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Abstract— A new minimax design for 2-D FIR filters with
low group delay is proposed. The design method is based on
sequential quadratic programming (SQP). The main reason to
formulate and solve the design problem in a SQP formulation
is that the complementarity conditions associated with the SQP
lead to a very small number of nonzero Lagrange multipliers that
need to be updated in a given iteration. This in turn improves
design efficiency as well as the algorithm’s numerical stability
which is of critical importance as both the number of design
variables and the constraints involved in a 2-D design are much
higher than a 1-D design. Design examples with comparisons are
presented to illustrate the effectiveness of the proposed method.

I. INTRODUCTION

The design of optimal one-dimensional (1-D) linear-phase
FIR filters in the minimax sense can be accomplished using
the well-known Parks-McClellan algorithm [1] and its variants
[2]. These algorithms, however, do not directly apply to the
class of FIR filters with low (passband) group delay. In the
two dimension (2-D) case, 2-D FIR filters (particularly with
reduced passband group delay) are of use in image-processing
related applications. The minimax design of 2-D linear-phase
FIR filters were investigated in the literature [3][4][5]. For
minimax FIR filters with low delay, in principle the problem
can be formulated as constrained optimization problem, but
there are technical difficulties that are more challenging than
their 1-D counterparts. First, the number of design variables
increases from O(N) for the 1-D case to O(N2) for the 2-
D case where N − 1 denotes the filter order. Second, the
number of constraints also increases significantly because the
frequency baseband is now two-dimensional, thus the number
of grid points involved are far more than that of the 1-D case.

In this paper, we present a new method for the minimax
design of 2-D FIR filters with low delay based on sequential
quadratic programming (SQP). The main reason that moti-
vates us to use SQP techniques is that the complementarity
conditions in an SQP-based design lead to a very small
number of nonzero Lagrange multipliers compared to the
number of constraints imposed in the design. As a result,
numerical difficulties that would otherwise occur are largely
eliminated and the amount of computation involved in a given
iteration becomes rather moderate even for high-order filters.
Simulations are presented to demonstrate the performance of
the proposed algorithm.

II. PROBLEM FORMULATION

Consider a 2-D FIR transfer function

H(z1, z2) =
N−1∑
i=0

N−1∑
j=0

hijz
−i
1 z−j

2 (1)

If we denote

H(ω1, ω2) = H(ejω1 , ejω2).
c(ω) = [1 cos ω · · · cos(N − 1)ω]T ,

s(ω) = [0 sinω · · · sin(N − 1)ω]T ,

and
H = {hij}

then the frequency response of the 2-D FIR filter can be
expressed as

H(ω1, ω2) = [cT (ω1)Hc(ω2) − sT (ω1)Hs(ω2)]
−j[sT (ω1)Hc(ω2) + cT (ω1)Hs(ω2)]

To simplify the notation, we let ci = c(ωi) and si = s(ωi)
for i = 1, 2 and write

H(ω1, ω2) = tr[(c2c
T
1 − s2s

T
1 )H] − jtr[(c2s

T
1 + s2c

T
1 )H)]

= tr[P (ω1, ω2)H] − jtr[Q(ω1, ω2)H] (2)

where tr(·) denotes matrix trace, P (ω1, ω2) = c2c
T
1 −

s2s
T
1 , and Q(ω1, ω2) = c2s

T
1 + s2c

T
1 . If we use p(ω1, ω2),

q(ω1, ω2), and h to denote the column vectors generated by
stacking the transposed row vectors of P (ω1, ω2), Q(ω1, ω2),
and H , respectively, then we have

H(ω1, ω2) = pT (ω1, ω2)h − jqT (ω1, ω2)h (3)

We are interested in optimizing the transfer function
H(z1, z2) in (1) such that its frequency response best ap-
proximates a desired frequency response Hd(ω1, ω2) in the
minimax sense. This leads to the optimization problem

minimize
h

maximize
−π≤ω1,ω2≤π

|H(ω1, ω2) − Hd(ω1, ω2)| (4)

which may be converted to the constrained optimization prob-
lem

minimize η (5a)

subject to [pT (ω1, ω2)h − Hdr(ω1, ω2)]2

+[qT (ω1, ω2)h − Hdj(ω1, ω2)]2 ≤ η (5b)



where Hdr(ω1, ω2) and −Hdj(ω1, ω2) are the real and imag-
inary parts of Hd(ω1, ω2), i.e.,

Hd(ω1, ω2) = Hdr(ω1, ω2) − jHdj(ω1, ω2) (6)

Typically, the desired frequency response assumes the form

Hd(ω1, ω2) = Ad(ω1, ω2)e−jd(ω1+ω2) (7)

where Ad(ω1, ω2) represents the desired amplitude response,
and d is the desired group delay. For the design of FIR filter
with low group delay, d < (N − 1)/2. It follows from (6)
and (7) that Hdr(ω1, ω2) = Ad(ω1, ω2) cos[d(ω1 + ω2)] and
Hdj(ω1, ω2) = Ad(ω1, ω2) sin[d(ω1 + ω2)].

