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ABSTRACT
The joint optimization of an error-feedback matrix and
a coordinate-transformation matrix in 2-D state-space
digital filters for roundoff noise minimization subject
to L2-norm dynamic-range scaling constraints is inves-
tigated. Using linear-algebraic techniques, the problem
at hand is converted into an unconstrained optimiza-
tion problem, and the unconstrained problem obtained
is then solved by applying an efficient quasi-Newton
algorithm.

I. INTRODUCTION

When implementing IIR digital filters in fixed-point
arithmetic, the problem of reducing the effects of
roundoff noise (RN) at the filter output is of critical
importance. Error feedback (EF) is a useful tool for re-
ducing finite-word-length (FWL) effects in IIR digital
filters. Many EF techniques have been reported for 2-D
IIR digital filters [1]-[5]. Another useful approach is to
construct the 2-D state-space filter structure for the RN
gain to be minimized by applying a linear transforma-
tion to the state-space coordinates subject to L2-norm
dynamic-range scaling constraints [6],[7]. As a natural
extension of the fore-mentioned methods, efforts have
been made to develop new mehods that combine the EF
and coordinate transformation for achieving better per-
formance in the RN reduction. In [8], jointly-optimized
iterative algorithms have also been developed for the
filter with a scalar or general EF matrix.

This paper investigates the problem of jointly op-
timizing the EF and the coordinate transformation in
2-D state-space digital filters so as to minimize the RN
subject to L2-norm dynamic-range scaling constraints.
A jointly-optimized iterative technique, relying on an
efficient quasi-Newton algorithm [9], is developed for
RN minimization subject to the scaling constraints.
The proposed technique can be applied to the cases
where the error-feedback matrix is a scalar, diagonal,
block-diagonal, or general matrix.

II. 2-D STATE-SPACE DIGITAL FILTERS
WITH ERROR FEEDBACK

Consider the following local state-space (LSS) model
(A, b, c, d)m,n for 2-D IIR digital filters:

x11(i, j) = Ax(i, j) + bu(i, j)

y(i, j) = cx(i, j) + du(i, j)
(1)

where

x11(i, j) =
[

xh(i + 1, j)
xv(i, j + 1)

]
, x(i, j) =

[
xh(i, j)
xv(i, j)

]

A =
[

A1 A2

A3 A4

]
, b =

[
b1

b2

]
, c =

[
c1 c2

]
.

Here, xh(i, j) is an m × 1 horizontal state vector,
x v(i, j) is an n × 1 vertical state vector, u(i, j) is a
scalar input, y(i, j) is a scalar output, and A1, A2,
A3, A4, b1, b2, c1, c2, and d are real matrices of ap-
propriate dimensions. The LSS model (1) is assumed
stable, separately locally controllable and observable.

Due to finite register sizes, FWL constraints are
imposed on the local state vector x(i, j), input, out-
put, and coefficients in the realization (A, b, c, d)m,n.
Assuming that the quantization is performed before
matrix-vector multiplication, the actual FWL filter of
(1) with EF can be implemented as

x̃11(i, j) = AQ[x̃(i, j)] + bu(i, j) + De(i, j)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j)
(2)

where D is an (m+n)×(m+n) constant matrix referred
to as error feedback (EF)matrix,

e(i, j) = x̃(i, j) − Q[x̃(i, j)]

and each component of matrices A, b, c, and d assumes
an exact fractional Bc-bit representation. The FWL
local state vector x̃(i, j) and output ỹ(i, j) all have a



B-bit fractional representation, while the input u(i, j)
is a (B − Bc)-bit fraction. The quantizer Q[·] in (2)
rounds the B-bit fraction x̃(i, j) to (B −Bc) bits after
the multiplications and additions, where the sign bit is
not counted. The quantization error e(i, j) is modeled
as a zero-mean noise process of covariance σ2Im+n with

σ2 =
1
12

2−2(B−Bc).

