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Abstract— For two-dimensional (2-D) separable-denomina-
tor state-space digital filters, we investigate the minimization
problem of an L2-sensitivity measure subject to L2-scaling
constraints. First, the coefficient sensitivity is analized by using
a pure L2 norm. Next, an iterative algorithm is developed
for minimizing an L2-sensitivity measure subject to L2-scaling
constraints. This approach largely relies on the use of a
Lagrange function and some matrix-theoretic techniques.
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I. INTRODUCTION

Owing to either truncation or rounding of filter coef-
ficients, the characteristics of an actual transfer function
deviate from the original in the fixed-point implementation
of recursive digital filters. Several techniques have been
proposed for synthesizing 2-D filter structures with low coef-
ficient sensitivity [1]-[7]. Some of these techniques evaluate
the sensitivity by using a mixture of L1/L2 norms [1]-
[3], while the others rely on the use of a pure L2 norm
[4],[6],[7]. Moreover, minimization of weighted sensitivity
for 2-D state-space digital filters has been considered in
accordance with both mixed L1/L2 and pure L2 sensitiv-
ity measures [5]. The L2 sensitivity minimization is more
natural and reasonable than the convensional L1/L2 mixed
sensitivity minimization, but it is technically more challeng-
ing. Alternatively, a state-space digital filter with L2-scaling
constraints is beneficial for suppressing overflow oscilla-
tions [8],[9]. However, satisfactory solution methods for L2-
sensitivity minimization subject to L2-scaling constraints are
still needed [10],[11].

This paper formulates an L2-sensitivity minimization
problem subject to the scaling constraints for 2-D separable-
denominator digital filters. By making use of a Lagrange
function and some matrix-theoretic techniques, an iterative
algorithm is developed to solve the constraint optimization
problem directly. A numerical example is presented to
demonstrate the usefulness of the proposed algorithm.

II. SENSITIVITY ANALYSIS
Without loss of generality, a 2-D digital filter with sep-

arable denominator can be described by the Roesser local

state-space (LSS) model {A1, A2, A4, b1, b2, c1, c2, d}m+n[
xh(i + 1, j)
xv(i, j + 1)

]
=

[
A1 A2

0 A4

] [
xh(i, j)
xv(i, j)

]
+

[
b1

b2

]
u(i , j )

y(i, j) =
[

c1 c2

] [
xh(i, j)
xv(i, j)

]
+ d u(i, j)

(1)
where xh(i, j) is an m×1 horizontal state vector, xv(i, j) is
an n×1 vertical state vector, u(i, j) is a scalar input, y(i, j) is
a scalar output, and A1, A2, A4, b1, b2, c1, c2, and d are real
constant matrices of appropriate dimensions. The LSS model
in (1) is assumed to be asymptotically stable, separately
locally controllable and separately locally observable. The
transfer function of the LSS model in (1) is given by

H(z1, z2)
=

[
1 c1(z1Im − A1)−1

]
·
[

d c2

b1 A2

][
1

(z2In − A4)−1b2

]
. (2)

Definition 1 : Let X be an m×n real matrix and let f(X)
be a scalar complex function of X , differentiable w.r.t. all
the entries of X . The sensitivity function of f with respect
to X is then defined as

SX =
∂f

∂X
with (SX)ij =

∂f

∂xij
(3)

where xij denotes the (i, j)th entry of the matrix X .
With these notations, it is easy to show that

∂H(z1, z2)
∂A1

= QT (z1)F T (z1, z2)

∂H(z1, z2)
∂A2

= QT (z1)P T (z2)

∂H(z1, z2)
∂A4

= GT (z1, z2)P T (z2)

∂H(z1, z2)
∂b1

= QT (z1),
∂H(z1, z2)

∂b2
= GT (z1, z2)

∂H(z1, z2)
∂cT

1

= F (z1, z2),
∂H(z1, z2)

∂cT
2

= P (z2)
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where

F (z1, z2) = (z1Im − A1)−1[b1 + A2P (z2)]

G(z1, z2) = [c2 + Q(z1)A2](z2In − A4)−1

P (z2) = (z2In − A4)−1b2, Q(z1) = c1(z1Im − A1)−1.

The term d and the sensitivity with respect to it are coordi-
nate independent, therefore they are neglected here.

Definition 2 : Let X(z1, z2) be an m×n complex matrix
valued function of the complex variables z1 and z2. The Lp

norm of X(z1, z2) is then defined as

||X||p =
[

1
(2πj)2

∮ ∮
Γ2

||X(z1, z2)||pF
dz1dz2

z1z2

]1/p

(4)

where ||X(z1, z2)||F is the Frobenius norm of the matrix
X(z1, z2) defined by

||X(z1, z2)||F =

[
m∑

p=1

n∑
q=1

|xpq(z1, z2)|2
]1/2

.

