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Abstract— New peak-to-average power-ratio (PAPR) reduction algo-
rithms for orthogonal frequency-division multiplexing (OFDM) sys-
tems are investigated in a probabilistic framework. Specifically, de-
randomization algorithms based on the Chernoff bound for PAPR
reduction are developed by applying the so-called conditional probability
method. Our simulations demonstrate that the proposed algorithms
outperform several existing algorithms and the computational complexity
of the proposed algorithms is found to be significantly less than that of
existing algorithms.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has recently
been used for data transmission in a number of communication
systems [1][2]. A major problem of multicarrier modulation is
its large peak-to-average power-ratio (PAPR) which makes system
performance sensitive to distortion introduced by nonlinear devices,
e.g., power amplifiers. In [3][4], a selective mapping (SLM) algorithm
was proposed where a set of multicarrier signals are generated
and the transmit signal with the lowest peak power is transmitted.
This algorithm reduces the PAPR at the cost of an increase in
computational complexity. In [5], a constellation extension technique
for PAPR reduction was proposed where the subsymbol signs are
determined by using a de-randomization algorithm. This algorithm
reduces the PAPR at the cost of a slight reduction in bandwidth
efficiency.

In this paper, PAPR reduction is investigated in a probabilistic
framework [5]-[7]. New de-randomization algorithms are proposed
based on a constellation extension technique. It is also shown
that the PAPR-reduction performance can be further improved by
combining the proposed algorithm with subset-by-subset optimization
and selective rotation schemes. Design examples are presented which
demonstrate that the solutions obtained by the proposed algorithms
outperform solutions obtained by several existing algorithms [4][5].

II. PROBLEM FORMULATION

A. System Model

Consider an N-subcarrier OFDM transmitter as illustrated in
Fig. 1, where S/P, P/S, and D/A represent serial-to-parallel,
parallel-to-serial, and digital-to-analog converter, respectively, and
the block labeled as “Amp.” represents a power amplifier. Each of
the subcarriers is independently modulated using phase-shift keying
(PSK) or quadrature amplitude modulation (QAM).
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Block diagram of a typical multicarrier transmitter.
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B. Modulation Scheme

A 2M-point modulation is adopted for each subcarrier. The mod-
ulation constellation is partitioned into two disjoint M -point groups
M® and M@, For a constellation point C' in group MV, point
—C falls into group M‘®. For each subcarrier, the log, M input
data bits can be mapped to either C' or —C. Since C' and —C are in
different groups, the data can be correctly recovered at the receiver
without any side information. See Fig. 2 for the case of 16-QAM
constellation.
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Fig. 2. (a) 16-QAM constellation with Gray code bit mapping. (b) Symmetric
partition of 16-QAM constellation.

C. PAPR Reduction by Choosing Optimal Signs

The modulated symbol X, is referred to as the subsymbol at the
kth subcarrier, and the sign to be assigned to X} is denoted as
sp where s € {1,—1}. Vector X = [s0Xo, ..., SN—1XN_1]
is referred to as the OF DM symbol, and 8 = [so -+ sn—1]
is referred to as the sign wvector. The discrete complex baseband
representation of the OFDM symbol can be described as

N-1
j2mhkn
xnz%E Skae]N forn=0,...,N—1 M
k=0

where x, represents the nth sample of the time-domain OFDM
signal. If we let x = [zo - -- mel]T, the PAPR of signal x can be
defined as 5

PAPR = e )

EllklZl/N

where £[-] denotes expectation, and ||x||oc and ||x||> represent the
infinity- and 2-norm of vector x, respectively. Our objective is
to obtain an optimum sign pattern, {sy : sy € {1,—-1},k =0, ...,
N — 1}, such that the PAPR of the OFDM symbol X is minimized.
Note that the denominator in (2) is constant regardless of sign
patterns. Using (1) and (2), the PAPR-minimization problem can be



formulated as

N-1
S j2nkn
minimize lganN kz_% seXpe N (3a)
subject to: s, € {1,—1} _for k=0,...,N—1. (3b)
In (3), variable X}, is complex valued. If we define
Re [Xke”z"v'“" 0<n<N-—1
duk = Im [Xkew] N<n<2N-1 @
0 otherwise.
The problem in (3) can be relaxed to
N-1
minignize ognnglg)z(\r—l Z ke Sk (5a)
subject to: s € {1,—1} for k_: 0,...,N—1 (5b)

where the variables involved are real valued. If § is the solution of
the problem in (3) and n is the index n at which the maximum of
|Z£j ! Jz”k"/Nstk| is achieved, and 8™ is the solution of the
problem in (5) and n* is the index n at which the maximum of
|Z£’:_01 dnkls,’;| is achieved, then it can be shown that
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It follows from (6) that the solution of the problem in (5) can be
regarded as a good approximation of that of the problem in (3).