Subtracting (2) from (1) yields

∆x11(i, j) = A∆x(i, j) + (A − D)e(i, j)

∆y(i, j) = c∆x(i, j) + ce(i, j)
(3)

where

∆x(i, j) = x(i, j) − x̃(i, j)

∆x11(i, j) = x11(i, j) − x̃11(i, j)

∆y(i, j) = y(i, j) − ỹ(i, j).

The 2-D transfer function from the quantization error
e(i, j) to the filter output ∆y(i, j) is given by

GD(z1, z2) = c(Z − A)−1(A − D) + c. (4)

For the filter (3) with EF, the noise gain defined by
I(D) = σ2

out/σ2 can be evaluated as

I(D) =
1

(2πj)2

∮
Γ1

∮
Γ2

GD(z1, z2)G∗
D(z1, z2)

dz1dz2

z1z2

= tr[W D]
(5)

where σ2
out denotes noise variance at the output, and

W D =
1

(2πj)2

∮
Γ1

∮
Γ2

G∗
D(z1, z2)GD(z1, z2)

dz1dz2

z1z2

with Γi = {zi : |zi| = 1} for i = 1, 2. Utilizing the 2-D
Cauchy integral theorem, the matrix W D in (5) can be
expressed in closed form

W D = (A − D)T W o(A − D) + cT c (6)

where W o is called the local observability Gramian of
the 2-D filter and defined by

W o =
1

(2πj)2

∮
Γ1

∮
Γ2

(Z∗−AT )−1cT c(Z−A)−1 dz1dz2

z1z2
.

(7)
Matrix W o in (7) is referred to as the unit noise matrix
for the 2-D filter (2) with D = 0, and W D is viewed
as the unit noise matrix for the 2-D filter (2) with EF
specified by matrix D. In the case where there is no

EF in the 2-D filter, the noise gain I(D) with D = 0
is expressed as

I(0) = tr[AT W oA + cT c] = tr[W o]. (8)

It is noted that the L2-norm scaling constraints on
the local state vector x(i, j) involves the local control-
lability Gramian Kc of the 2-D filter, defined by

Kc =
1

(2πj)2

∮
Γ1

∮
Γ2

(Z−A)−1b bT (Z∗−AT )−1 dz1dz2

z1z2
.

(9)

III. JOINT ERROR FEEDBACK AND
REALIZATION OPTIMIZATION

A. Probem Statement
Applying a coordinate transformation defined by

x(i, j) = T −1x(i, j) with T = T 1 ⊕ T 4 transforms
the filter (A, b, c, d)m,n to (A, b, c, d)m,n where

A = T −1AT , b = T −1b, c = cT . (10)

The local controllability Gramian Kc and local observ-
ability Gramian W o in the new realization then satisfy

Kc = T −1KcT
−T , W o = T T W oT . (11)

If the L2-norm dynamic-range scaling constraints

(Kc)ii = (T −1KcT
−T )ii = 1, i = 1, 2, · · · , m + n

(12)
are imposed on the new realization, then it is known
that [16],[17]

min
T

tr[W o] =
1
m

(
m∑

i=1

σ1i

)2

+
1
n

(
n∑

i=1

σ4i

)2

(13)

where σ2
1i for i = 1, 2, · · ·, m and σ2

4i for i = 1, 2, · · · , n
are the eigenvalues of matrices K1cW 1o and K4cW 4o,
respectively, and

Kc =
[

K1c K2c

K3c K4c

]
.

The LSS model (A, b, c, d)m,n satisfying (12) and (13)
simultaneously is known as the optimal realization.

If a coordinate transformation x(i, j) = T −1x(i, j)
with T = T 1 ⊕ T 4 is applied to the LSS model (2),
then the 2-D filter with EF can be characterized by

x̃11(i, j) = AQ[x̃(i, j)] + b u(i, j) + De(i, j)

ỹ(i, j) = c Q[x̃(i, j)] + du(i, j).
(14)

This corresponds to (2) in the original realization. In
this case, the noise gain I(D, T ) can be expressed as a
function of matrices D and T = T 1 ⊕ T 4 in the form

I(D, T ) = tr[W D] (15)



where

W D = (A − D)T W o (A − D) + cT c.

