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Abstract— Digital filters with discrete coefficients that can be
expressed as sums of power of two (SP2) are of practical use
because they admit fast implementations that do not require
multiplications. In this paper, a new method for the design of
finite-impulse-response (FIR) digital filters with SP2 coefficients
by convex relaxation is proposed. The major difference of the
proposed method from the semidefinite programming relaxation
(SDPR) method proposed in the literature is that a sequential
convex quadratic programming relaxation (QPR) in conjunction
with a low-bit descent search technique replaces SDPR, yielding
much reduced algorithmic complexity. Design examples are
presented to illustrate the proposed algorithm and to demonstrate
its near optimal performance against a weight least squares error
measure.

I. INTRODUCTION

Digital filters with discrete coefficients are of practical use
because they admit fast implementations that do not require
multiplications but superposition of shifted versions of the
input. Throughout the term “discrete coefficient” is referred
to a real value that can be expressed as sum of finite power-
of-two terms. For brevity we call it a SP2 (sum of power of
two) coefficient. There has been considerable research interest
in the design of digital filters with SP2 coefficients in the
past [1]–[7]. A technical difficulty encountered in designing
an optimum filter with SP2 coefficients is its exponential com-
plexity. This is because the design problem is essentially an
integer programming (IP) problem which is known to be NP-
hard [8]. In [7], a semidefinite programming (SDP) relaxation
approach is proposed, in which the IP problem involved is
“relaxed” to an SDP problem that is a convex optimization
problem and is solvable with polynomial complexity. Design
practice has indicated that the suboptimal solutions obtained
using SDP relaxation (SDPR) for a variety of filter types and
filter lengths are of excellent quality [7]. A problem with the
SDPR-based method is its complexity. Although in theory the
solution method is of polynomial complexity and is indeed
considerably more efficient than IP-based design algorithms,
the amount of computation remains to be more than affordable
for high-order filters.

In this paper, the design problem is addressed using a new
relaxation method that differs from the SDPR method in a
major design step where a {−1, 1}-optimization problem
is relaxed to a sequence of quadratic programming (QP)
problems which can be solved substantially more efficiently

than their SDP counterparts, especially when the order of
the filter is high. Design examples are presented to illustrate
and evaluate the proposed algorithm as compared with several
existing solutions including the one obtained using the SDP
relaxation.

II. A NEW DESIGN METHOD BASED ON CONVEX

RELAXATION

Four steps are involved in the proposed design method:
(i) design of an FIR filter with continuous coefficients that
approximates a desired frequency response in a cetrain optimal
sense; (ii) a subsequent formulation of the design of an FIR
filter with SP2 coefficients as a {−1, 1}-optimization prob-
lem; (iii) a sequential convex QP relaxation of the {−1, 1}-
optimization problem, and (iv) solution enhancement by low-
bit descent search. In what follows we describe these steps in
order.

A. Design of an FIR Filter with Continuous Coefficients

There are many methods for the design of this type of filters
[9]. For illustration purposes, suppose we apply one of the
available methods to design a linear-phase FIR filter of odd
length that approximates a desired frequency response Hd(ω)
such that the weighted least square (WLS) error

e =
∫ π

0

W (ω)|H(ejω) − Hd(ω)|2 dω (1)

is minimized, and the FIR filter obtained is represented by

Hc(z) =
N−1∑
k=0

hkz−k (2)

B. A Weighted Least-Square {−1, 1}-Optimization Problem

Instead of Hc(z) in (2), we are interested in an FIR transfer
function

H(z) =
N−1∑
k=0

dkz−k (3)

where each coefficient dk is a length-L binary number in two’s
complement representation [9], i.e.,

dk = −βk0 +
L∑

i=1

βki2−i (4)



with βki ∈ {0, 1} for i = 0, 1, . . . , L. For a given filter
length N and length budget L, we seek to determine SP2
coefficients {dk, k = 0, . . . , N − 1} such that the WLS
error in (1) is minimized. This is a discrete QP problem with
a total of N(L + 1) binary variables. Even for a moderate
filter length N in the range [41, 81] and length budget L in
the range [8, 16], the number of binary variables can easily
exceed 500, and the computational complexity of solving a
discrete QP problem of such a size is very high.

