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ABSTRACT

The problem of minimizing an L2-sensitivity measure
subject to L2-norm dynamic-range scaling constraints
in state-space digital filters is considered. A novel iter-
ative technique is developed to solve the constraint op-
timization problem directly. This relies on a Lagrange
function and some matrix-theoretic techniques. Com-
puter simulation results are also given to demonstrate
the effectiveness of the proposed technique.

I. INTRODUCTION

In the implementation of fixed-point state-space digi-
tal filters with finite word length (FWL), the efficiency
and performance of the filter are directly affected by
the choice of its state-space filter structure. If a trans-
fer function satisfying specification requirements is de-
signed with infinite accuracy coefficients and realized
by a state-space model, the coefficients in the state-
space model must be truncated or rounded to fit the
FWL constraints. The characteristics of the filter is
then altered due to the coefficient quantization, which
may turn a stable filter into an unstable one. There-
fore, the problem of minimizing the coefficient sensi-
tivity of a digital filter is a significant research topic.
Several techniques have been proposed for synthesiz-
ing state-space digital filter structures that minimize
the coefficient sensitivity. These can be divided into
two main classes: the L1/L2-sensitivity minimization
[1]-[5] and the L2-sensitivity minimization [6]-[11]. It
is noted that the sensitivity measure based on the L2

norm is more natural and reasonable relative to the
L1/L2-sensitivity measure. It is well known that apply-
ing the L2-scaling constraints to a state-space digital
filter is beneficial for suppressing overflow oscillation
[12],[13]. However, not enough research has been done
on the minimization of the L2-sensitivity subject to the
L2-norm dynamic-range scaling constraints [11].

In this paper, the problem of minimizing the L2-
sensitivity measure subject to L2-norm dynamic-range
scaling constraints is investigated for state-space digi-
tal filters. To this end, an expression for evaluating the
L2-sensitivity is introduced. An L2-sensitivity mini-
mization problem subject to the scaling constraints is
formulated. An iterative algorithm is then developed
to solve the constraint optimization problem directly.
Unlike the work reported in [11], the proposed itera-
tive technique relies on neither converting the prob-
lem into an unconstrained optimization one nor using
a quasi-Newton algorithm. From computer simulation
results, it has turned out that the proposed iterative
technique requires less than half amount of computa-
tions to attain almost the same convergence accuracy
as compared to the technique reported in [11].

II. L2-SENSITIVITY ANALYSIS

Consider a state-space digital filter (A, b, c, d)n which
is stable, controllable and observable

x(k + 1) = Ax(k) + bu(k)

y(k) = cx(k) + du(k)
(1)

where x(k) is an n × 1 state-variable vector, u(k) is a
scalar input, y(k) is a scalar output, and A, b, c and d
are real constant matrices of appropriate dimensions.
The transfer function of (1) is given by

H(z) = c(zIn −A)−1b + d. (2)

Definition 1 : Let X be an m×n real matrix and let
f(X) be a scalar complex function of X, differentiable
with respect to all the entries of X. The sensitivity
function of f with respect to X is then defined as

SX =
∂f

∂X
, (SX )ij =

∂f

∂xij
(3)

where xij denotes the (i, j)th entry of matrix X.



Definition 2 : Let X(z) be an m×n complex matrix-
valued function of a complex variable z and let xpq(z)
be the (p, q)th entry of X(z). The L2-norm of X(z) is
then defined as

‖X(z)‖2 =

(
tr

[
1

2πj

∮

|z|=1

X(z)X∗(z)
dz

z

]) 1
2

. (4)

From (2) and Definitions 1 and 2, the overall L2-
sensitivity measure for the state-space digital filter in
(1) is defined as

S =
∥∥∥∥

∂H(z)
∂A

∥∥∥∥
2

2

+
∥∥∥∥

∂H(z)
∂b

∥∥∥∥
2

2

+
∥∥∥∥

∂H(z)
∂cT

∥∥∥∥
2

2

=
∥∥[F (z)G(z)]T

∥∥2

2
+

∥∥∥GT (z)
∥∥∥

2

2
+ ‖F (z)‖22

(5)

where

F (z) = (zIn −A)−1b, G(z) = c(zIn −A)−1.

The term d in (2) and the sensitivity with respect to
it are coordinate-independent and therefore they are
neglected here.

It is easy to show that the L2-sensitivity measure
in (5) can be expressed as

S = tr[M(In)] + tr[W o] + tr[Kc] (6)

where

M(P ) =
1

2πj

∮

|z|=1

[F (z)G(z)]T P−1F (z−1)G(z−1)
dz

z

Kc =
1

2πj

∮

|z|=1

F (z)F T (z−1)
dz

z

W o =
1

2πj

∮

|z|=1

GT (z)G(z−1)
dz

z
.

The matrices Kc and W o are called the controllability
and observability Gramians, respectively. The Grami-
ans M(P ) with P = In, Kc and W o can be obtained
by solving the Lyapunov equations [14]

[ ∗ ∗
∗ M(P )

]
=

[
A bc
0 A

]T [ ∗ ∗
∗ M(P )

]

·
[

A bc
0 A

]
+

[
P−1 0
0 0

]

Kc = AKcA
T + bbT

W o = AT W oA + cT c.