The overall L2-sensitivity measure is now defined by

M2 =
∣∣∣∣
∣∣∣∣∂H(z1, z2)

∂A1

∣∣∣∣
∣∣∣∣
2

2

+
∣∣∣∣
∣∣∣∣∂H(z1, z2)

∂A4

∣∣∣∣
∣∣∣∣
2

2

+
∣∣∣∣
∣∣∣∣∂H(z1, z2)

∂b1

∣∣∣∣
∣∣∣∣
2

2

+
∣∣∣∣
∣∣∣∣∂H(z1, z2)

∂b2

∣∣∣∣
∣∣∣∣
2

2

+
∣∣∣∣
∣∣∣∣∂H(z1, z2)

∂cT
1

∣∣∣∣
∣∣∣∣
2

2

+
∣∣∣∣
∣∣∣∣∂H(z1, z2)

∂cT
2

∣∣∣∣
∣∣∣∣
2

2

+
∣∣∣∣
∣∣∣∣∂H(z1, z2)

∂A2

∣∣∣∣
∣∣∣∣
2

2

.

(5)
From (4)-(5), it follows that

M2 = tr
[
MA1+MA4+W h+W v+Kh+Kv

]
+tr[W h]tr [Kv]

where

MA1 =
1

(2πj)2
∮
|z1|=1

∮
|z2|=1

[F (z−1
1 , z−1

2 )Q(z−1
1 )]

·[QT (z1)F T (z1, z2)]
dz1dz2

z1z2

MA4 =
1

(2πj)2
∮
|z1|=1

∮
|z2|=1

[GT (z1, z2)P T (z2)]

·[P (z −1
2 )G(z −1

1 , z −1
2 )]

dz1dz2

z1z2

Kh =
1

(2πj)2

∮
|z1|=1

∮
|z2|=1

F (z1, z2)F ∗(z1, z2)
dz1dz2

z1z2

Kv =
1

2πj

∮
|z2|=1

P (z2)P ∗(z2)
dz2

z2

W h =
1

2πj

∮
|z1|=1

Q∗(z1)Q(z1)
dz1

z1

W v =
1

(2πj)2

∮
|z1|=1

∮
|z2|=1

G∗(z1, z2)G(z1, z2)
dz1dz2

z1z2
.

The matrices K = Kh ⊕ Kv and W = W h ⊕ W v are
called the local controllability Gramian and local obsevabil-
ity Gramian, respectively, and can be obtained by solving
the following Lyapunov equations:

Kv = A4K
vAT

4 + b2b
T
2 , W h = AT

1 W hA1 + cT
1 c1

Kh = A1K
hAT

1 + A2K
vAT

2 + b1b
T
1

W v = AT
4 W vA4 + AT

2 W hA2 + cT
2 c2.

Applying the eigenvalue-eigenvector decompositions

Kv =
n∑

i=1

σv
i uiu

T
i , W h =

m∑
i=1

σh
i viv

T
i (6)

where σv
i and ui (σh

i and vi) are the ith eigenvalue and
eigenvector of Kv (W h), respectively, we can write (6) as
[7]

M2 =
n∑

i=0

σv
i tr[W h

i (Im)] +
m∑

i=0

σh
i tr[Kv

i (In)]

+tr[W h+W v+Kh+Kv] + tr[W h]tr[Kv]

(7)

where σv
0 = σh

0 = 1, ũ0 = b1, ũi = A2ui (i ≥ 1), ṽ0 =
cT
2 , ṽi = AT

2 vi (i ≥ 1), and m × m matrix W h
i (P 1) and

n×n matrix Kv
i (P 4) are obtained by solving the Lyapunov

equations[
W h

i (P 1) ∗
∗ ∗

]
=

[
A1 ũic1

0 A1

][
W h

i (P 1) ∗
∗ ∗

]

·
[

A1 ũic1

0 A1

]T

+

[
0 0
0 P 1

]

[
Kv

i (P 4) ∗
∗ ∗

]
=

[
A4 0

b2ṽ
T
i A4

]T [
Kv

i (P 4) ∗
∗ ∗

]

·
[

A4 0
b2ṽ

T
i A4

]
+

[
0 0

0 P −1
4

]
.

