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ABSTRACT

A new approach to the problem of minimizing L2-
sensitivity subject to L2-norm scaling constraints for
two-dimensional (2-D) state-space digital filters is pro-
posed. Using linear-algebraic techniques, the problem
at hand is converted into an unconstrained optimiza-
tion problem, and the unconstrained problem obtained
is then solved by applying an efficient quasi-Newton al-
gorithm. Computer simulation results are presented to
illustrate the effectiveness of the proposed technique.

I. INTRODUCTION

In the implementation of a fixed-point state-space dig-
ital filter with finite word length (FWL), the efficiency
and performance of the filter are directly affected by
the choice of its state-space filter structure. When a
transfer function with infinite accuracy coefficients is
designed and realized by a state-space model, the co-
efficients in the state-space model must be truncated
or rounded to fit the FWL constraints. This coefficien-
t quantization usually alters the characteristics of the
filter. This motivates the study of the coefficient sensi-
tivity minimization problem. For 2-D state-space digi-
tal filters, the L1/L2-sensitivity minimization problem
[1]-[5] and L2-sensitivity minimization problem [6]-[10]
have been investigated. However, to the best knowl-
edge of the authors, there is no study for the mini-
mization of the L2-sensitivity subject to the L2-norm
dynamic-range scaling constraints for 2-D state-space
digital filters, although it has been known that the use
of scaling constraints can be beneficial for suppressing
overflow oscillation [11],[12].

This paper investigates the problem of minimizing
L2-sensitivity subject to L2-norm dynamic-range scal-
ing constraints for 2-D state-space digital filters. To
this end, we introduce an expression for evaluating the
L2-sensitivity and formulates the L2-sensitivity min-
imization problem subject to the scaling constraints.

The constrained optimization problems at hand is then
converted into an unconstrained optimization problem
by using linear-algebraic techniques, and the uncon-
strained optimization problems obtained is solved using
an efficient quasi-Newton algorithm [13].

II. L2-SENSITIVITY ANALYSIS

Consider the following local state-space (LSS) model
(A, b, c, d)m,n for 2-D IIR digital filters [14] :[

x11(i, j)
y(i, j)

]
=

[
A b
c d

] [
x(i, j)
u(i, j)

]
(1)

where

x11(i, j) =
[

xh(i + 1, j)
xv(i, j + 1)

]
, x(i, j) =

[
xh(i, j)
xv(i, j)

]

A =
[

A1 A2

A3 A4

]
, b =

[
b1

b2

]
, c = [ c1 c2 ]

and xh(i, j) is an m×1 horizontal state vector, xv(i, j)
is an n×1 vertical state vector, u(i, j) is a scalar input,
y(i, j) is a scalar output, and A1, A2, A3, A4, b1, b2,
c1, c2, and d are real constant matrices of appropriate
dimensions. The LSS model (1) is assumed to be BIBO
stable, separately locally controllable and observable
[15]. Taking the 2-D z-transform on the LSS model (1)
yields

F (z1, z2) = (Z − A)−1b, G(z1, z2) = c(Z − A)−1

H(z1, z2) = c(Z − A)−1b + d, Z = z1Im ⊕ z2In.
(2)

Definition 1 : Let X be an m×n real matrix and let
f(X) be a scalar complex function of X, differentiable
with respect to all the entries of X. The sensitivity
function of f with respect to X is then defined as

SX =
∂f

∂X
, (SX)ij =

∂f

∂xij
(3)

where xij denotes the (i, j)th entry of matrix X.



From Definition 1, the sensitivities of H(z1, z2) with
respect to the coefficient matrices in (1) are computed
as

∂H(z1 , z2)
∂A

= [F (z1, z2)G(z1, z2)]
T

∂H(z1 , z2)
∂b

= GT (z1, z2)

∂H(z1 , z2)
∂cT

= F (z1, z2) .

(4)

Definition 2 : Let X(z1, z2) be an m × n complex
matrix valued function of the complex variables z1 and
z2. The L2 norm of X(z1, z2) is then defined as

||X(z1, z2)||2

=
(

tr
[

1
(2πj)2

∮
Γ1

∮
Γ2

X(z1, z2)X∗(z1, z2)
dz1dz2

z1z2

]) 1
2

(5)
where Γi = {zi : |zi| = 1} for i = 1, 2.

