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Abstract— The minimization problem of an L2-sensitivity mea-
sure subject to L2-norm dynamic-range scaling constraints is
formulated for a class of two-dimensional (2-D) state-space digital
filters. First, the problem is converted into an unconstrained
optimization problem by using linear-algebraic techniques. Next,
the unconstrained optimization problem is solved by applying
an efficient quasi-Newton algorithm with closed-form formula
for gradient evaluation. The coordinate transformation matrix
obtained is then used to synthesize the optimal 2-D state-space
filter structure that minimizes the L2-sensitivity measure subject
to the L2-scaling constraints. Finally, a numerical example is
presented to illustrate the utility of the proposed technique.

I. INTRODUCTION

This paper is concerned with the optimal realization of a
fixed-point state-space digital filter with finite word length
(FWL). The efficiency and performance of the filter are
directly influenced by selecting its state-space filter structure.
When designing a transfer function with infinite accuracy
coefficients so as to meet the filter specification requirements,
and implementing it by a state-space model with a finite
binary representation, the coefficients in the state-space model
must be truncated or rounded to fit the FWL constraints. This
coefficient quantization usually alters the characteristics of the
filter and may change a stable filter to an unstable one. This
motivates the study of the coefficient sensitivity minimization
problem. In [1]-[10], two main classes of techniques have
been proposed for constructing state-space digital filters that
minimize the coefficient sensitivity, that is, L1/L2-sensitivity
minimization [1]-[5] and L2-sensitivity minimization [6]-[10].
It has been argued that the sensitivity measure based on the
L2 norm is more natural and reasonable relative to that based
on the L1/L2-sensitivity minimization [6]-[10]. For 2-D state-
space digital filters, the L1/L2-mixed sensitivity minimization
problem [11]-[15] and L2-sensitivity minimization problem
[10],[16]-[19] have also been investigated. However, to our
best knowledge, little has been done for the minimization of
L2-sensitivity subject to the L2-norm dynamic-range scaling
constraints for state-space digital filters [20], although it has
been known that the use of scaling constraints can be beneficial
for suppressing overflow oscillations [21],[22].

This paper investigates the problem of minimizing an L2-
sensitivity measure subject to L2-norm dynamic-range scaling
constraints for a class of 2-D state-space digital filters [23].

To this end, we introduce an expression for evaluating the L2-
sensitivity and formulate the L2-sensitivity minimization prob-
lem subject to L2-norm dynamic-range scaling constraints.
Next, the constrained optimization problem is converted
into an unconstrained optimization problem by using linear-
algebraic techniques. The unconstrained optimization problem
is then solved using an efficient quasi-Newton algorithm [24].
A numerical example is presented to demonstrate that the
proposed algorithm offers much reduced L2-sensitivity.

II. L2-SENSITIVITY ANALYSIS

Consider a local state-space model (A1, A2, b, c1, c2, d)n

for a class of 2-D recursive digital filters which is stable,
locally controllable and locally observable [23][
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where x(i, j) is an n× 1 local state vector, u(i, j) is a scalar
input, y(i, j) is a scalar output, and A1, A2, b, c1, c2 and d are
real constant matrices of appropriate dimensions. The transfer
function of (1) is given by

H(z1, z2) = (z−1
1 c1 + z−1

2 c2)
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1 A1 − z−1

2 A2

)−1
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Definition 1 : Let X be an m×n real matrix and let f(X)
be a scalar complex function of X , differentiable with respect
to all the entries of X . The sensitivity function of f with
respect to X is then defined as

SX =
∂f

∂X
, (SX )ij =

∂f

∂xij
(3)

where xij denotes the (i, j)th entry of matrix X .
From (2) and Definition 1, it can easily be shown that
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where
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The term d in (2) and its sensitivity are independent on the
State-Space coordinate and therefore they are neglected here.

Definition 2 : Let X(z1, z2) be an m × n complex matrix
valued function of the complex variables z1 and z2. The L2

norm of X(z1, z2) is then defined as

||X(z1, z2)||2
=

(
tr

[
1

(2πj)2

∮
Γ1

∮
Γ2

X(z1, z2)X∗(z1, z2)
dz1dz2

z1z2

]) 1
2

(5)
where Γi = {zi : |zi| = 1} for i = 1, 2.