III. SENSITIVITY MINIMIZATION
The following class of state-space coordinate transforma-

tions can be used without affecting the input-output map:[
xh(i, j)
xv(i, j)

]
=

[
T 1 0
0 T 4

]−1 [
xh(i, j)
xv(i, j)

]
(8)

where T 1 and T 4 are m×m and n×n nonsingular constant
matrices, respectively. Performing this coordinate transfor-
mation to the LSS model in (1) yields a new realization
{A1, A2, A4, b1, b2, c1, c2, d}m+n characterized by

A1 = T −1
1 A1T 1, A2 = T −1

1 A2T 4

A4 = T −1
4 A4T 4, b1 = T −1

1 b1

b2 = T −1
4 b2, c1 = c1T 1, c2 = c2T 4

K
h

= T −1
1 KhT −T

1 , K
v

= T −1
4 KvT −T

4

W
h

= T T
1 W hT 1, W

v
= T T

4 W vT 4.



For the new realization, the M2 in (7) is changed to

M2(P ) =
n∑

i=0

σv
i tr[W h

i (P 1)P −1
1 ] +

m∑
i=0

σh
i tr[Kv

i (P 4)P 4]

+ tr[W hP 1+W vP 4+KhP −1
1 +KvP −1

4 ]

+ tr[W hP 1]tr[KvP −1
4 ]

where P = P 1 ⊕ P 4 and P i = T iT
T
i for i = 1, 4.

If l2-norm dynamic-range scaling constraints are imposed
on the local state vector [xh(i, j)T , xv(i, j)T ]T , then

(K
h
)ii = (T −1

1 KhT −T
1 )ii = 1

(K
v
)jj = (T −1

4 KvT −T
4 )jj = 1

are required for i = 1, 2, · · · , m and j = 1, 2, · · · , n.
The problem of minimizing M2(P ) in (9) subject to the

constraints in (9) is a constrained nonlinear optimization
problem where the variable is matrix P . If we sum up the
m or n constraints in (9), then we have

tr[KhP−1
1 ] = m, tr[KvP−1

4 ] = n. (9)

Consequently, the problem of minimizing (9) subject to the
constraints in (9) can be relaxed into the problem

minimize M2(P ) in (9)

subject to tr[KhP−1
1 ] = m and tr[KvP−1

4 ] = n.
(10)

To solve (10), define a Lagrange function of the problem as

J(P , λ1, λ4) = M2(P ) + λ1(tr[KhP−1
1 ] − m)

+ λ4(tr[KvP−1
4 ] − n)

(11)

where λ1 and λ4 are Lagrange multipliers. It is well known
that the solution of problem (10) must satisfy the Karush-
Kuhn-Tucker (KKT) conditions ∂J(P , λ1, λ4)/∂P i = 0
and ∂J(P , λ1, λ4)/∂λi = 0 for i = 1, 4 where the gradients
are found to be

∂J(P , λ1, λ4)
∂P 1

= F 1(P ) − P −1
1 F 2(P 1, λ1)P −1

1

∂J(P , λ1, λ4)
∂P 4

= F 3(P 4) − P −1
4 F 4(P , λ4)P −1

4

∂J(P , λ1, λ4)
∂λ1

= tr[KhP−1
1 ] − m

∂J(P , λ1, λ4)
∂λ4

= tr[KvP−1
4 ] − n

with

F 1(P ) =
n∑

i=0

σv
i Kh

i (P 1) + (1 + tr[KvP −1
4 ])W h

F 2(P 1, λ1) =
n∑

i=0

σv
i W h

i (P 1) + (λ1 + 1)Kh

F 3(P 4) =
m∑

i=0

σh
i Kv

i (P 4) + W v

F 4(P , λ4) =
m∑

i=0

σh
i W v

i (P 4) + (λ4 + 1 + tr[W hP 1])Kv

[
Kh

i (P 1) ∗
∗ ∗

]
=

[
A1 0
ũic1 A1

]T [
Kh

i (P 1) ∗
∗ ∗

]

·
[

A1 0
ũic1 A1

]
+

[
0 0

0 P −1
1

]
[

W v
i (P 4) ∗
∗ ∗

]
=

[
A4 b2ṽ

T
i

0 A4

][
W v

i (P 4) ∗
∗ ∗

]

·
[

A4 b2ṽ
T
i

0 A4

]T

+

[
0 0
0 P 4

]
.

Hence the KKT conditions in (12) become

P 1F 1(P )P 1 = F 2(P 1, λ1), tr[KhP−1
1 ] = m

P 4F 3(P 4)P 4 = F 4(P , λ4), tr[KvP−1
4 ] = n .

