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Abstract— This paper is concerned with the minimization of an
L2-sensitivity measure subject to L2-norm dynamic range scaling
constraints for a class of two-dimensional (2-D) state-space digital
filters. A novel iterative algorithm is developed to solve the
constrained optimization problem directly. The proposed solution
method is largely based on the use of a Lagrange function
and some matrix theoretic techniques. A numerical example is
presented to demonstrate the utility of the proposed technique.

I. INTRODUCTION

When a transfer function with infinite accuracy coefficients is
designed to meet filter specification requirements and realized
by a state-space model, coefficients in the state-space model
must be truncated or rounded to fit the finite word length
(FWL) constraints for the purpose of implementing the filter
in a finite binary representation. This coefficient quantization
usually alters the characteristics of the filter and may turn
a stable filter to an unstable one. This motivates the study
of the coefficient sensitivity minimization problem. For 2-D
state-space digital filters, the L1/L2-sensitivity minimization
problem [1]-[5],[8] and L2-sensitivity minimization problem
[6]-[10] have been investigated. On the other hand, it is well
known that the use of L2-scaling constraints can be beneficial
for suppressing overflow oscillation [11],[12]. However, not
enough research has been reported on the minimization of
L2-sensitivity subject to the L2-norm dynamic range scaling
constraints [13].

This paper investigates the problem of minimizing an L2-
sensitivity measure subject to L2-norm dynamic range scaling
constraints for a class of 2-D state-space digital filters [14].
The approach taken in the present paper differs significantly
from the numerical optimization strategy employed in [13].
First, an expression for evaluating the L2-sensitivity is in-
troduced and an L2-sensitivity minimization problem subject
to the scaling constraints is formulated. Next, based on a
Lagrange function and some matrix-theoretic techniques, a
new iterative algorithm is proposed to solve the constrained
optimization problem directly. The coordinate transformation
matrix is then constructed to satisfy the L2-scaling constraints.
Finally, a numerical example is presented to illustrate the
utility of the proposed algorithm.

Throughout In denotes the identity matrix of dimension
n×n. The transpose (conjugate transpose) of a matrix A and

trace of a square matrix A are denoted by AT (A∗) and tr[A],
respectively. The ith diagonal element of a square matrix A
is denoted by (A)ii.

II. L2-SENSITIVITY ANANYSIS

Consider a local state-space model (A1, A2, b, c1, c2, d)n [14]
for a class of 2-D state-space digital filters described by[

x(i + 1, j + 1)

y(i, j)

]
=

[
A1 A2

c1 c2

][
x(i, j + 1)

x(i + 1, j)

]

+

[
b

d

]
u(i, j) (1)

where x(i, j) is an n× 1 local state vector, u(i, j) is a scalar
input, y(i, j) is a scalar output, and A1, A2, b, c1, c2 and d
are real constant matrices of appropriate dimensions. The 2-D
filter in (1) is assumed stable, locally controllable and locally
observable. The transfer function of the 2-D filter in (1) is
given by

H(z1, z2) = (z−1
1 c1 + z−1

2 c2)

· (In − z−1
1 A1 − z−1

2 A2

)−1
b + d.

(2)

It is noted that the local state-space model in (1) corresponds
to the transposed structure of the Fornasini-Marchesini second
model [15].

Definition 1 : Let X be an m×n real matrix and let f(X)
be a scalar complex function of X, differentiable with respect
to all the entries of X. The sensitivity function of f with
respect to X is then defined as

SX =
∂f

∂X
, (SX)ij =

∂f

∂xij
(3)

where xij denotes the (i, j)th entry of matrix X .
With these notations, it can easily be shown that

∂H(z1 , z2)
∂Ak

= z−1
k [F (z1, z2)G(z1, z2)]T

∂H(z1 , z2)
∂b

= GT (z1, z2)

∂H(z1 , z2)
∂cT

k

= F (z1, z2), k = 1, 2

(4)



where

F (z1, z2) =
(
In − z−1

1 A1 − z−1
2 A2

)−1
b

G(z1, z2) = (z−1
1 c1 + z−1

2 c2)
· (In − z−1

1 A1 − z−1
2 A2

)−1
.