The problem of RN minimization is to obtain matrices
D and T = T 1 ⊕ T 4 which minimize (15) subject to
the scaling constraints in (12).
B. Problem Relaxation and Conversion

In order to reduce solution sensitivity, the objective
function in (15) is modified to

J(D, T ) = tr[(1 − µ)W D + µW o] (16)

where 0 ≤ µ ≤ 1 is a scalar that weights the impor-
tance of reducing tr[W o] relative to reducing tr[WD].
Defining

T̂ = T̂ 1 ⊕ T̂ 4 = (T 1 ⊕ T 4)T (K1c ⊕ K4c)−
1
2 (17)

it follows that

Kc = T̂
−T

[
Im K

− 1
2

1c K2cK
− 1

2
4c

K
− 1

2
4c K3cK

− 1
2

1c In

]
T̂

−1
.

(18)
This reduces the scaling constraints in (12) to

(T̂ 1
−T

T̂ 1
−1

)ii = 1, i = 1, 2, · · · , m
(T̂ 4

−T
T̂ 4

−1
)kk = 1, k = 1, 2, · · ·, n.

(19)

The constraints in (19) simply state that each column
in matrices T̂ 1

−1
and T̂ 4

−1
must be a unity vector.

These are satisfied if T̂ 1
−1

and T̂ 4
−1

assume the forms

T̂ 1
−1

=
[

t11

||t11|| ,
t12

||t12|| , · · · ,
t1m

||t1m||
]

T̂ 4
−1

=
[

t41
||t41|| ,

t42
||t42|| , · · · ,

t4n

||t4n||
] (20)

where t1i for i = 1, 2, · · · , m and t4j for j = 1, 2, · · · , n
are m × 1 and n × 1 real vectors, respectively. In such
a case, matrix W D in (15) can be written as

W D = T̂ [(Â−T̂
T
DT̂

−T
)T Ŵ o(Â−T̂

T
DT̂

−T
)+Ĉ ] T̂

T

(21)
where T̂ = T̂ 1 ⊕ T̂ 4 and

Â = (K1c ⊕ K4c)
− 1

2 A (K1c ⊕ K4c)
1
2

Ĉ = (K1c ⊕ K4c)
1
2 cT c (K1c ⊕ K4c)

1
2

Ŵ o = (K1c ⊕ K4c)
1
2 W o (K1c ⊕ K4c)

1
2 .

Moreover, the objective function in (16) becomes

J(D, T̂ ) = (1 − µ) tr[ T̂ (Â − T̂
T
DT̂

−T
)T

·W o(Â − T̂
T
DT̂

−T
)T̂

T
]

+(1 − µ) tr[ T̂ ĈT̂
T
] + µ tr[ T̂ Ŵ oT̂

T
].

(22)

Therefore, the problem of obtaining matrices D and
T = T 1 ⊕ T 4 that minimize (16) subject to the scal-
ing constraints in (12) can be converted into an uncon-
strained optimization problem of obtaining matrices D
and T̂ = T̂ 1 ⊕ T̂ 4 that minimize (22).
C. Optimization Method

Let x be the column vector that collects the vari-
ables in matrices D and T̂ = T̂ 1⊕ T̂ 4. Then, J(D, T̂ )
is a function of x, denoted by J(x). The algorithm
starts with a trivial initial point x0 obtained from an
initial assignment D = T̂ = Im+n. In the kth it-
eration, a quasi-Newton algorithm updates the most
recent point xk to point xk+1 as

xk+1 = xk + αkdk (23)

where [9]

dk = −Sk∇J(xk), αk = arg min
α

J(xk + αdk)

Sk+1 = Sk+
(

1+ γT
k
Skγk

γT
k
δk

)
δkδ

T

k

γT
k
δk

− δkγT
k
Sk+Skγk

δT

k

γT
k
δk

S0 = I , δk = xk+1 − xk, γk = ∇J(xk+1)−∇J(xk).