For feasible exercise of SQP algorithms, the constraints
in (5b) are imposed on a dense grid of frequencies Ωd =
{(ω1i, ω2i), i = 1, . . . , K} ⊆ {(ω1, ω2), −π ≤ ω1, ω2 ≤ π}.
In this way, the problem in (5) become

minimize eT x (8a)

subject to: ai(x) ≥ 0 for 1 ≤ i ≤ K (8b)

where
e = [1 0 · · · 0]T

x = [η hT ]T

ai(x) = η − [pT (ω1i, ω2i)h − Hdr(ω1i, ω2i)]2

−[qT (ω1i, ω2i)h − Hdj(ω1i, ω2i)]2

III. AN SQP-BASED DESIGN ALGORITHM

A. The KKT conditions and optimization problem

By defining the Lagrangian of (8) as

L(x,µ) = eT x −
K∑

i=1

µiai(x)

where µ = [µ1 . . . µK ] collects the K Lagrange multipliers,
the Karush-Kuhn-Tucker (KKT) conditions of (8) are given as
follows [6]

e −
K∑

i=1

µi∇ai(x) = 0 (9a)

a(x) ≥ 0 (9b)

µ ≥ 0 (9c)

µiai(x) = 0 1 ≤ i ≤ K (9d)

where a(x) = [a1(x) · · · aK(x)]T . The K conditions in (9d)
are known as the complementarity conditions which in con-
junction with (9b) imply that if ai(x) > 0, then the Lagrange
multiplier µi must be zero. In the context of filter design, this
means that if at the frequency (ω1i, ω2i) the approximation
error of the current design is strictly smaller than the current
bound η, then the associated Lagrange multiplier can be simply
set to zero without computing it. An interesting observation
made in our simulation studies is that the number of nonzero
Lagrange multipliers, say K̂, is typically only a small fraction
of the total number of constraints K. As a result, the amount
of computation involved in updating the vector µ becomes
insignificant even for high-order filters.

In the kth iteration of the SQP-based algorithm, the vector
pair {xk,µk} is updated to {xk+1,µk+1} = {xk + δx, µk +
δµ} such that the KKT conditions in (9) are approximately
satisfied up to the first order. The first-order approximation of
(9) is found to be

Y kδx + e − AT
k µk+1 = 0 (10a)

Akδx ≥ −ak (10b)

µk+1 ≥ 0 (10c)

(µk+1)i(Akδx + ak)i = 0 1 ≤ i ≤ K (10d)

where Y k = ∇2L(xk,µk), and

Ak =


 ∇T a1(xk)

...
∇T aK(xk)




K×(N+1)

(10e)

By the definition of ak(x) given in (8), we see that the ith row
of Ak has the form [1 2{Hdrp

T +Hdjq
T −(ppT +qqT )hT

k }]
where the frequency dependence of p, q, Hdr, and Hdj has
been omitted. Also note that Eqs. (10a)–(10d) are the exact
KKT conditions of the quadratic programming (QP) problem

minimize
1
2
δT Y kδ + δT e (11a)

subject to: Akδ ≥ −ak (11b)

Now if we denote the solution of (11) by δx, then xk can
be updated to xk+1 = xk + δx. Next, the nonzero Langrange
multiplies can be updated using (10a) as

µ̂k+1 = (AakAT
ak)−1Aak(Y kδk + e) (12)

where the rows of Aak are those of Ak satisfying (Akδx +
ak)i = 0. Once µ̂k+1 is calculated, µk+1 is obtained by
inserting zeros into µ̂k+1 so that the zero components of µk+1

are in the place where the corresponding (Akδx + ak)k are
nonzero. The fact that only a small number of constraints in
(11) are active implies that the computation involved in (12) is
very light and the QP problem in (11) can be solved efficiently
using for example an active-set method [6].

The iteration continues until a convergence criterion in
terms of ‖δk‖2 or the number of iterations performed is met.
The optimal impulse response of the N × N 2-D FIR filter
can then be readily constructed from the solution vector x∗.

B. Convex relaxation of problem (11)

The optimization problem in (11) is not strictly convex. A
strictly convex relaxation of (11) can be made by replacing Y k

in (11a) with a positive definite matrix, still denoted by Y k, as
follows: with Y 0 = I , the Broyden-Fletcher-Goldfarb-Shanno



(BFGS) recursive formula [6] updates Y k to

Y k+1 = Y k +
ηkηT

k

δT
x ηk

− νkνT
k

δT
x νk

(13a)

νk = Y kδx (13b)

ηk = θγk + (1 − θ)νk (13c)

γk = −(Ak+1 − Ak)T µk+1 (13d)

θ =

{
1 if δT

x (γk − 0.2νk) ≥ 0
0.8δT

x νk

δT

x (νk−γk)
otherwise (13e)

A desirable feature of the BFGS updates is that if Y k is
positive definite, then Y k+1 is guaranteed to be positive
definite. Consequently, with Y 0 = I , every QP subproblem
involved in the design process is a convex QP problem which
can be solved using an interior-point or active set algorithm.