The term d in (2) and its sensitivity are independent of the
state-space coordinate and therefore they are neglected here.

Definition 2 : Let X(z1, z2) be an m × n complex matrix
valued function of the complex variables z1 and z2. The L2

norm of X(z1, z2) is then defined as

||X(z1, z2)||2
=

(
tr

[
1

(2πj)2

∮
Γ1

∮
Γ2

X(z1, z2)X∗(z1, z2)
dz1dz2

z1z2

]) 1
2

(5)
where Γi = {zi : |zi| = 1} for i = 1, 2.

From (4) and Definition 2, the overall L2-sensitivity mea-
sure for the 2-D filter in (1) is evaluated by

S =
2∑

k=1

∥∥∥∥∂H(z1, z2)
∂Ak

∥∥∥∥
2

2

+
∥∥∥∥∂H(z1, z2)

∂b

∥∥∥∥
2

2

+
2∑

k=1

∥∥∥∥∂H(z1, z2)
∂cT

k

∥∥∥∥
2

2

=
∥∥[F (z1, z2)G(z1, z2)] T

∥∥2

2
+

∥∥∥GT (z1, z2)
∥∥∥2

2

+ ‖F (z1, z2)‖2
2 .

(6)

It is easy to show that the L2-sensitivity measure in (6) can
be expressed as

S = 2 tr[M(In)] + tr[W o] + 2 tr[Kc] (7)

where

Kc =
1

(2πj)2

∮
Γ1

∮
Γ2

F (z1, z2)F T (z−1
1 , z−1

2 )
dz1dz2

z1z2
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1

(2πj)2

∮
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∮
Γ2
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∮
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2 )
dz1dz2

z1z2
.

Matrices M(P ), Kc and W o are called 2-D Gramians and
can be derived from

Kc =
∞∑

i=0

∞∑
j=0

f(i, j)f T (i, j)

W o =
∞∑

i=0

∞∑
j=0

gT (i, j) g(i, j)

M(P ) =
∞∑

i=0

∞∑
j=0

H T (i, j)P−1H(i, j)

(8)

where

f(i, j) = A(i,j)b

g(i, j) = c1A
(i−1,j) + c2A

(i,j−1)

A(0,0) = In, A(i,j) = 0, i < 0 or j < 0

A(i,j) = A1A
(i−1,j) + A2A

(i,j−1)

= A(i−1,j)A1 + A(i,j−1)A2, (i, j) > (0, 0)

H(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

f(k, r) g(i − k, j − r).

If a coordinate transformation defined by

x(i, j) = T −1x(i, j) (9)

is applied to the 2-D filter in (1), we obtain a new realization
(A1, A2, b, c1, c2, d)n characterized by

Ak = T −1AkT , b = T −1b, ck = ckT , k = 1, 2

Kc = T−1KcT
−T , W o = T T W oT

(10)
Noting that (9) transforms M(In) to T T M(P )T , it is
possible to change the L2-sensitivity measure in (7) to

S(P ) = 2 tr[M (P )P ] + tr[W oP ] + 2 tr[KcP
−1] (11)

where P = TT T .
Moreover, if the L2-norm dynamic-range scaling constraints

are imposed on the LSS vector x(i, j), then

(Kc)ii = (T−1KcT
−T )ii = 1 (12)

is required for i = 1, 2, · · · , n. As a result, the problem
considered here is as follows: For given A1, A2, b, c1 and
c2, obtain an n × n nonsingular matrix T which minimizes
(11) subject to the constraints in (12).

III. L2-SENSITIVITY MINIMIZATION

The problem of minimizing S(P ) in (11) subject to the
constraints in (12) is a constrained nonlinear optimization
problem where the variable matrix is P . If we sum the n
constraints in (12) up, then we have

tr[T−1KcT
−T ] = tr[KcP

−1] = n. (13)

Consequently, the above problem can be relaxed into the
following problem:

minimize S(P ) in (11)

subject to tr[KcP
−1] = n.