From (4) and Definition 2, the overall L2-sensitivity
measure for the LSS model in (1) is defined by

S2D =
∥∥∥∥∂H(z1, z2)

∂A

∥∥∥∥
2

2

+
∥∥∥∥∂H(z1 , z2)

∂b

∥∥∥∥
2

2

+
∥∥∥∥∂H(z1, z2)

∂cT

∥∥∥∥
2

2

=
∥∥[F (z1, z2)G(z1, z2)] T

∥∥2

2
+

∥∥∥G T (z1, z2)
∥∥∥2

2

+ ‖F (z1, z2)‖2
2 . (6)

The L2-sensitivity measure in (6) can be written as

S2D = tr[MA] + tr[W o] + tr[Kc] (7)

where

MA =
1

(2πj)2

∮
Γ1

∮
Γ2

[F (z1, z2)G(z1, z2)]
T

·F (z−1
1 , z−1

2 )G(z−1
1 , z−1

2 )
dz1dz2

z1z2

W o =
1

(2πj)2

∮
Γ1

∮
Γ2

GT (z1, z2)G(z−1
1 , z−1

2 )
dz1dz2

z1z2

Kc =
1

(2πj)2

∮
Γ1

∮
Γ2

F (z1, z2)F T (z−1
1 , z−1

2 )
dz1dz2

z1z2
.

Letting

F (z1, z2) =
∞∑

i=0

∞∑
j=0

f (i, j)z−i
1 z−j

2

G(z1, z2) =
∞∑

i=0

∞∑
j=0

g (i, j)z−i
1 z−j

2 ,

(8)

2-D Gramians MA, Kc, and W o can be written as

MA =
∞∑

i=0

∞∑
j=0

H T (i, j)H(i, j)

Kc =
∞∑

i=0

∞∑
j=0

f (i, j)f T (i, j)

W o =
∞∑

i=0

∞∑
j=0

g T (i, j)g (i, j)

(9)

where

H(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

f (k, r)g (i − k, j − r).

Let a 2-D coordinate transformation be defined by

x(i, j) = T −1x(i, j) (10)

where T = T 1 ⊕ T 4 with nonsingular m × m T 1 and
n × n T 4 matrices. Then the LSS model in (1) is e-
quivalent to the new realization (A, b, c, d)m,n which is
characterized by

A = T −1AT , b = T −1b, c = cT (11)

in the sense that the transfer function H(z1, z2) remain-
s invariant under such a transformation.

Applying the coordinate transformation in (10) to
the LSS model in (1), we can change (7) to

S2D(T ) = tr[MA] + tr[W o] + tr[Kc] (12)

where

MA =
∞∑

i=0

∞∑
j=0

T T H T (i, j)T −T T −1H(i, j)T

W o = T T W oT , Kc = T −1KcT
−T

with T = T 1 ⊕ T 4. If the L2-norm dynamic-range
scaling constraints are imposed on x(i, j), then

(K1c)ii = (T −1
1 K1cT

−T
1 )ii = 1

(K4c)jj = (T −1
4 K4cT

−T
4 )jj = 1

(13)

are required for i = 1, 2, · · · , m and for j = 1, 2, · · · , n.
Here, m × m matrix K1c and n × n matrix K4c are
symmetric and positive-definite, and obtained by par-
titioning matrix Kc as

Kc =
[

K1c K2c

K3c K4c

]
.

The problem here is to obtain (m + n) × (m + n)
nonsingular matrix T = T 1⊕T 4 which minimizes (12)
subject to the scaling constraints in (13).



III. L2-SENSITIVITY MINIMIZATION

Since (1) is stable and separately locally controllable,
Kic for i = 1, 4 are symmetric and positive-definite
[15]. Thus, K

1/2
ic satisfying Kic = K

1/2
ic K

1/2
ic are also

symmetric and positive-definite for i = 1, 4. Defining

T̂ = T̂ 1 ⊕ T̂ 4

= (T 1 ⊕ T 4)T (K1c ⊕ K4c)−
1
2

(14)

it is follows that

Kc = T̂
−T

[
Im K

− 1
2

1c K2cK
− 1

2
4c

K
− 1

2
4c K3cK

− 1
2

1c In

]
T̂

−1
.