Here, ∇J(x) is the gradients of J(x) with respect to
x, and Sk is a positive-definite approximation of the
inverse Hessian matrix of J(x). This iteration process
continues until

|J(xk+1) − J(xk)| < ε (24)

where ε > 0 is a prescribed tolerance. If the iteration is
terminated at step k, xk is viewed as a solution point.
Case 1: D is a general matrix

From (22), the optimal choice of D is given by

D = T̂
−T

ÂT̂
T

(25)

which leads to

J(T̂
−T

ÂT̂
T
, T̂ ) = tr[T̂ {(1 − µ)Ĉ + µŴ o}T̂ T

]. (26)

Then, the elements in vector x consist of T̂ = T̂ 1 ⊕ T̂ 4

and the gradients of J(x) are found to be

∂J(x)
∂tij

= lim
∆→∞

J(T̂ ij) − J(T̂ )
∆

= 2eT
j T̂ [(1 − µ)Ĉ + µŴ o]T̂

T
T̂ gij

(27)

(1 ≤ i, j ≤ m) or (m + 1 ≤ i, j ≤ m + n).

where T̂ ij is the matrix obtained from T̂ with a per-
turbed (i, j)th component, and is given by [10]

T̂ ij = T̂ +
∆T̂ gije

T
j T̂

1 − ∆eT
j T̂ gij



and gij is computed using

gij = ∂

{
tj

||tj||
}

/∂tij =
1

||tj ||3 (tijtj − ||tj ||2ei).

Case 2: D is a block-diagonal matrix

D = D1 ⊕ D4 (28)

where D1 and D4 are m × m and n × n matrices,
respectively. The gradients of J(x) can be derived as

∂J(x)
∂tij

= 2β1 + (1 − µ)(β2 − β3)

∂J(x)
∂dij

= 2eT
j (1 − µ)T̂ Ŵ o(T̂

T
D − ÂT̂

T
)ei

(29)

where

β1 = eT
j T̂ [ (1− µ)(Â

T
Ŵ oÂ + Ĉ ) + µŴ o]T̂

T
T̂ gij

β2 = eT
j T̂ Ŵ oT̂

T
T̂DDT T̂ gij

β3 = eT
j T̂ (Â

T
Ŵ oT̂

T
D + Ŵ oÂT̂

T
DT ) gij

with gij defined in (27). Here, dij ∈ D1 ⊕ D4 such
that dij ∈ D1 for (1, 1) ≤ (i, j) ≤ (m,m) and dij ∈ D4

for (m + 1, m + 1) ≤ (i, j) ≤ (m + n, m + n).
Case 3: D is a diagonal matrix

D = diag{d11, d22, · · · , dm+n,m+n} (30)

which leads to

∂J(x)
∂dii

= 2eT
i (1 − µ)T̂ Ŵ o(T̂

T
D − ÂT̂

T
)ei (31)

where 1 ≤ i ≤ m + n. In this case, ∂J(x)/∂tij is the
same as in (29).
Case 4: D1 = αIm and D4 = βIn with scalars α, β

The gradients of J(x) can be calculated using

∂J(x)
∂α

= 2eT
1 (1 − µ)T̂ Ŵ o(T̂

T
D − ÂT̂

T
)e1

∂J(x)
∂β

= 2eT
m+1(1 − µ)T̂ Ŵ o(T̂

T
D − ÂT̂

T
)em+1

(32)
and ∂J(x)/∂tij is computed using (29).

IV. CONCLUSION

The joint optimization of a error feedback matrix and
a coordinate-transformation matrix in 2-D state-space
digital filters for roundoff noise minimization subject to
L2-norm dynamic-range scaling constraints has been
investigated. It has been shown that the problem at

hand can be converted into an unconstrained optimiza-
tion problem by using linear algebraic techniques. An
efficient quasi-Newton algorithm has been employed to
solve the unconstrained optimization problem iterative-
ly. It has been clarified that the proposed technique
can be applied to the cases where the error feedback
matrix is a scalar, diagonal, block-diagonal, or general
matrix. Our computer simulation results have demon-
strated the effectiveness of the proposed technique com-
pared with the existing method.
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