III. NEwW PAPR-REDUCTION ALGORITHM
A. Review of a Design Method for Sign Vector

The optimization problem in (5) is an integer programming prob-
lem which can be solved by using a derandomization method, known
as the method of conditional probabilities (MCP) [5]-[7]. In this
method, the components of the sign vectors s are treated as random
variables which can assume Values of 1 or —1 with equal probability.
Let A>‘ be the event that |Zk —o nksk| > X and Pr (AA) be the
probability that event A/\ occurs and assume that A is chosen such
that Ziﬁo 'p (A,AL) < 1. By assuming that s; = 1, a suboptimal
sign vector 8* can be obtained sequentially as

2N -1
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n=0
for j =1, ..., N — 1. Consequently, we have
2N -1 2N -1
Z Pr (A)]ss, ..., sh 1) < Z Pr(A)) <1. (8
n=0 n=0

With the entire vector s* known, the probability Pr (Ai;|55, R

sn_1) for each n is either zero or one. Hence, it can be inferred that
the conditional probabilities in (8) are all zero. In other words, the
sign vector 8* = [s{ - sj_1] obtained using (7) can be regarded
as a suboptimal solution at which the objective function in the
problem in (5) is guaranteed to be smaller than A. Because numerical
evaluation of the conditional probabilities is often difficult, it is of
use to derive an easy-to-evaluate upper bound of the conditional
probability so that suboptimal solutions can be developed by working
with the upper bound. For the problem in (5), there is a type of upper

bound U, (s, ..., s;) known as pessimistic estimator [6] for the
conditional probability, which can be characterized by

Pr (A2|so, ...,s]-) < U:L‘(so7
forj=0,..., N —
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2{: U} < 1.
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In (%), U];\ denotes the upper bound of Pr (A;\L) with all the
components of s treated as random variables. Replace the conditional
probability by the pessimistic estimator U, (80, ) 8i_1, Sj) in
(7), a suboptimal sign vector s* can be determined sequentially as
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1, where the following conditions are satisfied
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for j = 1,..., N — 1. In [5], the Chernoff bound [8] on the
conditional probability is applied to derive a pessimistic estimator
as

U/\* (So, ey Sj)
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for j=0,..., N —1, where \* = y/2¢clog(4N), v* = X\* /e, and
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Eq. (11) leads to a suboptimal solution s* for the problem in (5) as

£ =
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B. Generalization of the De-Randomization Algorithm

For the algorithm in [5], the constellation extension is applied on
all subcarriers. Assume that for each subcarrier the size of modulation
constellation is 2%. By using the constellation extension technique,
the effective data transmission rate is reduced by a factor of 1/q.
For example, if 16-QAM is adopted for each subcarrier, then the
effective data transmission rate is reduced by 25%. On the other
hand, by switching the sign of subsymbol X}, we actually insert
a sine signal with frequency proportional to k/N. Obviously, a
sine signal with higher frequency has more peaks within an OFDM
symbol duration and thus will be more helpful for PAPR reduction.
Therefore, it is of interest to examine the performance of the system
for the case where the constellation extension is applied to only some
of the subcarriers in the high frequency range. For example, if the
constellation extension is applied to the subcarriers with indices from
Np, to N — 1, then the problem at hand can be formulated as

Np—1

mlngnlze ognnglg)z(\r—l Z dni + Z Ak Sk (13a)
k=Np,

subject to: s € {1,—1} for k=Np,...,N—1. (13b)



Let B; be the event that
Pr (B;)
estimator of the probability Pr (B;}|5Nh,
as
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In this case, a suboptimal sign vector s* can be determined sequen-
tially as

2N -1
* [ x *
sy =arg | er?lm_l} Z Uy (8hps -5 8j—1, sj)] (15)
for j = Ny, ..., N—1. Note that the algorithm in [5] can be viewed

as a special case of the proposed algorithm with N, = 0.

C. Performance Improvement by Selective Rotations

The objective function in (14a) remains unchanged if all complex-
valued terms are rotated by an angle # because
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On the other hand, this rotation leads to a different set of di;
which can be obtained using (4) with X}, replaced by e’® X, If
we use the parameters d,, generated by K different rotation angles
0o, 61, ..., Ox—1 with 6y = 0, then we can obtain K suboptimal
sign vectors 8j, 87, ..., 8k _; from which the best sign vector can
be identified by comparing the performance of the corresponding
suboptimal solutions. Since the set of rotation angles includes 6 = 0,
the suboptimal solution obtained using this technique is always
superior to the suboptimal solution described in Sec. III.B.

