
An Iterative Intercarrier-Interference Reduction
Algorithm for OFDM Systems

Y. J. Kou, W.-S. Lu, and A. Antoniou
Department of Electrical and Computer Engineering, University of Victoria

P.O. Box 3055, Victoria, B.C., Canada V8W 3P6
Email: �ykou, wslu�@ece.uvic.ca, aantoniou@ieee.org

Abstract— A low-complexity iterative algorithm is proposed for
intercarrier-interference reduction in orthogonal frequency-division mul-
tiplexing systems. Design examples are presented which demonstrate that
the proposed algorithm outperforms several existing algorithms in terms
of bit-error-rate performance and computational complexity.

I. INTRODUCTION

The demand for high data rate services over wireless networks
has been increasing very rapidly and there is no slowdown in
sight. These services often require reliable data transmission over
band-limited wireless channels, which experience many degradations,
such as noise, multipath fading and nonlinearities. A physical-layer
technique that has gained much popularity due to its robustness
in dealing with these impairments is orthogonal frequency-division
multiplexing (OFDM). Well known examples of OFDM modulation-
based systems include digital audio broadcasting (DAB) [1], digital
video broadcasting (DVB) [2], and the IEEE 802.11a and 802.11g
standards [3] for wireless local area networks (WLAN).

Unfortunately, there are several drawbacks associated with OFDM
modulation [4]. In a rapidly fading environment, channel variations
within an OFDM symbol duration lead to a loss of orthogonality
in the OFDM subcarrier waveforms and result in intercarrier in-
terference (ICI) which, in turn, degrades the bit-error-rate (BER)
performance of the system [5]-[8]. If not compensated for, ICI
will result in an error floor that increases with Doppler frequency.
However, channel variations also introduce frequency diversity which
can be exploited to improve the system performance [9]. Recently,
a number of algorithms have been proposed to mitigate the effect
of ICI [10]-[12]. An optimal linear pre-filtering algorithm has been
developed in [10] where improved performance was achieved at a
cost of increasd computational complexity. In [11], a linear minimum
mean-square error (MMSE) has been proposed. Since the number of
subcarriers is generally quite large, this algorithm requires intensive
computation. In attempts to reduce the computational complexity, a
decision feedback (DF) algorithm has been derived in [12] where
only signals on several neighbouring subcarriers are used in order
to suppress the ICI for a particular subcarrier. The computational
complexity of this algorithm is reduced at the cost of a slight
degradation of performance.

In this paper, a low-complexity ICI-reduction algorithm based on
an iterative optimization scheme is proposed for OFDM systems
where 4-quadrature-amplitude-modulation (4-QAM) is assumed for
all subcarriers. Design examples are presented which demonstrate
that the proposed algorithm outperforms several existing algorithms
in terms of BER performance and computational complexity. It is also
shown that a better performance can be achieved by the proposed
algorithm at higher Doppler frequencies because of the frequency
diversity introduced by channel variations.

II. SIGNAL MODEL

Consider an � -subcarrier OFDM transmitter as illustrated in
Fig. 1, where ���, ���, and ��� represent serial-to-parallel,
parallel-to-serial, and digital-to-analog converters, respectively, and
the block labeled as “����” represents a power amplifier (PA). The
information bits �� and the modulated symbol �� are referred to as
the data pointand subsymbolat the �th subcarrier, respectively. Vec-
tors� � 	��� � � � � ����


� and � � 	��� � � � � ����

� are referred

to as the frequency-domain and the time-domain 	
�� �
����s,
respectively.
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Fig. 1. An OFDM transmitter.

Mathmetically, the OFDM symbol � can be obtained by using the
inverse discrete Fourier transform (IDFT) as
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������� for � � �� � � � � � � � (1)

where �� represents the �th element of �. In matrix form, (1) can
be expressed as

� � �� (2)

where � is the IDFT matrix whose elements are ���� �

������������ . A cyclic prefix (CP) with length equal to that
of the channel impulse response (CIR) is inserted in the begin-
ning of the OFDM symbol before it is transmitted into the chan-
nel. Denoting the transmitted and received signals as �	
 �
	������� � � � � ����� ��� � � � � ����
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respectively, the received signal can be written as
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where � � 	��� � � � � ����

� is a vector of additive white Guassian

noise (AWGN) variables with zero mean and covariance matrix
�
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�
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 is given by
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where �
� for � � �� � � � � � � � and � � �� � � � � � represents the
fading coefficient of the �th path at the �th sample instance. Since
the CP is only a copy of part of the OFDM symbol �, (3) can be
rewritten as

� � ��� � (5a)
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At the receiver, after the removal of the CP, the received signal is
transformed to � � 	��� � � � � ����


