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ABSTRACT

Constant modulus (CM) based algorithms for blind channel equal-
ization are well known for their effectiveness and simplicity. Re-
cently, new CM-based equalization algorithms with improved per-
formance have been proposed. In this paper, a new blind adap-
tive CM equalization algorithm using a quasi-Newton optimiza-
tion method is proposed. Simulation results are presented which
demonstrate that the proposed algorithm leads to an improved con-
vergence rate as well as reduced computational complexity relative
to those of some existing algorithms.

1. INTRODUCTION

Adaptive channel equalization techniques have been widely used
in communication systems to deal with intersymbol interference
(ISI) caused by channel distortion or multipath transmission. Con-
ventional equalization algorithms require the transmission of a trai-
ning signal to update the parameters of the equalizer. This in-
evitably reduces channel capacity. In addition, the inclusion of
a training signal increases the complexity of the transceiver signif-
icantly. Therefore, blind adaptive equalization algorithms that do
not require a training phase are often preferred. Among various
blind equalization algorithms, constant-modulus (CM) based al-
gorithms are well known for their effectiveness and simplicity [1].
However, these are usually implemented in terms of gradient based
algorithms which are usually quite slow [2][3]. Recently, sev-
eral improved CM-based blind adaptive equalization algorithms
have been proposed. In [4], a blind equalization algorithm based
on stochastic gradient decent minimization of order- � Renyi’s en-
tropy was proposed. A fast recursive constant modulus algorithm
(RCMA) based on the recursive least square (RLS) algorithm was
proposed in [5]. These algorithms reduce the time required for
convergence at the cost of increased computational complexity.

In this paper, a new blind adaptive CM equalization algorithm
using a quasi-Newton optimization method [6] is derived. Simu-
lation results are presented to demonstrate that the proposed algo-
rithm outperforms the algorithms in [1][5] in terms of convergence
rate and achieves reduced compuatational complexity relative to
that of RCMA algorithm.
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2. PROBLEM FORMULATION

Consider the digital communication system depicted in Fig. 1,
where ��� , ��� , �	� and 
�� represent the CM input signal, channel
output signal, received signal, and additive white Gaussian noise
(AWGN), respectively. In communication systems, the channel
characteristics are far from ideal and a channel equalizer is ofter
needed to combat ISI especially in the case of wireless communi-
cations.
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Fig. 1. Block diagram of a digital communication system.

The output signal of the equalizer in Fig. 1 can be expressed
as � ���������� (1)

where ������ �	���	����� �	�!�"�#��$&%'%'% �"��(*) is a block of input sam-
ples available at time instant + , � is an 
 -dimensional weight vec-
tor, and 
 is the length of the equalizer. If perfect equalization is
achieved, then

� � has a constant instantaneous modulus. The aim
of a constant-modulus based equalizer, therefore, is to minimize
modulus variations of sequence

� � . Mathematically, the optimiza-
tion problem for the equalizer can be formulated as

minimize, -�. ��/0
12
�*34� .65

� � 5 $87:9 / $ (2)

where ; is the length of sequence
� � .

3. QUASI-NEWTON ALGORITHM

The objective function in (2) is a fourth-order polynomial of vari-
able � and is not in general convex. A commonly used optimiza-
tion method to solve the problem in (2) is the steepest descent
method (SDM) [6]. In each iteration, the SDM uses the gradi-
ent < -�. ��/ to compute a search direction which in conjunction
with a line search step determines the next iterate. Various least-
mean-squares (LMS) algorithms for the channel equalization are
essentianlly different implementations of the SDM proposed in the
past [7]. A serious drawback of the SDM is its slow convergence,
especially when the condition number of the Hessian matrix of