(14)

Although clearly a solution of problem (14) is not necessarily
a solution of the problem of minimizing (11) subject to the
constraints in (12), it is important to stress that the ultimate
solution we seek for is not matrix P but a nonsingular matrix
T that is related to the solution of the problem of minimizing
(11) subject to the constraints in (12) as P = TT T . If matrix
P is a solution of problem (14) and P 1/2 denotes a matrix
square root of P , i.e., P = P 1/2P 1/2, then it is easy to see



that any matrix T of the form T = P 1/2U where U is an
arbitrary orthogonal matrix still holds the relation P = TT T .

As will be shown shortly, under the constraint in (13) there
exists an orthogonal matrix U such that matrix T = P 1/2U
satisfies the constraints in (12), where P 1/2 is a square root
of the solution matrix P for problem (14).

It is for these reasons we now address problem (14) as the
first step of our solution strategy. To solve (14), we define the
Lagrange function of the problem as

J(P , λ) = 2 tr[M (P )P ] + tr[W oP ] + 2 tr[KcP
−1]

+λ(tr[KcP
−1] − n)

(15)
where λ is a Lagrange multiplier. It is well known that the
solution of problem (15) must satisfy the Karush-Kuhn-Tucker
(KKT) conditions ∂J(P , λ)/∂P = 0 and ∂J(P , λ)/∂λ = 0
where the gradients are found to be

∂J(P , λ)
∂P

= 2 M(P ) − 2 P −1N(P )P −1 + W o

−(λ + 2)P −1KcP
−1

∂J(P , λ)
∂λ

= tr[KcP
−1] − n

(16)

where N(P ) is derived from

N(P ) =
∞∑

i=0

∞∑
j=0

H(i, j)P HT (i, j).

Hence the KKT conditions become

P F (P )P = G(P , λ), tr[KcP
−1] = n (17)

where
F (P ) = 2 M(P ) + W o

G(P , λ) = 2 N(P ) + (λ + 2)Kc.

The first equation in (17) is highly nonlinear with respect to
P . An effective approach to solving the first equation in (17)
is to relax it into the following recursive second-order matrix
equation:

P i+1F (P i)P i+1 = G(P i, λi) (18)

where P i is assumed to be known from the previous recursion
and the solution P i+1 is given by [8]

P i+1 =F (P i)−
1
2 [F (P i)

1
2 G(P i, λi)F (P i)

1
2 ]

1
2 F (P i)−

1
2 .

(19)
To derive a recursive formula for the Lagrange multiplier λ,
we use (17) to write

tr[PF (P )] = 2 tr[N (P )P−1] + n(λ + 2) (20)

which naturally suggests the following recursion for λ:

λi+1 =
tr[P iF (P i)] − 2 tr[N (P i)P−1

i ]
n

− 2. (21)

λi is the solution of the previous iteration. The initial estimates
are given by P 0 = In and any value of λ0 > 0. This iteration
process continues until (17) is satisfied within a prescribed
numerical tolerance. Although a mathematical proof of the

algorithm’s convergence is not yet available, in our computer
simulations the proposed algorithm does converge for various
types of this class of 2-D state-space digital filters.

As the second step of the solution strategy, we now turn
our attention to the construction of the optimal coordinate
transformation matrix T that solves the problem of minimizing
(11) subject to the constraints in (12). As analyzed earlier, the
optimal T assumes the form

T = P
1
2 U (22)

where P 1/2 is the square roots of the matrix P obtained
above, and U is an n×n orthogonal matrix to be determined
as follows. From (10) and (22) it follows that

Kc = T −1KcT
−T

= U T P− 1
2 KcP

−1
2 U .

(23)

In order to find an n × n orthogonal matrix U such that the
matrix Kc satisfies the scaling constraints in (12), we perform
the eigenvalue-eigenvector decomposition for the positive def-
inite matrix P−1/2KcP

−1/2 as

P− 1
2 KcP

− 1
2 = RΘRT (24)

where Θ = diag{θ1, θ2, · · · , θn} with θi > 0 and R is an
orthogonal matrix. Next, an orthogonal matrix S such that

SΘST =




1 ∗ · · · ∗
∗ 1

. . .
...

