of generality, the FRM filter can



be treated as a zero-phase FIR filter and all subfilters are
assumed to be of odd length. The frequency response of the
FRM filter is then given by

H(ω, h) = [aT c(ω)][aT
a ca(ω) − aT

c cc(ω)] + aT
c cc(ω) (1)

where

a = [h(N−1)/2 0.5h(N+1)/2 · · · 0.5hN−1]T

c(ω) = [1 cos Mω · · · cos[(N − 1)Mω/2]]T

aa = [h(a)
(Na−1)/2 0.5h

(a)
(Na+1)/2 · · · 0.5h

(a)
Na−1]

T

ca(ω) = [1 cos ω · · · cos[(Na − 1)ω/2]]T

ac = [h(c)
(Nc−1)/2 0.5h

(c)
(Nc+1)/2 · · · 0.5h

(c)
Nc−1]

T

cc(ω) = [1 cos ω · · · cos[(Nc − 1)ω/2]]T

and h = [aT aT
a aT

c ]T . The minimax design of the FRM
filter amounts to finding a vector h that solves the minimax
optimization problem

minimize
h

{maximize
ω∈Ω

W (ω)|H(ω, h) − Hd(ω)|} (2)

where Hd(ω) is a real-valued desired frequency response,
W (ω) ≥ 0 is a weighting function, and Ω = {ω : 0 ≤ ω ≤
π}.

Let β be an upper bound of W ((ω)|H(ω, h) − Hd(ω)|
on Ω. As the first step of the optimization we convert the
problem in (2) into a constrained minimization problem

minimize β (3a)

subject to: W (ω)|H(ω, h) − Hd(ω)| ≤ β for ω ∈ Ω (3b)

For practical exercise of optimization techniques, the con-
straint in (3b) is imposed on a dense grid of frequencies
Ωd = {0 ≤ ω1 ≤ · · · ≤ ωK ≤ π} and the problem in (3)
becomes

minimize β (4a)

subject to: W (ωi)|H(ωi,h) − Hd(ωi)| ≤ β for ωi ∈ Ωd (4b)

3. DESIGN METHOD

3.1. An SQP-based algorithm

The constraints in (4b) can be made more specific as

pi(h, β) =
β + W (ωi)[H(ωi,h) − Hd(ωi)] ≥ 0, 1 ≤ i ≤ K (5a)

pK+i(h, β) =
β − W (ωi)[H(ωi,h) − Hd(ωi)] ≥ 0, 1 ≤ i ≤ K (5b)

Defining x = [β hT ]T and e = [1 0 · · · 0]T , (4) can be
expressed as

minimize eT x (6a)

subject to: pi(x) ≥ 0 1 ≤ i ≤ 2K (6b)

Since −pi(x) are not convex functions, (6) is a nonconvex
problem.

The Lagrangian of (6) is defined by

L(x,µ) = eT x −
2K∑
i=1

µipi(x)

where µi for 1 ≤ i ≤ 2K are the Lagrange multipliers.
The solution of problem (6) must satisfy the Karush-Kuhn-
Tucker (KKT) conditions [15]

∇L(x,µ) = 0 (7a)

pi(x) ≥ 0 1 ≤ i ≤ 2K (7b)

µi ≥ 0 1 ≤ i ≤ 2K (7c)

µipi(x) = 0 1 ≤ i ≤ 2K (7d)

It is the KKT conditions that form the basis of our design
algorithm and a subsequent analysis of the algorithm. Sup-
pose one starts with a reasonable initial point x0 (which
may be produced using the method in [1]) and an initial
µ0 = 0. In the kth iteration, {xk,µk} is updated to {xk+1,
µk+1} = {xk,µk}+{δx, δµ} such that (7a), (7b), and (7c)
are approximately satisfied up to the first order, and (7c) is
precisely satisfied. This first-order approximation leads to

Y kδx + e − AT
k µk+1 = 0 (8a)

Akδx ≥ −ck (8b)

µk+1 ≥ 0 (8c)

(µk+i)i(Akδk + ck)i = 0 1 ≤ i ≤ 2K (8d)

where Y k = ∇2L(xk,µk), ck = [p1(xk) · · · p2K(xk)]T ,
and

Ak =




∇T p1(xk)
...

∇T p2K(xk)


 (9)

Equations (8a)–(8d) turn out to be the exact KKT conditions
for the quadratic programming (QP) problem

minimize
1
2
δT Y kδ + δT e (10a)

subject to: Akδ ≥ −ck (10b)

Let the solution of (10) be denoted by δx, the Lagrange mul-
tiplier µk+1 can then be determined by (8a) and (8d) as fol-
lows. First, the 2K components of Akδx+ck are examined.
For the component indices with (Akδx+ck)i > 0, the com-
plementarity conditions in (8d) imply that (µk+1)i = 0.
Since δx satisfies (10b), the rest of indices are those where
(Akδx + ck)i = 0 and the complementarity conditions are
satisfied regardless of the values of (µk+1)i. These possibly



nonzero Lagrange multipliers can be determined using (8a)
as

µ̂k+1 = (AakAT
ak)−1Aak(Y kδx + e) (11)

where the rows of Aak are those rows of Ak satisfying
(Akδx + ck)i = 0 and µ̂k+1 denotes the associated La-
grange multiplier. Having computed µ̂k+1, vector µk+1 can
be obtained by inserting zeros wherever necessary in µ̂k+1.
It should be stressed that typically the number of nonzero
Lagrange multiplies, say K̂, is much smaller than the num-
ber of constraints imposed in (4b), K (usually K̂ < 0.1K).
Consequently, computing µ̂k+1 using (11) which involves
inversion of an K̂ × K̂ matrix does not impose a computa-
tional burden. Moreover, since in the 2K linear constraints
in (10b) only a small fraction of them are active, solving the
QP problem in (10) can be carried out efficiently when an
active-set type algorithm [15] is utilized.