Our approach to the problem is to place a SP2 layer
surrounding the optimal continuous coefficients (i.e., hk’s
in (2)) and formulate a reduced-size {−1, 1}-optimization
problem whose solution is obtained by optimally choosing
the SP2 coefficients within the layer. Given a real-valued
coefficient hk and length budget L, we find the largest SP2
lower bound of hk, denoted by dk, and the smallest SP2 upper
bound of hk, denoted by d̄k. The relation of coefficient hk to
these bounds is illustrated in Fig. 1,
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Fig. 1 Relation of hk to the bounds.

where
dmk = (d̄k + dk)/2, δk = (d̄k − dk)/2 (5)

It can be readily verified that

dk = dmk + δkbk (6)

assumes the values of dk or d̄k when bk assumes the values of
−1 or 1, respectively. It is generally expected that the impulse
response of the optimal FIR filter with SP2 coefficients should
lie in a small vicinity of the impulse response of the optimal
FIR filter with continuous coefficients. From Fig. 1 and (6),
we see that a SP2 layer has been placed on each side of {hk}
and, for each k, any of the two SP2 bounds can be selected
by specifying the binary variable bk. In this way, the problem
at hand becomes an {−1, 1}-optimization problem with N
binary variables. More layers can be placed if necessary, at
the cost of dealing with mN binary variables for the m-layer
case.

For the design of linear-phase FIR filters of odd length N ,
{hk}, {dmk} and {bk} are all symmetrical with respect to the
midpoint, hence (3) and (6) imply

H(ejω) = e−jN1ω[Am(ω) + bT c(ω)] (7)

where N1 = (N − 1)/2, and Am(ω) is the real-valued
trigonometric polynomial obtained from

N−1∑
k=0

dmke−jkω = e−jN1ωAm(ω)

In (7), vectors b and c(ω) are defined by

b = [b0 b1 · · · bN1]T

c(ω) = [2δ0 cos N1ω 2δ1 cos(N1 − 1)ω · · · δN1 ]
T

Under these circumstances, the WLS error in (1) can be
evaluated as

e = bT Qb + 2bT q + const

where

Q =
∫ π

0

W (ω)c(ω)cT (ω) dω (8a)

q =
∫ π

0

W (ω)[Am(ω) − Ad(ω)]c(ω) dω (8b)

In (8b), Ad(ω) is obtained from the desired frequency response
Hd(ω) = e−jN1ωAd(ω). Consequently, the weighted least-
square design of H(z) with SP2 coefficients can be formulated
as the {−1, 1}-optimization problem

minimize
bi∈{−1,1}

bT Qb + 2bT q (9)

C. A Sequential Convex Relaxation of Problem (9)

If vector b in (9) is treated as a continuous variable vector,
then the objective function in (9) is strictly convex because
matrix Q defined by (8a) is positive definite. Therefore, if the
binary constraints bi ∈ {−1, 1} are relaxed to −1 ≤ bi ≤ 1
then the problem in (9) is relaxed to

minimize bT Qb + 2bT q (10a)

subject to: −1 ≤ bi ≤ 1 for i = 1, . . . , N1 (10b)

which is obviously a convex QP problem that admits a unique
global solution [10]. The solution of (10) is however not binary
in general. At this point, an intuitively meaningful step toward
a binary solution is to use a multistage strategy that sets the
components of b, whose counterparts in the corresponding
continuous-valued solution are sufficiently close to either 1
or −1, to 1 or −1. Here the closeness may be measured by a
pre-specified threshold α > 0, i.e.

bi =




1 if bi > α
−1 if bi < −α
to be determined in subsequent iterations

The determined components of b are then substituted into (10),
yielding a convex QP problem of reduced size and the step
described above applies again to its solution. This process
continues until it reaches the last stage of the design where all
remaining components of b are set to 1 or −1 based on their
signs. The value of threshold α may vary from stage to stage,
but in many cases a constant α in the vicinity of 0.5 yields
satisfactory designs.



D. Solution Enhancement by Low-Bit Descent Search

The solution obtained can be enhanced by low-bit descent
search where each time only a small number of components
in vector b are switched and the performance of the modified
b is then evaluated. In this section we show that one-bit and
two-bit descent search can be accomplished with a very small
amount of computation.

1) A One-Bit Descent Search

Denote f(b) = bT Qb + 2qT b. Switching the sign for the
ith component of b can be described as using bi = b− 2biei

to replace b, where ei is the ith column of the identity matrix.
Using the fact that b2

i is always equal to one, the change in the
objective function due to the above one-bit switch is found to
be

δi = f(bi) − f(b)
= 4[qii − bi(qT

i b + qi)]

= −4bi


 N1+1∑

j=1, j �=i

qijbj + qi




where qi is the ith column of Q, qij is the (i, j)-component
of Q and qi is the ith component of q. Let Q̂ be the
matrix obtained from Q by setting its diagonal components
to zero and define vector v = Q̂b + q, then we have δi =
−4bivi where vi denotes the ith compnent of v. Consequently,
the one-bit descent search can be carried out by evaluating
vector b�v (here � denotes component-wise multiplication),
then identifying its index i∗ where the associated component
assumes the maximum value, and switching the sign of bi∗ .