(7)

If a coordinate transformation defined by

x(k) = T −1x(k) (8)

is applied to the state-space model (1), then the new
realization (A, b, c, d)n can be characterized by

A = T −1AT , b = T −1b, c = cT . (9)

From (2) and (9), it is clear that the transfer function
H(z) is invariant under the coordinate transformation
in (8). The coordinate transformation defined by (8)
changes (6) to

S(P ) = tr[M(P )P ] + tr[W oP ] + tr[KcP
−1] (10)

where P = TT T .
Moreover, if the L2-norm dynamic-range scaling

constraints are imposed on the new state-variable vec-
tor x(k), it is required that for i = 1, 2, · · · , n

(Kc)ii = (T −1KcT
−T )ii = 1. (11)

The problem of L2-sensitivity minimization subject
to L2-norm dynamic-range scaling constraints is now
formulated as follows: For given A, b and c, obtain
an n × n nonsingular matrix T which minimizes (10)
subject to the constraints in (11).

III. L2-SENSITIVITY MINIMIZATION

In order to minimize (10) over an n× n symmetric
positive-definite matrix P subject to the constraints
shown in (11), we define the Lagrange function

J(P , λ) = tr[M(P )P ] + tr[W oP ]

+tr[KcP
−1] + λ(tr[KcP

−1]− n)
(12)

where λ is a Lagrange multiplier. We compute

∂J(P , λ)
∂P

= M(P )− P −1N(P )P −1 + W o

−(λ + 1)P −1KcP
−1

∂J(P , λ)
∂λ

= tr[KcP
−1]− n

(13)

where N(P ) can be obtained by solving the Lyapunov
equation [14]

[
N(P ) ∗
∗ ∗

]
=

[
A bc
0 A

] [
N(P ) ∗
∗ ∗

]

·
[

A bc
0 A

]T

+
[

0 0
P 0

]
.

From ∂J(P , λ)/∂P = 0 and ∂J(P , λ)/∂λ = 0, we get

P F (P )P = G(P , λ), tr[KcP
−1] = n (14)

where

F (P ) = M(P ) + W o

G(P , λ) = N(P ) + (λ + 1)Kc.



It follows that the value P i+1 satisfying

P i+1F (P i)P i+1 = G(P i, λi) (15)

is given by

P i+1 =F (P i)−
1
2 [F (P i)

1
2 G(P i, λi)F (P i)

1
2 ]

1
2 F (P i)−

1
2

(16)
and that the value λi+1 satisfying

P iF (P i) = G(P i, λi+1)P−1
i , tr[KcP

−1
i ] = n (17)

is obtained as

λi+1 =
tr[P iF (P i)]− tr[N(P i)P−1

i ]
n

− 1. (18)

In the above algorithm, P i and λi are the solutions of
the previous iteration. The initial estimates are given
by P 0 = In and any value of λ0 > 0. This iteration
process continues until (14) is satisfied within a pre-
scribed numerical tolerance.

Next, the coordinate transformation matrix T will
be constructed so that (11) is satisfied. From P =
TT T , the optimal coordinate transformation matrix T
that minimizes (12) can be obtained in closed form as

T = P
1
2 U (19)

where U is an arbitrary n×n orthogonal matrix. From
(19) it follows that

Kc = T −1KcT
−T

= U T P− 1
2 KcP

− 1
2 U .

(20)

Let us choose the n×n orthogonal matrix U such that
the matrix Kc in (20) satisfies the l2-norm dynamic-
range scaling constraints, (11), on the state-variables.
To this end, we perform the eigenvalue-eigenvector de-
composition

P− 1
2 KcP

− 1
2 = RΘRT (21)

where Θ = diag{θ1, θ2, · · · , θn} and RRT = In. Now
an n× n orthogonal matrix S such that

SΘST =




1 ∗ · · · ∗
∗ 1

. . .
...

...
. . . . . . ∗

∗ · · · ∗ 1




(22)

can be obtained by numerical manipulations [13,
p.278]. By choosing U = RST in (19), the optimal co-
ordinate transformation matrix T both satisfying (11)
and minimizing (10) can now be constructed as

T = P
1
2 RST . (23)

IV. NUMERICAL EXAMPLE

Let a state-space digital filter in (1) be specified by

A =




0 1 0
0 0 1

0.453770 −1.556160 1.974860




b =
[

0 0 0.242096
]T

c =
[

0.095706 0.095086 0.327556
]

d = 0.015940.

Performing the computation of (7) and the L2-scaling,
the Grammians Kc, W o and M(I3) are calculated as

Kc =




1.000000 0.872501 0.562821
0.872501 1.000000 0.872501
0.562821 0.872501 1.000000




W o =




0.820741 −2.035328 1.628161
−2.035328 5.307273 −4.264903

1.628161 −4.264903 3.941491




M(I3)=




8.921380 −22.046457 17.916285
−22.046457 55.671710 −46.052011

17.916285 −46.052011 42.522082


.