-�. ��/ is large. The Newton method along with Hessian matrix
manipulation to ensure its positive definiteness solves the prob-
lem in (2) significantly faster at the cost of a considerable increase
in computational complexity [6]. The main computational burden
in the Newton method is the evaluation of the inverse of a possi-
bly modified Hessian matrix of -�. ��/ . Recursive least-squares al-
gorithms are essentially adaptive implementations of the Newton
method [7]. The class of quasi-Newton methods, which does not
require the evaluation of the Hessian matrix and its inverse, offers
a quadratic convergence rate with much reduced computational ef-
fort relative to that of the Newton method. Moreover, because the
approximate inverse of the Hessian matrix is always positive def-
inite, quasi-Newton algorithms are descent algorithms in that the
objective function decreases monotonically as iteration continues.
One of the most frequently used quasi-Newton algorithms is the
Broyden-Fletcher-Goldfrab-Shanno (BFGS) algorithm [6] which
is summarized below.

Table 1. BFGS algorithm

Step 1
Input initial ��� and stopping tolerance � .
Set
� �� and � � �� � .

Compute 	�
  < -�. ��
�/ .
Step 2

Set  
  7 � 
 	 
 and find � 
 that minimizes -�. � 
�� �� 
 / .
Set ��
 ��� ���
 � ���
 .

Step 3
If � ��
��
������ , output ��� ���
 ��� and stop.
Otherwise go to Step 4.

Step 4
Compute 	�
 ��� and set ��
 �	�
 ��� 7 	�
 .
Update matrix ��
 using��
 ��� ���
 � �"!#�%$!� $!�& ! 7(' ! & ! & $! ' !& $! ' ! & ! (3)

Set
�  � � 9 and repeat from Step 2.

From (2), it is clear that the optimized weight vector � de-
pends on the data set ) �*
,+ �  9 +.-/-0-0+ ;21 . If we refer to this
data block as block l, then the minimizer of the problem in (2) can
be denoted as ���3 . In the next section, we derive an explicit ex-
pression for -�. ��/ for a complex-valued input signal and weights,
an efficient line search method, and an adaptive implementation of
the equalizer that generates a good approximation of �4�3 in real
time.

4. NEW ADAPTIVE CM EQUALIZER

4.1. Data structure

For real-time channel equalization, the input data is processed block
by block. A new data block for the next round of processing is gen-
erated by including a certain number of new input samples, say ;65
while discarding ; 5 old samples. The data structure is illustrated
in Fig. 2, where ;67 is the size of one data block.

4.2. Objective function

When the 8 th block of data is processed, vector �0� in (2), which
represents the first 
 samples of the data, assumes the form � � 3 1�9 �4�%'% %8� 3 1 9 � � ( ) and vector � 1 in (2), which represents the last 
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Fig. 2. Data structure of the adaptive CM equalization algorithm.

samples of the data, is given by � � 3 1�9 � 1�: �"�#�4��% %'%4� 3 1;9 � 1�: ( ) .
Therefore, the objective function for the 8 th data block in (2) be-
comes

- 3 . ��/ 
3=<2
�*3 3=> . � � ����� �� � 7 9 / $ (4)

where 8@? A8 ;B5 � 
 and 8DC E8 ;F5 � ; 7 . Since both � and � �
are complex-valued, in general, we need to write �  ��G �IH �FJ
and � � �� GLK �M�2H � JNK � , and express (4) as

- 3 .PO��/ 
3=<2
�*3 3 >
Q#R O� ) O�0�LK �TS $ � R O� ) O��$NK �US $ 7 9NV $


3=<2
�*3 3 >XWTY $� �[Z $� 7 90\

$
(5)

where Y �  O� ) O� �LK � + Z��  O� ) O� $NK � , and

O�  Q ��G� J V + O� �LK �4
Q ��G]K �� JNK � V + O�4$NK �4

Q 7 �PJNK �� GLK � V -
The gradient of - 3 .PO��/ is found to be

	 3 .^O��/ �_
3=<2

 3 3 >`WTY $� �aZ $� 7 90\ . Y � O� �LK � �bZ � O��$NK � /N- (6)

Using the BFGS algorithm, the weight vector is updated to

O��
 ���  O��
 � ��
 O�
 (7a)

with

O�
  7 ��
#	 3 .PO��
 /N- (7b)

where O��
 denotes the current weight vector, matrix �*
 �4� is ob-
tained using (3), and ��
 is a positive scalar that minimizes - 3 .PO��
 �� O�
�/ . The process of finding ��
 is known as 8 +!
�ced.c �,fhg0i and can
in the present case be carried out accurately and efficiently as de-
scribed next.