2) A Two-Bit Descent Search

Switching the sign of two components in vector b can be
described as replacing b with bij = b−2biei−2bjej where i
and j are distinct. It can be readily verified that the change in
the objective function due to this two-bit switch is given by

δij = f(bij) − f(b)
= −4[(bivi + bjvj) − 2bibjqij ]

where i �= j is assumed. If we define matrix D = {δij} whose
diagonal is set to zero, then we can write D = −4P with

P = (b � v)eT + e(b � v)T − 2Q � (bbT )

where e denotes the all-one vector and the diagonal of P
is set to zero. The two-bit descent search can be carried out
by evaluating matrix P , then identifying its indices (i∗, j∗)
where the associated component reaches the maximum value,
and switching each of the signs of bi∗ and bj∗ to its opposite.

Because both one-bit and two-bit search are descent algo-
rithms, each algorithm can be used alone. Better still, they can
be used in parallel to yield an improved search result at a cost
of increased complexity.

III. DESIGN EXAMPLES

The QP relaxation (QPR) method described in Sec. 2 was
applied to design a variety of linear phase FIR filters with SP2
coefficients. Here we present ten designs of lowpass FIR filters
with nomalized passband edge ωp = 0.2 and stopband edge
ωa = 0.25 of lengths N = 7 + 8i for i = 0, 1, . . . , 9.
The wordlength L was 8 for the first five designs and L
was 12 for the last five designs. The weighting function
W (ω) ≡ 1 in both passband and stopband and W (ω) ≡ 0
elsewhere. In all designs, the proposed method was used with
2 stages and threshold α = 0.5, and the two-bit descent
search was employed. The weighted least squares error e
in (1) was used to evaluate the filter performance, and the
computational complexity was evaluated in terms of the CPU
time consumed. The design results are shown in Table I where
for a given N , each case has shown two numbers with the
first being the WLS error e and second the CPU time in
seconds. For comparison purposes, Table I also includes design
results obtained using the SDPR method and the optimal filters
obtained by exhaustive search (we were unable to perform the
optimal designs for N = 63, 71, and 79 because the amount
of computation required in those 3 cases was not affordable
for a Pentium 4 PC). It is observed that the designs obtained
by the proposed QPR method and by the SDPR method [7]
are both near optimal in terms of WLS error, but the QPR
algorithm required significantly less computation relative to
the SDPR algorithm.

TABLE I
Comparison of Various Designs

N QPR SDPR Optimal
7 0.0311 0.0311 0.0311

0.0231 0.0469 0.0103
15 0.0060 0.0060 0.0060

0.0235 0.3438 0.0156
23 0.0012 0.0012 0.0012

0.0239 1.3281 1.2656
31 0.2291e−3 0.2291e-3 0.2291e−3

0.0242 9.2500 11.7813
39 0.0735e−3 0.0735e-3 0.0735e−3

0.0253 18.2188 26.8750
47 0.1122e−4 0.1120e−4 0.1119e−4

0.0264 41.7969 231.1875
55 0.3456e−5 0.3481e−5 0.3456e−5

0.0273 138.30 3799.80
63 0.1039e−5 0.1021e−5 –

0.0284 210.22 –
71 0.0430e−5 0.0410e−5 –

0.0301 416.80 –
79 0.2375e−6 0.2375e−6 –

0.0326 723.67 –



The amplitude responses of the WLS optimal filter with
continuous coefficients compared with QPR-based FIR filter
with SP2 coefficients are depicted in Fig. 2a, while the
comparison of the optimal filter with the SDPR-based filter are
shown in Fig. 2b where, in both cases, N = 55 and L = 12.
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Fig. 2 (a) Amplitude responses of optimal FIR filter with
continuous coefficients (dashed line) and QPR-based FIR filter
with SP2 coefficients, (b) Amplitude responses of optimal filter
with continuous coefficients (dashed line) and SDPR-based
FIR filter with SP2 coefficients. In both cases N = 55, L =
12.

IV. CONCLUSION

We have described a new method for the design of FIR
digital filters with SP2 coefficients using sequential convex
QP relaxation in conjunction with low-bit descent search.
Simulations have demonstrated that the proposed algorithm
offers near optimal designs with a computatial complexity
that is only a small fraction of the previously proposed design
method based on SDPR.
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