� by using the discrete Fourier
transform (DFT) as

� � ��
� (6)

where 
��� represents matrix Hermitian. From (2), (5a), and (6), �
can be expressed as

� � 	��
 (7a)

where

	 � ��
�� (7b)

and 
 � 	��� � � � � ����

� � ���. Since the DFT matrix ��

is unitary, 
 in (7a) is still white Guassian noise. Due to channel
variations, matrix 	 is not a diagonal matrix. In particular, the signal
at the �th subcarrier can be written as

�� � ������ �
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���� � ���

������ ��� (8)

for � � �� � � � � � � � where ���� represents the 
�� ��th element
of matrix 	. It can be seen that for the �th subcarrier the received
signal depends not only on the transmitted signal for this particular
subcarrier but also on the transmitted signals for other subcarriers.
The first and second terms on the right-hand side (r.h.s.) of (8)
represent the attenuated signal and the ICI at the �th subcarrier,
respectively.

In order to mitigate the effect of the ICI, joint detection (JD) is
required at the receiver. This can be done by inserting immediately
after the DFT a processor that implements a JD algorithm. A general
structure for the OFDM receiver that implements a JD algorithm is
illustrated in Fig. 2. For the signal detection problem in (7), maximum
likelihood (ML) detection [13] can be carried out by solving the
optimization problem

minimize �� �	���� (9a)

subject to � �� � � for � � �� �� � � � � � � � (9b)

where � is the set of the constellation points associated with
modulation scheme of the OFDM system. The problem in (9)
is a combinatorial optimization problem whose solution requires
computational complexity that grows exponentially with the number
of variables. In addition, in OFDM systems over frequency-selective
fading channels, complete information on the CIR is required for ML
detection. In what follows, a low-complexity algorithm is proposed
that can be used to achieve a suboptimal solution of the optimization
problem in (9).

III. AN ITERATIVE ALGORITHM FOR ICI REDUCTION

The variables in (9) are complex-valued. If we let � � ������,
	 � 	�� �	�, and � � ��� ���, then the norm in (9a) assumes
the form

� �� � �	 ����� (10a)
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Fig. 2. An OFDM receiver.
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and the problem in (9) can be expressed as

minimize � �� � �	 ����� (11a)

subject to � ��
�� � �� for � � �� �� � � � � �� � � (11b)

where �� represents the set of points associated with the real and
imaginary components of the modulation constellation. For 4-QAM
modulation, we have �� � ������.

For the optimization problem in (11), the elements of vector ��
can be determined iteratively. Assume that the number and the set
of indices of the undetermined elements in vector �� during the �th
iteration are denoted as �� and 	�, respectively. During the first
iteration, we have �� � �� and 	� � ��� � � � � �� � ��. If we
define
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and let � � �, the problem in (11) can be converted to

minimize
�

�
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��� � ���
� �� (13a)

subject to � ���
�� � ��� ��� for � � �� � � � � �� � � (13b)

Since the constraints in (13b) imply that ���
�
��� � ��� , the problem

in (13) can be relaxed to
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�
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� �� (14a)

subject to � ���
�
��� � ��� (14b)

Note that matrix �� is a positive definite matrix and, therefore, it
can be diagonalized as

�� � 

�
� ��
� (15)

where �� and 
� are diagonal and orthogonal matrices, respectively.
If we let

�� � 
�
��� (16a)
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��� (16b)
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�
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then the problem in (14) can be converted to

minimize
�

�
�
�
� ���� ��

�
�
��� (17a)

subject to � ��
��� � ��� (17b)

Here, we define the Lagrangian
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Using the first-order Karush-Kuhn-Tucker (KKT) conditions, we
have
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��� ���
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It can be seen from (17) and (19) that the solution of the problem in
(17) can be obtained by solving the following problem

�� � �
�� � ������
����� (20a)

subject to � ��
��� � ��� (20b)

On replacing vector �� in (20b) using the relationship in (20a), we
have

���� 
�� � ������
����� � ��� (21)

where �� � ����� is a diagonal matrix. Therefore, Eq. (21) can be
further expressed as
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where ���
�� and ��
�� represent the �th element of vector ��� and the
main diagonal of matrix ��, respectively. The only unknown variable
in (22) is �� and its value can be numerically determined by solving
the following one-dimensional optimization problem

minimize
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and � is a small positive number. The solution of the problem in (23)
can be found using, for example, a dichotomous search algorithm.
When �� is found, vector �� can be computed as
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�� � �
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��
�� � ���
for � � �� � � � � �� � � (24)

where ��
�� is the �th element of vector ��. Using (16c), an
estimzation of the vector ��� can be obtained as

��� � 

�
��� (25)

In order to obtain the discrete-valued vector, a decision process is
applied where

���
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� if ���
��  !