...
. . .

. . . ∗
∗ · · · ∗ 1


 (25)

can be obtained by numerical manipulations [12, p.278].
Using (23), (24) and (25), it can be readily verified that the
orthogonal matrix U = RST leads to a Kc in (23) whose
diagonal elements are equal to unity, hence the constraints in
(12) are now satisfied. This matrix T together with (22) gives
the solution of the problem of minimizing (11) subject to the
constraints in (12) as

T = P
1
2 RST . (26)

IV. NUMERICAL EXAMPLE

Consider a 2-D digital filter, (1), specified by

A1 =




0 0.481228 0 0
0 0 0.510378 0
0 0 0 0.525287

−0.031857 0.298663 −0.808282 1.044600




A2 =



−0.226080 0.776837 0.024693 −0.000933
−0.843550 1.610400 −0.309366 0.065898
−1.260339 2.005100 −0.453220 0.203118
−1.121498 1.636435 −0.590516 0.562890




b =
[

0 0 0 0.198473
]T

c1 =
[ −0.567054 0.231913 0.197016 0.239932

]
c2 =

[
0.464344 0.441837 −0.061100 0.105505

]
d = 0.00943.



Fig. 1. L2-Sensitivity and λ Performances

Using (8) over (0, 0) ≤ (i, j) ≤ (100, 100), the L2-sensitivity
measure in (7) is computed as S = 14424.346809.

Choosing P 0 = I4 and λ0 = 100 in (19) and (21) as the
initial estimates, it took the proposed iterative algorithm 2000
iterations to converge to

P opt =




2.404416 2.137212 1.871706 1.648549
2.137212 1.953194 1.743170 1.539139
1.871706 1.743170 1.617990 1.457391
1.648549 1.539139 1.457391 1.355055




which yields

T opt =




0.787107 −0.915199 0.314478 0.921082
0.608965 −0.944631 0.414720 0.719748
0.330685 −0.970545 0.354388 0.664145
0.146764 −0.824812 0.370182 0.718447


 .

In this case, (11) is minimized subject to the scaling constraints
in (12) to S(P opt) = 255.387433.

The L2-sensitivity and λ performances of 2000 iterations
are shown in Fig.1, from which it is seen that the iterative
algorithm converges with 2000 iterations.

For comparison, only the iterative algorithm in (19) is
applied by letting λi = 0 for any i and P 0 = I4 to mini-
mize the L2-sensivivity measure in (11) (without considering
the scaling constraints in (12)) and after 2000 iterations it
converges to P = TT T and S2(P ) = 255.313680 where

T =




1.625231 0.0 0.0 0.0
1.444676 0.242716 0.0 0.0
1.265260 0.359826 0.219322 0.0
1.114386 0.334013 0.326988 0.170877


 .

The above coordinate transformation matrix T is then scaled
by an appropriate nonsingular diagonal matrix, so that the
scaling constraints in (12) are satisfied. Then the result is

S2(P ) = 358.024764

where P = TT T and

T =




1.0 0.0 0.0 0.0
0.888905 0.186972 0.0 0.0
0.778511 0.277186 0.169442 0.0
0.685679 0.257302 0.252621 0.244088


 .

This shows that the constrained optimization technique offers
smaller L2-sensitivity subject to the scaling constraints relative
to the unconstrained counterpart that needs the scaling later.

V. CONCLUSION

This paper has investigated the problem of minimizing an L2-
sensitivity measure subject to the L2-scaling constraints for
a class of 2-D state-space digital filters. An efficient iterative
algorithm has been developed by using a Lagrange function
and some matrix-theoretic techniques to solve the constrained
optimization problem directly. The coordinate transformation
matrix has then been constructed to satisfy the L2-scaling
constraints. Computer simulation results have demonstrated
the effectiveness of the proposed iterative technique. The
extension of the proposed technique to the Roesser model will
appear elsewhere.
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