D. Performance Improvement by Subset-by-Subset Optimization of
Sign Vector

For the proposed algorithm in Sec. IIL.B, the sign vector is
optimized sequentially. This algorithm is fast because only one
sign is optimized at any given time and, as indicated by Eq. (15),
the computation involved is not heavy. If additional computational
resources are available, improved performance can be achieved by
replacing the sequential optimization by a subset-by-subset (SBS)
optimization, where the components of the sign vector are partitioned
into r subsets with each subset containing K sign components. The
components of each subset are optimized simultaneously and the
entire sign vector is optimized sequentially in a subset by subset

manner. More specifically, we have
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for j = Np, ..., N — 1, where \* = /2elog(4N), v* = X" /e,
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Evidently, the performance of the algorithm with SBS optimization is
always better than that of the algorithm with sequential-optimization.
The simulations presented in the next section will demonstrate that
the improvement can be significant even with a moderate K, say
K, =3.

IV. SIMULATIONS

The proposed derandomization algorithm was applied to an OFDM
system with N = 64 subcarriers and its PAPR-reduction performance
was evaluated and compared with that of the algorithms proposed in
[4][5]. A commonly used performance measure for PAPR-reduction
algorithms is the clipping probability (CP) which is defined as the
probability that the PAPR of the multicarrier signal exceeds a given
PAPR threshold PAPRy. The average transmission power used to
calculate the PAPR was obtained based on the 16-QAM constellation
with each constellation point assumed to have the same probability.
Since large peaks of the analog signal may occur after the D/A
conversion, oversampling was applied to approximate the analog
signal. In our simulations, all algorithms were applied using signals
that were oversampled by a factor of 2, the sampling rate was then
increased to 8 times the Nyquist sampling rate by a root-raised
cosine filter with a rolloff factor of 0.12. For the SLM algorithm
[4], the number of candidate sequences is denoted as U. For the
proposed derandomization algorithm, N; was set to 32, and the
algorithm in [5] was considered as a special case of the proposed
algorithm with N}, = 0. In the case where the derandomization
algorithm incorporates the selective rotation scheme, the number of
rotations is denoted as K, and the rotation angles 6 assume the values
0=0,n/K,, ..., (K.—2)n/K,, (K,—1)n/K,.In the case where
the derandomization algorithm incorporates the SBS optimization
scheme, the number of components of the sign vector which were
simultaneously optimized is denoted as K
Example: A 16-QAM constellation was adopted for each subcarrier.
For the derandomization algorithm with N;, = 32 and N, = 0, the
CPs versus various PAPR threshold values are plotted as the solid and
dashed curves in Fig. 3, respectively. For the sake of comparison, the
CPs obtained using the SLM algorithm and for the original OFDM
signal are plotted in the same figure as dot-dashed curves. It can be
observed that, by incorporating the selective rotation, a significant
performance improvement can be achieved by the derandomization
algorithm over the SLM algorithm. For example, for a CP of 1072,
a 0.75-dB improvement can be obtained by the derandomization
algorithm with N, = 0 and K, = 4 compared with that of the
SLM algorithm with U = 16. On the other hand, it can be observed
from Fig. 4 that for the derandomization algorithm with N; = 32,
significant performance improvement can be achieved by using the



TABLE I:  Performance and Computational Complexity of various PAPR-Reduction Algorithms
Algorithms SLM Algorithm Derandomization Algorithm (IN;, = 32) Derandomization Algorithm (N, = 0)
K, =1 K, =14 K,=1 K, =14
U=16 Ki=1| Ks=3 | Ks=1]Ks=3]| Ks=1] Ks=3] Ksg=1] Ksg=3
Performance Gain (dB) 345 2.8 3.1 3.45 3.8 3 3.1 4.2 4.25
Normalized CPU Time 1 0.028 0.056 0.12 0.23 0.085 0.0175 0.33 0.7
Effective Data Rate 100% 87.5% 75%

SBS optimization over sequential optimization. For example, for the
derandomization algorithm, for a CP of 10™* a 0.3-dB improvement
can be obtained by using SBS optimization with K; = 3 compared
with sequential optimization.

The computational complexity of the proposed algorithm is com-
pared with those of the algorithms in [4][5] and the results obtained
are given in Tables I where the performance of each algorithm is
quantified in terms of its PAPR-reduction improvement in dB over the
original data for a clipping probability of 10™®. The computational
complexity of the algorithms is measured in terms of the ratio of the
CPU time required for each algorithm to that of the SLM algorithm
with U = 16, for which the CPU time was normalized to unity. The
effective data transmission rate for each algorithm is also included.

V. CONCLUSIONS

A new PAPR-reduction algorithm has been proposed based on a de-
randomization method. The performance of the proposed algorithm
can be siginificantly improved by incorporating selective rotation and
SBS optimization schemes. Simulations have demonstrated that the
proposed algorithm outperforms the algorithms in [4] and [5]. It has
also been shown that a tradeoff is inherent in the proposed algorithm
between effective data rate, computational complexity, and PAPR-
reduction performance.
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