Having obtained δx and µk+1, point xk is then updated
to xk+1 = xk + δx, and Y k, ck, and Ak are updated to
Y k+1, ck+1, and Ak+1, respectively. The iteration contin-
ues until a convergence criterion in terms of the progress
made, i.e., ‖δx‖2, or the total number of iterations is met.
The coefficients of the optimized subfilters can be found in
the solution vector x∗ as h∗ = x∗(2 : end).

3.2. Convex relaxation of problem (10)

The Hessian matrix of the Lagrangian, Y k, is in general
not positive definite, hence problem (10) is not a convex
QP problem. A convex relaxation of problem (10) can be
made by replacing the Hessian matrix Y k in (10a) with a
positive definite matrix, still denoted by Y k, with Y 0 = I
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) recu-
sion [15] that updates Y k to

Y k+1 = Y k +
ηkηT

k

δT
x ηk

− vkvT
k

δT
x vk

(12a)

where

vk = Y kδx

ηk = θγk + (1 − θ)vk (12b)

γk = −(Ak+1 − Ak)T µk+1 (12c)

θ =




1 if δT
x (γk − 0.2vk) ≥ 0

0.8δT

x vk

δT

x (vk−γk)
otherwise

(12d)

In this way, (10) becomes a convex QP problem which pos-
sesses a unique global minimizer that can be obtained using
an efficient algorithm such as an active-set algorithm. A de-
sirable feature of the BFGS update is that if Y k is positive
definite, then Y k+1 is also positive definite. With Y 0 = I ,
therefore, the QP subproblems involved in the entire design
process are all guaranteed to be convex QP problems.

3.3. Implementation

Initial subfilters can be obtained using the method proposed
in [1]. For given Hd(ω), weighting function W (ω), a grid
of frequencies Ωd, and an initial h0, the value of β0 can be
calculated as

β0 = max
Ωd

W (ωi)|H(ωi,h0) − Hd(ωi)|

The SQP-based algorithm starts with initial point x0 =
[β0 hT

0 ]T and Y 0 = I . For the design of basic FIR FRM
filters, the matrix Ak in (9) is a 2K× (N +Na +Nc +5)/2
matrix whose ith and (K + i)th rows for 1 ≤ i ≤ K
are given by [1 W (aT

a ca − aT
c cc)c W (aT c)ca W (1 −

aT c)cc] and −[−1 W (aT
a ca−aT

c cc)c W (aT c)ca W (1−
aT c)cc] respectively, where the frequency-dependence for
W , c, ca, and cc have been omitted. Reliable convex QP
solvers are available, for example, in MATLAB Optimiza-
tion Toolbox: quadprog uses an interior-point method
while qp adopts an active-set method.

4. DESIGN EXAMPLES

The method described in Sections 2 and 3 was applied to
design two one-stage linear-phase FRM filters that were ad-
dressed in the literature [1][6][11].
Example 1: The design parameters were N = 45, Na = 41,
Nc = 33, M = 9, ωp = 0.6π, ωa = 0.61π, W (ω) ≡ 1
for ω ∈ [0, ωp]

⋃
[ωa, π] and K = 950. It took the al-

gorithm 110 iterations to converge to a solution FRM filter
whose amplitude response and passband ripple are shown
in Fig. 2a and b, respectively. It is interesting to note that
among the 2K = 1900 inequality constraints (see (6b)),
the average number of active constraints in the entire design
process was only 27. In other words, the average size of the
matrix AakAT

ak in (11) was 27 × 27. The maximum pass-
band ripple and minimum stopband attenuation were 0.0667
dB and 42.38 dB, respectively, which compare favorably
with the design of the same FRM filter in [1] (with pass-
band ripple = 0.0896 dB and stopband attenuation = 40.96
dB) and in [11] (with passband ripple = 0.0674 dB and stop-
band attenuation = 42.25 dB).
Example 2: The design parameters were N = 123, Na =
56, Nc = 78, M = 21, ωp = 0.4π, ωa = 0.61π, and
K = 1100. The weighting function W (ω) was piecewise
constant with W (ω) ≡ 1 in the passband and W (ω) ≡ 12 in
the stopband. It took the proposed algorithm 150 iterations
to converge to a solution FRM filter. The average number of
active constraints was 67. The amplitude response and pass-
band ripple of the FRM filter are depicted in Fig. 3(a) and
(b), respectively. The maximum passband ripple and mini-
mum stopband attenuation are 0.0898 dB and 61.66 dB. For
comparison, the maximum ripple and minimum stopband
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Fig. 2. (a) Amplitude response and (b) passband ripple of
the FRM filter in Example 1, all in dB.

attenuation are 0.0864 dB and 60 dB in [6] and are 0.0855
dB and 60.93 dB in [11].
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