(12)
The two equations on the left-hand side in (12) are highly

nonlinear with respect to P 1 and P 4. An effective approach
to solving the first two equations in (12) is to relax them
into the following recursive second-order matrix equations:

P
(i+1)
1 F 1(P (i))P (i+1)

1 = F 2(P
(i)
1 , λ

(i)
1 )

P
(i+1)
4 F 3(P

(i)
4 )P (i+1)

4 = F 4(P (i), λ
(i)
4 )

(13)

where P
(i)
1 , P

(i)
4 , λ

(i)
1 and λ

(i)
4 are known from the previous

recursion. The solutions P
(i+1)
1 and P

(i+1)
4 of (13) are given

by

P
(i+1)
1 =

F
− 1

2
1 (P (i))[F

1
2
1 (P (i))F 2(P

(i)
1 , λ

(i)
1 )F

1
2
1 (P (i))]

1
2 F

− 1
2

1 (P (i))

P
(i+1)
4 =

F
− 1

2
3 (P (i)

4 )[F
1
2
3 (P (i)

4 )F 4(P (i), λ
(i)
4 )F

1
2
3 (P (i)

4 )]
1
2 F

− 1
2

3 (P (i)
4 ),

(14)
respectively. To derive recursive formulas for the Lagrange
multipliers λ1 and λ4, we employ (12) to write

tr[P 1F1(P )]) =
n∑

i=0

σv
i tr[W h

i (P 1)P −1
1 ] + m(λ1 + 1)

tr[P 4F3(P 4)] =
m∑

i=0

σh
i tr[W v

i (P 4)P −1
4 ]

+ n(λ4 + 1 + tr[W hP 1])
(15)

which naturally suggest the recursions for λ1 and λ4:

λ
(i+1)
1 =

tr[P (i)
1 F 1(P (i))] −

n∑
i=0

σv
i tr[W h

i (P (i)
1 )P (i)−1

1 ]

m
− 1

λ
(i+1)
4 =

tr[P (i)
4 F 3(P

(i)
4 )] −

m∑
i=0

σh
i tr[W v

i (P
(i)
4 )P (i)−1

4 ]

n
− 1

− tr[W hP
(i)
1 ].

(16)



The iteration process starts with P (0) = Im+n and any
values of λ

(0)
1 > 0 and λ

(0)
4 > 0, and continues until (12) is

satisfied within a prescribed numerical tolerance.
Having obtained the optimal P = P 1 ⊕P 4 and noticing

P = TT T , the optimal coordinate-transformation matrix
T = T 1 ⊕ T 4 satisfying the constraints in (9) can now be
readily determined using the technique described in [11].

IV. ILLUSTRATIVE EXAMPLE
As an example, consider a 2-D separable-denominator

state-space digital filter in (1) specified by

A1 =


 0.0 1.0 0.0

0.0 0.0 1.0
0.599655 −1.836929 2.173645




A2 =


 0.064564 0.033034 0.012881

0.091213 0.110512 0.102759
0.097256 0.151864 0.172460




A4 =


 0.0 0.0 0.564961

1.0 0.0 −1.887939
0.0 1.0 2.280029


 , b1 =


 0.047053

0.062274
0.060436




b2 =
[

1.0 0.0 0.0
]T

, c1 =
[

1.0 0.0 0.0
]

c2 =
[

0.016556 0.012550 0.008243
]
, d = 0.019421.

After carrying out the L2-scaling for the above LSS model
with a diagonal coordinate-transformation matrix, the L2-
sensitivity of the scaled LSS model was found to be M2 =
4526.0790. Profiles of the L2-sensitivity, parameters λ1 and
λ4 as well as tr[KhP−1

1 ] and tr[KvP−1
4 ] during the first 500

iterations of the proposed algorithm are shown in Figs. 1 and
2, respectively. Together these figures clearly reveal a two-
stage convergence behavior of the algorithm in that the first
stage (which consists of just one iteration) of the algorithm
reduces the L2-sensitivity drastically without maintaining the
constraint tr[KhP−1

1 ] = 3 and tr[KvP−1
4 ] = 3, and the

second stage of the algorithm is able to restore the constraints
tr[KhP−1

1 ] = 3 and tr[KvP−1
4 ] = 3 while further reduc-

ing the L2-sensitivity slightly. The L2-sensitivity became
M2(P ) = 101.0064 after 500 iterations of the algorithm.
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!!!!!!!!!!!!

!!!!!!

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

Iterations

tr[KhP −1
1 ]

tr[KvP −1
4 ]

tr
[K

h
P

−
1

1
],

tr
[K

v
P

−
1

4
]

!!!!

!!

Fig. 2. tr[KhP −1
1 ] and tr[KvP −1

4 ] Performances.

V. CONCLUSION

This paper has developed an iterative algorithm for
minimizing the L2 sensitivity measure subject to the L2-
scaling constraints for 2-D state-space digital filters with
separable denominator. This relies on the use of a Lagrange
function and some matrix-theoretic techniques. The results
of a numerical example have demonstrated the effectiveness
of the proposed technique.
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