The L2-sensitivity measure in (6) is computed as

S = 120.184677.

Choosing P 0 = I3 and λ0 = 100 as the initial es-
timates, it took the proposed iterative algorithm 500
iterations to converge to

P opt =




2.307529 1.375667 0.514400
1.375667 1.103115 0.678193
0.514400 0.678193 0.666912




which yields

T opt =




0.906372 0.756223 0.956110
0.196978 0.857123 0.574155

−0.369823 0.597630 0.415910


 .

In this case, the L2-sensitivity measure in (10) is min-
imized subject to the scaling constraints in (11) to

S(P opt) = 8.672129.

The L2-sensitivity and λ performances of 500 itera-
tions are shown in Fig.1, from which it is seen that
the proposed iterative algorithm sufficiently converges
with 500 iterations.

For comparison purposes, the existing method re-
ported in [10] is applied to minimize the L2-sensivivity



Figure 1: L2-Sensitivity and λ Performances

measure in (10) (without considering the scaling con-
straints in (11)) and then the resulting optimal coor-
dinate transformation matrix is scaled by an appro-
priate nonsingular diagonal matrix, so that the scal-
ing constraints in (11) are satisfied. Then the result
is S(T ) = 9.817579. Applying the technique reported
in [11] yields S(T opt) = 8.683279. Moreover, by ap-
plying the method in [13], the optimal filter structure
which minimizes the roundoff noise at the filter out-
put subject to the scaling constraints in (11) has the
L2-sensitivity, S(T ) = 8.797931.

VI. CONCLUSION

This paper has considered the problem of minimizing
an L2-sensitivity measure subject to L2-norm dynamic
range scaling constraints in state-space digital filters.
An efficient iterative technique has been developed by
using a Lagrange function and some matrix-theoretic
techniques in order to solve the constraint optimiza-
tion problem directly. Our computer simulation results
have demonstrated the effectiveness of the proposed
technique compared with several existing methods.

1. REFERENCES

[1] L. Thiele, “Design of sensitivity and round-off
noise optimal state-space discrete systems,” Int.
J. Circuit Theory Appl., vol. 12, pp.39-46, Jan.
1984.

[2] , “On the sensitivity of linear state-space
systems,” IEEE Trans. Circuits Syst., vol.CAS-33,
pp.502-510, May 1986.

[3] M. Iwatsuki, M. Kawamata and T. Higuchi, “Sta-
tistical sensitivity and minimum sensitivity struc-

tures with fewer coefficients in discrete time lin-
ear systems,” IEEE Trans. Circuits Syst., vol.37,
pp.72-80, Jan. 1989.

[4] G. Li and M. Gevers, “Optimal finite preci-
sion implementation of a state-estimate feedback
controller,” IEEE Trans. Circuits Syst., vol.37,
pp.1487-1498, Dec. 1990.

[5] G. Li, B. D. O. Anderson, M. Gevers and J. E.
Perkins, “Optimal FWL design of state-space dig-
ital systems with weighted sensitivity minimiza-
tion and sparseness consideration,” IEEE Trans.
Circuits Syst. I, vol.39, pp.365-377, May 1992.

[6] W.-Y. Yan and J. B. Moore, “On L2-sensitivity
minimization of linear state-space systems,” IEEE
Trans. Circuits Syst. I, vol.39, pp.641-648, Aug.
1992.

[7] G. Li and M. Gevers, “Optimal synthetic FWL
design of state-space digital filters”, in Proc. 1992
IEEE Int. Conf. Acoust., Speech, Signal Process-
ing, vol.4, pp.429-432.

[8] M. Gevers and G. Li, Parameterizations in Con-
trol, Estimation and Filtering Problems: Accuracy
Aspects, Springer-Verlag, 1993.

[9] U. Helmke and J. B. Moore, Optimization and Dy-
namical Systems, Springer-Verlag, London, 1994.

[10] T. Hinamoto, S. Yokoyama, T. Inoue, W. Zeng
and W.-S. Lu, “Analysis and minimization of L2-
sensitivity for linear systems and two-dimensional
state-space filters using general controllability and
observability Gramians,” IEEE Trans. Circuits
Syst. I, vol.49, pp.1279-1289, Sept. 2002.

[11] T. Hinamoto, H. Ohnishi and W.-S. Lu, “Min-
imization of L2-sensitivity for state-space digi-
tal filters subject to L2-scaling constraints,” in
Proc. 2004 IEEE Int. Symp. Circuits Syst., vol.III,
pp.137-140.

[12] C. T. Mullis and R. A. Roberts, “Synthesis of min-
imum roundoff noise fixed-point digital filters,”
IEEE Trans. Circuits Syst., vol. 23, pp. 551-562,
Sept. 1976.

[13] S. Y. Hwang, “Minimum uncorrelated unit noise in
state-space digital filtering,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 25, pp. 273-281,
Aug. 1977.

[14] T. Kailath, Linear System, Englewood Cliffs, N.J.:
Prentice Hall, 1980.