(15)
Thus, the scaling constraints in (13) can be written as

(T̂
−T

1 T̂
−1

1 )ii = 1, i = 1, 2, · · · , m
(T̂

−T

4 T̂
−1

4 )jj = 1, j = 1, 2, · · · , n.
(16)

Note that the conditions in (16) are always satisfied by
assuming T̂

−1

i for i = 1, 4 as the forms

T̂
−1

1 =

[
t11

||t11|| ,
t12

||t12|| , · · · ,
t1m

||t1m||

]

T̂
−1

4 =

[
t41

||t41|| ,
t42

||t42|| , · · · ,
t4n

||t4n||

]
.

(17)

It follows from (14) that (12) is changed to

J(T̂ ) = tr


 ∞∑

i=0

∞∑
j=0

T̂ Ĥ
T
(i, j)T̂

−1
T̂

−T
Ĥ(i, j)T̂

T




+tr[T̂ Ŵ oT̂
T
] + tr[T̂

−T
K̂cT̂

−1
]

(18)
where

T̂ = T̂ 1 ⊕ T̂ 4

Ĥ(i, j) = (K1c ⊕ K4c)−
1
2 H(i, j)(K1c ⊕ K4c)

1
2

Ŵ o = (K1c ⊕ K4c)
1
2 W o(K1c ⊕ K4c)

1
2

K̂c =

[
Im K

− 1
2

1c K2cK
− 1

2
4c

K
− 1

2
4c K3cK

− 1
2

1c In

]
.

The constrained optimization problem of obtaining
(m + n) × (m + n) nonsingular matrix T = T 1 ⊕ T 4

which minimizes (12) subject to the constraints in
(13) is therefore converted into an unconstrained one
of obtaining (m + n) × (m + n) nonsingular matrix
T̂ = T̂ 1 ⊕ T̂ 4 given by (17) which minimizes (18).

We apply the quasi-Newton algorithm to minimize
(18) with respect to matrix T̂ = T̂ 1⊕T̂ 4 given by (17).
Define an (m2 +n2)×1 vector x = (xT

1 , xT
4 )T where x1

and x4 are the column vectors that collect the variables
in matrices T̂ 1 and T̂ 4, respectively. Then, J(T̂ ) is a
function of x, denoted by J(x ). The algorithm starts
with a trivial initial point x0 obtained from an initial
assignment T̂ = Im+n and updates in the kth iteration
the most recent point xk to point xk+1 as

xk+1 = xk + αkdk (19)

where [13]

dk = −Sk∇J(xk)

αk = arg min
α

J(xk + αdk)

Sk+1 = Sk +
(

1 + γT
k Skγk

γT
k
δk

)
δkδ

T

k

γT
k
δk

−δkγT
k Sk+Skγkδ

T

k

γT
k
δk

S0 = I, δk = xk+1 − xk

γk = ∇J(xk+1) −∇J(xk).

Here, ∇J(x) is the gradient of J(x) with respect to
x, and Sk is a positive-definite approximation of the
inverse Hessian matrix of J(x). This iteration process
continues until

|J(xk+1) − J(xk)| < ε (20)

where ε > 0 is a prescribed tolerance. If the iteration is
terminated at step k, xk is viewed as a solution point.

IV. NUMERICAL EXAMPLE

Let a 2-D stable filter with order (2,2) be modeled by

A=




1.888990 −0.912170 −0.113998 0.0
1.000022 0.0 0.0 0.0
0.243074 −0.226314 1.888900 0.926310

−0.244323 0.230208 −0.984757 0.0




b =
[

0.023503 0.0 −0.027186 0.092669
]T

c =
[

2.692940 −0.850295 −0.232816 0.0
]

d = 0.870210

which satisfies the L2-norm scaling constraints in (13)
and takes the L2-sensitivity: S2D = 2.953212 × 105.

Choosing T̂ = Im ⊕ In (therefore T i = K
1/2
ic for

i = 1, 4 in (14)) as the initial estimate and ε = 10−3,
the proposed quasi-Newton algorithm took 8 iterations



to yield the solution

T̂
opt

1 =
[

0.989295 −0.626422
0.145928 0.779484

]

T̂
opt

4 =
[

0.907595 −0.625332
0.419846 0.780358

]

and the L2-sensitivity J(T̂
opt

) = 8392.549286.
If the L2-sensitivity measure (12) is minimized

(without considering the scaling constraints in (13)) by
applying the existing method reported in [8],[9] and if
the optimal realization is scaled to satisfy (13), then we
arrived at the L2-sensitivity S2D(T ) = 11033.912683.