�� if ���
�� " �!
undetermined otherwise

(26)

for � � �� � � � � �� � � and ! is the decision threthold. If ! � �,
then the decision process in (17) becomes the hard decision

��� � sign
�
���

�
(27)

and all the elements of vector ��� can be determined by using (18).
If !  �, some of the elements of vector ��� may fall into the
region where � ���
��� 
 !, and, therefore, these elements cannot be
determined in the present iteration. In such a case, more iterations
are needed and a feedback scheme can be exploited. Denoting the

set of indices of the elements of �� that have been determined in the
�th iteration as 	�� , we have 	��� � 	� � 	�� and
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Based on the updated variables in (28), a similar optimization
problem can be formulated as in (13) for the 
����th iteration, which
can be solved following the same procedure. When all the elements
of vector �� are determined, i.e., set 	��� is empty, the algorithm
terminates. A step-by-step description of the above algorithm is listed
in Table 1.

TABLE I
AN ITERATIVE OPTIMIZATION ALGORITHM FOR ICI REDUCTION

Step 1
Set � � � and input the decision threthold !.
Initialize variables ��, 	�, ���, �	�, ���, ��, and �� as in (3).

Step 2
Formulate the optimization problem as in (4).
Find �� by solving the problem in (14).
Compute ��� using (15) and (16).
Compute ��� using (17).
Find 	�� and compute 	���.

Step 3
If 	��� is empty, output the detected vector �� and stop; other-
wise, compute the variables ����, 	���, �����, �	���, �����,
����, and ���� using (19).
Set � � � � �, and repeat from Step 2.

IV. SIMULATIONS

The proposed ICI-reduction algorithm was applied to an OFDM
system where the number of subcarriers was chosen to be �� and
4-QAM was adopted as the modulation scheme for each subcarrier.
The bandwidth of the OFDM system and the carrier frequency were
set to # � ��� kHz and $� � � GHz, respectively. The length of
the CP was set to ��%� � 
����%� � %���, where %� and %�
are the time durations of OFDM symbols and chips, respectively. A
two-tap Rayleigh fading channel model [12] was assumed where the
Doppler frequency of the channel is denoted as $�. While the delay
of the first tap was zero, the delay of the second tap was randomly
generated with uniform distribution from �%�� �%�� � � � � ��%��. The
BER performance of the proposed algorithm was evaluated and
compared with that of several existing algorithms under a variety
of system configurations. For the DF algorithm in [12], the number
of neighbouring subcarriers that were used to suppress the ICI at a
particular subcarrier was taken to be �& � �.
Example: First we considered an OFDM system where $�%� � ����.
For the proposed ICI-reduction algorithm with ! � ��� or ' � ���,
the BER versus the ratio of energy-per-bit to spectral noise density
(Eb/N0) is plotted as the solid and dash curves in Fig. 3, respectively.
For the sake of comparison, the BER of the DF algorithm in [12] is
plotted in the same figure for various values of & as dotted curves.
It can be observed that improved performance can be obtained by
the proposed algorithm compared with that of the DF algorithm for
less computation. For example, at the BER level of ���� , a 0.5-dB
and 1.5-dB improvement of Eb/N0 can be achieved by the proposed
algorithm with ! � ��� compared with the DF algorithm with & �
� and & � ��, respectively. It was found out that the CPU time



required by the proposed algorithm with ! � ��� is only 80� of
that required by the DF algorithm with & � ��.

The performance of the proposed algorithm for the cases where
$�%� � ��� and $�%� � ���� is plotted in Fig. 4 and 5, respectively.
As can be seen, the performance of the algorithm improves with an
increase in the Doppler frequency. For example, while for the case
of $�%� � ��� an (���� ratio of 27.5 dB is required to achieve
the BER level of ����, for the case of $�%� � ���� an (����
ratio of 25.5 dB is required to achieve the same BER level. This
improvement with increasing $� can be attributed to the increase in
frequency diversity introduced by the higher Doppler spread [9].

V. CONCLUSIONS

A low-complexity ICI-reduction algorithm based on an iterative
optimization scheme has been proposed. Design examples have been
presented which demonstrate that the proposed algorithm outperforms
several existing algorithms in terms of bit-error-rate performance and
computational complexity. It has also been shown that the proposed
algorithm exploits the frequency diversity introduced by channel
variations and, therefore, improved performance can be achieved at
higher Doppler frequencies.
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Fig. 3. Performance of ICI-reduction algorithms with ���� � ����.
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Fig. 4. Performance of ICI-reduction algorithms with ���� � ���.
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Fig. 5. Performance of ICI-reduction algorithms with ���� � ����.