4.3. Line search

We can write - 3 .MO��
 � � O�
 / as a fourth-order polynomial of scalar
variable � as

- 3 .PO��
 � � O�
#/  g/j � j � g/k'� k � g $ � $ � g � � � g � (8)



where

g/j  3 <2
�*3 3=> .�� $� ��� $� / $

g k  3=<2
�*3 3 > _ . Y � � � �bZ � � � / .�� $� ��� $� /

g'$ 
3=<2
�*3 3 >

��� .�� $� ��� $� / . Y $� �[Z $� 7 9 / � _ . Y � � � �bZ � � � / $	�
g � 

3=<2
�*3 3=> _ . Y � � � �bZ � � � / . Y $� �bZ $� 7:9 /

g/�  3=<2
�*3 3=> . Y $� �aZ $� 7 9 / $

and � �! O )3 O�0�LK �"+ � �  O )3 O�4$NK � . The minimizer ��
 must satisfy
the condition � - 3 . O� 
�� � O 
 /�
 � � �� , i.e.,

_ g0j'� k �� g0k'� $ � � g $ � � g � ���- (9)

If there is only one real root for (9), then it is the minimizer �X
 .
Otherwise, there are three real roots for (9), two of which satisfy
the second-order sufficiency condition

� g j � $ ��� g k � � g'$����,- (10)

and we choose the one that achieves the absolute minimum value
of the function - 3 .^O��
 � � O�
 / as ��
 .
4.4. Adaptive implementation

A real-time implementation of the algorithm can be carried out as
follows. At any given instant, a block of input samples of size;B7 is used to construct vectors ) ���]+ +  8 ? +�-0-.-/+P8 C 1 in (4) and
a certain number of iterations of the BFGS algorithm are applied
to minimize - 3 .PO��/ in (4) to obtain an improved weight vector O� �3 .
This approximate solution is utilized for channel equalization for
the next ; 5 samples periods. The data set is then updated by in-
cluding ; 5 new samples and excluding ; 5 old samples, and the
BFGS algorithm is applied again. The initial weight vector O� � and
matrix ��� for a given data block 8 are the vector O� �3 ��� and matrix��
 obtained in the previous iteration for the proceeding data block,
respectively, except the case of 8� � in that a reasonable O� � and������'$ � are utilized. The algorithm is summarized in Table 2.

5. SIMULATIONS

The proposed equalization algorithm was applied to the baseband
communication system shown in Fig. 1 and its performance was
evaluated and compared with that of the LMS algorithm proposed
in [1] and the RCMA algorithm proposed in [5]. A commonly used
performance measure for equalization algorithms is the residual
ISI which is defined as

�����  9 ������� �T� ���,� $$ 7 ���,� $����,� $�
where � �� � denotes the convolution of the channel im-
pulse response and the weight vector of the equalizer, and ���,� $

Table 2. Blind CM equalization adaptation algorithm
Outer Loop:
Step ! 1

Set 8��� and ������'$ � .
Input an initial O� � and parameters ; 7 and ;B5 .

Step ! 2
Form data block 8 .
Inner Loop:
Step " 1

Set the maximum number of iterations to
�$#&%('

.
Set
� �� .

Compute 	 3 .PO��
�/ using (6).
Step " 2

Compute O*
 using (7b).
Find ��
 using the method in Sec. 4.3.
Update O��
 to O��
 �4� using (7a).