From (4) and Definition 2, the overall L2-sensitivity mea-
sure for the local state-space (LSS) model in (1) is evaluated
by
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The L2-sensitivity measure in (6) can be written as

S = 2 tr[M ] + tr[W o] + 2 tr[Kc] (7)

where
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III. L2-SENSITIVITY MINIMIZATION

If a coordinate transformation defined by

x(i, j) = T −1x(i, j) (8)

is applied to the LSS model in (1), we obtain a new realization
(A1, A2, b, c1, c2, d)n characterized by

A1 = T −1A1T , A2 = T −1A2T

b = T −1b, c1 = c1T , c2 = c2T

Kc = T−1KcT
−T , W o = T T W oT .

(9)

The coordinate transformation in (8) transforms (7) into

S(T ) = 2 tr[M(T )] + tr[W o] + 2 tr[Kc] (10)

where

M(T ) = T T
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T

Moreover, if the L2-norm dynamic-range scaling constraints
are imposed on the local state vector x(i, j), then

(Kc)ii = (T −1KcT
−T )ii = 1 (11)

is required for i = 1, 2, · · · , n.
The problem considered here is as follows: Given A1, A2,

b, c1 and c2, obtain an n × n nonsingular matrix T which
minimizes (10) subject to the scaling constraints in (11).

When the LSS model in (1) is assumed to be stable and
locally controllable, the local controllability Gramian Kc is
symmetric and positive-definite [15]. This implies that K1/2

c

satisfying Kc = K1/2
c K1/2

c is also symmetric and positive-
definite. Defining

T̂ = T T K
− 1

2
c , (12)

the scaling constraints in (11) can be expressed as

(T̂
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)ii = 1, i = 1, 2, · · · , n. (13)

The constraints in (13) simply state that each column in T̂
−1

must be a unity vector. If matrix T̂
−1

is assumed to have the
form
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then (13) is always satisfied. From (12), it follows that (10) is
changed to

Jo(T̂ ) = 2 tr[ T̂
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From the foregoing arguments, the problem of obtaining an
n × n nonsingular matrix T which minimizes (10) subject
to the scaling constraints in (11) can be converted into an
unconstrained optimization problem of obtaining an n × n
nonsingular matrix T̂ which minimizes (15).

Now we apply a quasi-Newton algorithm [24] to minimize
(15) with respect to matrix T̂ given by (14). Let x be the
column vector that collects the variables in matrix T̂ . Then
Jo(T̂ ) is a function of x, which we denote by J(x). The
algorithm starts with a trivial initial point x0 obtained from
an initial assignment T̂ = In. Then, in the kth iteration a
quasi-Newton algorithm updates the most recent point xk to
point xk+1 as

xk+1 = xk + αkdk (16)

where



dk = −Sk∇J(xk)

αk = arg min
α

J(xk + αdk)

Sk+1 = Sk +
(
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k Skγk

γT
k
δk

)
δkδ

T

k

γT
k
δk

− δkγT
k Sk+Skγkδ

T

k

γT
k
δk

S0 = I, δk = xk+1 − xk, γk = ∇J(xk+1) −∇J(xk).

Here, ∇J(x) is the gradient of J(x) with respect to x, and
Sk is a positive-definite approximation of the inverse Hessian
matrix of J(x). This iteration process continues until

|J(xk+1) − J(xk)| < ε (17)

where ε > 0 is a prescribed tolerance. If the iteration is
terminated at step k, then xk is viewed as a solution point.

The implementation of (16) requires the gradient of J(x).
Closed-form expressions for ∇J(x) are given below.
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where T̂ pq is the matrix obtained from T̂ with its (p, q)th
component perturbed by ∆:
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1
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where ep is an n×1 unit vector whose pth entry equals unity.

IV. NUMERICAL EXAMPLE

Let a class of 2-D digital filters (A1, A2, b, c1, c2, d)n in
(1) be specified by

A1 =




0 0.481228 0 0
0 0 0.510378 0
0 0 0 0.525287

−0.031857 0.298663 −0.808282 1.044600




A2 =



−0.226080 0.776837 0.024693 −0.000933
−0.843550 1.610400 −0.309366 0.065898
−1.260339 2.005100 −0.453220 0.203118
−1.121498 1.636435 −0.590516 0.562890




b =
[

0 0 0 0.198473
]T

c1 =
[ −0.567054 0.231913 0.197016 0.239932

]
c2 =

[
0.464344 0.441837 −0.061100 0.105505

]
d = 0.00943.