VI. CONCLUSION

The minimization problem of L2-sensitivity of 2-D
state-space digital filters subject to L2-norm scaling
constraints has been investigated. It has been shown
that the L2-sensitivity minimization problem subject
to the scaling constraints can be converted into an un-
constrained one by using linear algebraic techniques.
An efficient quasi-Newton algorithm has been applied
to solve the unconstrained optimization problem. Our
computer simulation results have demonstrated the ef-
fectiveness of the proposed technique compared with
the existing methods.

1. REFERENCES

[1] M. Kawamata, T. Lin and T. Higuchi, “Minimiza-
tion of sensitivity of 2-D state-space digital fil-
ters and its relation to 2-D balanced realization-
s,” in Proc. 1987 IEEE Int. Symp. Circuits Syst.,
pp.710-713.

[2] T. Hinamoto, T. Hamanaka and S. Maekawa,
“Synthesis of 2-D state-space digital filters with
low sensitivity based on the Fornasini-Marchesini
model,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol.ASSP-38, pp.1587-1594, Sept. 1990.

[3] T. Hinamoto, T. Takao and M. Muneyasu, “Syn-
thesis of 2-D separable-denominator digital filters
with low sensitivity,” J. Franklin Institute, vol.329,
pp.1063-1080, 1992.

[4] T. Hinamoto and T. Takao, “Synthesis of 2-D
state-space filter structures with low frequency-
weighted sensitivity,” IEEE Trans. Circuits Syst.
II, vol.39, pp.646-651, Sept. 1992.

[5] T. Hinamoto and T. Takao, “Minimization of
frequency-weighting sensitivity in 2-D systems
based on the Fornasini-Marchesini second model,

” in 1992 IEEE Int. Conf. Acoust., Speech, Signal
Processing, pp.401-404.

[6] G. Li, “On frequency weighted minimal L2 sensi-
tivity of 2-D systems using Fornasini-Marchesini
LSS model”, IEEE Trans. Circuits Syst. I, vol.44,
pp.642-646, July 1997.

[7] G. Li, “Two-dimensional system optimal real-
izations with L2-sensitivity minimization,” IEEE
Trans. Signal Processing, vol.46, pp.809-813, Mar.
1998.

[8] T. Hinamoto, Y. Zempo, Y. Nishino and W.-S.
Lu, “An analytical approach for the synthesis of
two-dimensional state-space filter structures with
minimum weighted sensitivity,” IEEE Trans. Cir-
cuits Syst. I, vol.46, pp.1172-1183, Oct. 1999.

[9] T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng
and W.-S. Lu, “Analysis and minimization of L2-
sensitivity for linear systems and two-dimensional
state-space filters using general controllability and
observability Gramians,” IEEE Trans. Circuits
Syst. I, vol.49, pp.1279-1289, Sept. 2002.

[10] T. Hinamoto and Y. Sugie, “L2-sensitivity
analysis and minimization of 2-D separable-
denominator state-space digital filters,” IEEE
Trans. Signal Processing, vol.50, pp.3107-3114,
Dec. 2002.

[11] M. Kawamata and T. Higuchi, “A unified study
on the roundoff noise in 2-D state-space digital
filters,” IEEE Trans. Circuits Syst., vol. 33, pp.
724-730, July 1986.

[12] W.-S. Lu and A. Antoniou, “Synthesis of 2-
D state-space fixed-point digital filter structures
with minimum roundoff noise,” IEEE Trans. Cir-
cuits Syst., vol. 33, pp. 965-973, Oct. 1986.

[13] R. Fletcher, Practical Methods of Optimization,
2nd ed. Wiley, New York, 1987.

[14] R. P. Roessor, “A discrete state-space model for
linear image processing,” IEEE Trans. Automat.
Contr., vol.AC-20, pp.1-10, Feb. 1975.

[15] S. Kung, B. C. Levy, M. Morf and T. Kailath,
“New results in 2-D systems theory, Part II: 2-
D state-space model—Realization and the notions
of controllability, observability, and minimality,”
Proc. IEEE, vol.65, pp.945-961, June 1977.