Step " 3
Compute 	 3 .PO��
 �4� / and update ��
 to ��
 �4� using (3).

Step " 4
If
� � 9  �)#*%(' ,

then set O� �3  O��
 ��� and go to Step ! 3.
Otherwise, go to Step " 5.

Step " 5
Set
�  � � 9 and go to Step " 2.

Step ! 3
Set O� �  O� �3 , �;� ���
 ��� .
Set 8��8 � 9 and repeat from Step ! 2.

and ���,� � represent the 2-norm and infinity-norm of vector � , re-
spectively. In all simulations,

�$#*%+'  9
was used.

Example 1: Each two consecutive input bits were mapped into a
four-quadrature amplitude-modulation (4-QAM) symbol and then
the modulation symbols were transmitted through a channel with
the channel impulse response given by �  � ��- , 9(- ��- _ 9+. �,- _ 9(. ( )
[5]. Additive white Guassian noise (AWGN) was added at the
output of the channel and the signal-to-noise ratio (SNR) of the
received signal was set to 20 dB. At the receiver, a baud-spaced
equalizer was implemented. For all algorithms, the length of the
equalizer 
 was chosen to be 9 and the equalizer was initialized
with ���  � ������� 9 � ����� ( ) . For the proposed algorithm,; 7 and ;F5 were chosen to be 100 and 20, respectively. The step
size was set to

-0/ 9 � � k for the LMS algorithm, and the forgetting
factor was set to �,- .�. for the RCMA algorithm. The performance
of the equalization algorithms was evaluated and averaged over 50
trials. The residual ISI of the proposed algorithm versus the sam-
ple index is plotted in Fig. 3 as the solid curve while those of the
algorithms [1] and [5] are plotted as the dashed and dot-dashed
curves, respectively. It is observed that the proposed algorithm
reaches convergence at -16 dB residual ISI within 200 samples,
whereas the algorithms in [1] and [5] require 1300 and 600 sam-
ples, respectively, to achieve the same level of residual ISI. The
amount of computation per sample required by the proposed algo-
rithm is approximately 25 1 less than that required by the RCMA
algorithm in [5].
Example 2: This example is concerned with a telephone channel
with channel impulse response vector �  � �,- �h_ 7 �,- � - �,- ��2 7��- � 9 7 ��- - ��- 2 � ��- � � �,- � 9 ��- � � ��- ��2 (*) [8]. Using the same set-
tings as in Example 1, the proposed algorithm and the algorithms
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Fig. 3. Performance comparison of various equalization algo-
rithms.

in [1][5] were applied to equalize the channel. The performance
of the equalization algorithms was evaluated and averaged over
50 trials. The residual ISI of the proposed algorithm versus the
sample index is plotted in Fig. 4 as a solid curve while those of
the algorithms [1] and [5] are plotted as dashed and dot-dashed
curves, respectively. It is observed that the proposed algorithm
reaches convergence at -20 dB residual ISI within 200 samples,
whereas the algorithms in [1] and [5] require 600 and 500 sam-
ples, respectively, to achieve the same level of performance. The
constellations of the input and output signals of the equalizer are
plotted in Fig. 5(a) and 5(b), respectively. As can be observed, the
constellation of the input signal is fairly disturbed which would
lead to a poor bit-error-rate. The application of the proposed algo-
rithm led to a discernible constellation for the output signal.
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Fig. 4. Performance comparison of various equalization algo-
rithms.

6. CONCLUSIONS

An efficient CM adaptation algorithm for blind channel equaliza-
tion has been proposed. The algorithm is based on a quasi-Newton
optimization method where the computation intensive update of
the inverse of the Hessian matrix is carried out using the rank-two
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Fig. 5. (a) Constellation of the received signal before equalization;
(b) Constellation of the signal after equalization.

BFGS formula. As a result, the proposed adaptation algorithm of-
fers fast convergence rate and reduced computational complexity
relative to those of some existing algorithms.
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