In this case, it is follows from (7) that the Grammians Kc,
W o, and M are calculated as

Kc =




1.000000 0.987279 0.940868 0.844274
0.987279 1.000000 0.976755 0.888478
0.940868 0.976755 1.000000 0.952963
0.844274 0.888478 0.952963 1.000000




W o = 10

·




1.337108 −1.304050 0.189462 −0.556646
−1.304050 1.637345 −0.429399 0.576183

0.189462 −0.429399 2.122604 −2.191942
−0.556646 0.576183 −2.191942 2.672484




M = 103

·




1.001461 −1.050382 0.582275 −0.913062
−1.050382 1.182943 −0.755388 1.062465

0.582275 −0.755388 2.170753 −2.398972
−0.913062 1.062465 −2.398972 2.814168


 .

The L2-sensitivity measure S2 in (7) is then computed as

S = 1.442435× 104.

Applying the quasi-Newton algorithm in (16) to the mini-
mization of (15), it took 30 iterations to converge to

T̂ =




0.501598 −0.103085 −0.225600 0.300033
0.181452 0.691561 −0.214926 0.233838
0.395655 0.681436 0.410789 0.036465

−0.747617 −0.216243 0.856834 0.924105




which leads to

T =




0.693066 0.209465 −0.093284 1.044811
0.556893 0.363710 −0.027678 0.956211
0.527631 0.371601 0.240955 0.815707
0.354314 0.260633 0.335061 0.822833


 .

In this case, the new realization (A1, A2, b, c1, c2, d)n in (9)
is constructed as

A1 =




0.205926 0.094730 −0.183488 0.105715
0.326754 0.273061 0.651563 −0.077094

−0.281487 −0.176174 0.154131 0.288202
0.029260 0.034210 −0.007899 0.411483




A2 =




0.350051 0.129690 −0.166229 0.174840
−0.285268 0.510377 −0.289206 −0.041400
−0.271866 0.174523 0.238315 −0.005608

0.076961 0.060882 0.194526 0.395246




b =
[ −0.729312 −0.408558 0.239624 0.587085

]T

c1 =
[ −0.074892 0.101317 0.174342 −0.012574

]
c2 =

[
0.573022 0.262758 −0.034917 0.944616

]
d = 0.00943
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Fig. 1. L2-Sensitivity Performance

which yields

Kc =




1.000000 0.505058 −0.630213 −0.483523
0.505058 1.000000 −0.030736 −0.044198

−0.630213 −0.030736 1.000000 0.688839
−0.483523 −0.044198 0.688839 1.000000




W o =




0.905086 0.323428 −0.444821 0.602792
0.323428 0.885081 0.323665 0.801004

−0.444821 0.323665 0.968093 0.640803
0.602792 0.801004 0.640803 2.330628




M(T ) = 10

·




2.131163 0.659968 −1.689791 −0.292979
0.659968 2.779735 1.223639 1.911711

−1.689791 1.223639 3.345663 2.646575
−0.292979 1.911711 2.646575 4.337863


 .

The L2-sensitivity measure in (10) is then minimized subject
to the scaling constraints in (11) to

S(T ) = 2.649774× 102.

The L2-sensitivity performance of 50 iterations in (15) is
shown in Fig. 1, from which it is observed that the iterative
algorithm converges with 30 iterations.

II. CONCLUSION

We have investigated the problem of minimizing the L2-
sensitivity measure subject to L2-norm dynamic-range scaling
constraints for a class of 2-D state-space digital filters. We
have shown that the L2-sensitivity minimization problem
subject to L2-scaling constraints can be converted into an
unconstrained optimization problem by using linear algebraic
techniques. An efficient quasi-Newton algorithm has then been
applied to solve the unconstrained optimization problem. The
coordinate transformation matrix obtained has allowed us to
construct the optimal 2-D state-space filter structure. Computer
simulation results have demonstrated the effectiveness of the
proposed technique.
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