C. Line search

A further enhancement in the SQP algorithm described
above is made by including a line search step in the algorithm
that yields a positive scalar αk to minimize a potential function
Ψ(xk + αδx) over α ∈ [0, 1] where δx is the solution
of problem (11) with Y k obtained using (13). The potential
function adopted here assumes the form

Ψ(x) = eT x −
K∑

i=1

(µk)iai(x)

Because µk ≥ 0, minimizing Ψ(xk + αδx) helps reduce the
objective function in (8a) and, in case some ai(xk+δx) fail to
hold the constrains in (8b), reduce the degree of violation of
these constraints. Therefore, the inclusion of a line search step
turns out to be of great benefit at the cost of modest increase in
the computational complexity. Since Ψ(xk+αdk) is a second-
order polynomial in α, we can write Ψ(xk +αdk) = a

(k)
2 α2+

a
(k)
1 α+a

(k)
0 with a

(k)
2 > 0 which achieves its unique minimum

at α∗ = −a
(k)
1 /2a

(k)
2 . The value of αk can then be determined

as αk = min{α∗, 1}.

IV. DESIGN EXAMPLES

The proposed method was applied to design a circularly
symmetric lowpass and a diamond-shaped lowpass 2-D FIR
filters with low and approximately constant passband group
delay.

Example 1 A minimax design of circularly symmetric lowpass
2-D FIR filter of size 27 × 27 with group delay d = 11,
passband edge ωp = 0.5π, and stopband edge ωa = 0.66π
was performed using the proposed algorithm. Because of the
symmetry of the filter, only the upper half of the baseband
was involved in the optimization, where a total of 1479 grid
points were placed uniformly in the region of interest. It
took the algorithm 80 iterations to converge to a solution
FIR filter whose impulse response, amplitude response, and
group delay in the passband are depicted in Fig. 1a, b, and c,
respectively. It is interesting to note that the average number
of active constraints per iteration was K̂ = 108, about 7.3%
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Figure 1: Circularly symmetric lowpass FIR filter of size
27 × 27 in Example 1: (a) impulse response, (b) amplitude

response; and (c) group delay in passband.

of the total number of constrains K = 1479. The numerical
evaluation of the filter designed can be described in terms
of the maximum passband ripple ep = 0.0093; minimum
stopband attenuation ea = 40.9383 dB, and maximum relative
group delay deviation in the passband egd = 0.0574. For
comparison purposes, the semidefinite programming (SDP)



based algorithm [7] and the recursive least pth algorithm
[4] were also used to design the filter. As expected, the
design methods were able to achieve practically the same
(and optimal) design, but at the cost of higher computational
complexity. The CPU time required by the proposed algorithm
(normalized to unity), the algorithm in [7] and the algorithm
in [4] were found to be 1.0, 1.2970, and 14.3091, respectively,
and the actual CPU time required by the proposed algorithm
implemented using MATLAB on a 3.1 GHz Pentium PC was
1045.6 seconds.
Example 2 A minimax design of diamond-shaped lowpass
2-D FIR filter of size 31 × 31 with group delay d = 13,
passband edge ωp = 0.8π, and stopband edge ωa = 0.96π
was performed using the proposed algorithm. A total of 1524
grid points were placed in the upper half of the baseband. It
took the algorithm 120 iterations to converge to a solution FIR
filter with maximum passband ripple ep = 0.0107, minimum
stopband attenuation ea = 35.6299 dB, and maximum relative
group delay deviation egd = 0.0731. The average number of
active constraints was found to be K̂ = 199, about 13% of the
total number of constrains K̂ = 1524. The impulse response,
amplitude response, and group delay in the passband are
shown in Fig. 2a, b, and c, respectively. For comparisons, the
CPU time consumed by the proposed algorithm (normalized
to unity), the SDP-based algorithm [7] and the method of [4]
were found to be 1.0, 1.3415, and 17.9177, respectively, and
the actual CPU time required by the proposed algorithm was
2762.3 seconds.

V. CONCLUSION

We have proposed a new method for the design of minimax
2-D FIR filters based on SQP. Design examples presented in
the paper have indicated that the method can be used to design
relatively high order and nonlinear phase FIR filters that are
optimal in the minimax sense.
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Figure 2: Diamond-shaped lowpass FIR filter of size 31 × 31
in Example 2: (a) impulse response, (b) amplitude response,

and (c) group delay in passband.


