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Abstract— A design algorithm based on second-order cone
programming (SOCP) for minimax design of 2-D FIR filters with
low group delay is proposed. SOCP is a special class of convex
programming problems that can be carried out considerably
more efficiently than the popular semidefinite programming. The
simulation studies presented in this paper also confirm this in
a filter design context. The proposed algorithm is compared
favorably with a recently proposed design method based on
sequential quadratic programming. The proposed design method
is expected to be a useful utility for 2-D digital filter designers
whose interest is not limited to linear phase responses and low
order filters.

I. INTRODUCTION

There have been several algorithms for the design of two-
dimensional (2-D) digital filters, see for example [1]–[7] and
the reference cited therein. Concerning the minimax designs, a
successful early attempt is documented in [1]. More recent ef-
forts include [6] and [7] where methods based on semidefinite
programming (SDP) and sequential quadratic programming
(SQP) have been proposed. These methods work quite well
except that the design complexity becomes rather high even for
filters of moderate order. The high computational complexity
is attributed to two facts: the large number of design variables
in the order of O(N1 · N2) for filters of size N1 × N2 and
the large number of constraints imposed on a dense set of
frequency grid points over the baseband [−π, π] × [−π, π].

In this paper, the minimax design of 2-D FIR filters approx-
imating arbitrary frequency responses (including those with
low group delays), is addressed in a convex programming
framework known as second-order cone programming (SOCP)
[8]. The paper provides details in design formulation and
algorithmic description of the method, and presents simulation
results to demonstrate that the SOCP-based algorithm can
achieve the same design results with much reduced compu-
tational complexity relative to the algorithms in the literature.

II. PROBLEM FORMULATION

Consider a 2-D FIR transfer function

H(z1, z2) =
N1−1∑
i=0

N2−1∑
j=0

hijz
−i
1 z−j

2 (1)

We seek to find a transfer function H(z1, z2) in (1) whose
frequency response best approximates a desired frequency
response Hd(ω1, ω2) in the minimax sense. Namely, we are
interested in solving the optimization problem

minimize
h

maximize
(ω1,ω2)∈Ω

W (ω1, ω2)|H(ω1, ω2) − Hd(ω1, ω2)|
(2)

where Ω = {(ω1, ω2), −π ≤ ω1, ω2 ≤ π} and W (ω1, ω2) ≥
0 is a known weighting function defined on Ω.

For notation simplicity, we assume N1 = N2 = N and
denote

H(ω1, ω2) = H(ejω1 , ejω2)
c(ω) = [1 cosω · · · cos(N − 1)ω]T

s(ω) = [0 sin ω · · · sin(N − 1)ω]T

and
H = {hij , 0 ≤ i, j ≤ N − 1}

The frequency response of the 2-D FIR filter characterized in
(1) can be expressed as

H(ω1, ω2) = [cT (ω1)Hc(ω2) − sT (ω1)Hs(ω2)]
−j[sT (ω1)Hc(ω2) + cT (ω1)Hs(ω2)]

If we let ci = c(ωi) and si = s(ωi) for i = 1, 2, then we
can write

H(ω1, ω2) = tr[P (ω1, ω2)H] − jtr[Q(ω1, ω2)H]
P (ω1, ω2) = c2c

T
1 − s2s

T
1

Q(ω1, ω2) = c2s
T
1 + s2c

T
1

where tr[·] denotes matrix trace. Further, if we denote the
column vectors generated by stacking the transposed rows of
P (ω1, ω2), Q(ω1, ω2) and H by p(ω1, ω2), q(ω1, ω2) and



h, respectively, then the frequency response can simply be
expressed as

H(ω1, ω2) = pT (ω1, ω2)h − jqT (ω1, ω2)h (3)

By placing an upper bound η on the objective function in (2),
the solution of (2) shall minimize the bound, thus the problem
at hand can be converted to

minimize η (4a)

subject to: W (ω1, ω2){[pT (ω1, ω2)h − Hdr(ω1, ω2)]2

+[qT (ω1, ω2)h − Hdi(ω1, ω2)]2}1/2 ≤ η(4b)

for (ω1, ω2) ∈ Ω

where Hdr(ω1, ω2) and −Hdi(ω1, ω2) are the real and imag-
inary parts of Hd(ω1, ω2), i.e.,

Hd(ω1, ω2) = Hdr(ω1, ω2) − jHdi(ω1, ω2)

For the design of low group delay filters, the desired frequency
response assumes the form

Hd(ω1, ω2) = Ad(ω1, ω2)e−jd(ω1+ω2)

where Ad(ω1, ω2) is a nonnegative real-valued function on Ω,
and d is a constant group delay between 0 and (N − 1)/2. In
this case we have

Hdr(ω1, ω2) = Ad(ω1, ω2) cos[d(ω1 + ω2)]
and

Hdi(ω1, ω2) = Ad(ω1, ω2) sin[d(ω1 + ω2)]

It should be stressed, however, that both the problem formu-
lation in (4) and the solution process to be described below
are applicable to the design of 2-D FIR filters approximating
a given arbitrary frequency response.

For a feasible exercise of SOCP, the constraints in (4b)
are discretized to a dense grid of frequencies Ωd =
{(ω1k, ω2k), k = 1, 2, . . . , K} ⊆ Ω and, in doing so, the
problem in (4) becomes

minimize eT x (5a)

subject to: ak(h) ≤ eT x for k = 1, 2, . . . , K (5b)

where x = [η hT ]T , e = [1 0 · · · 0]T , and

ak(h) = Wk[(pT
k h − Hdrk)2 + [qT

k h − Hdik)2]1/2 (5c)

with

Wk = W (ω1k, ω2k)
pk = p(ω1k, ω2k)
qk = q(ω1k, ω2k)

Hdrk = Hdr(ω1k, ω2k)
Hdik = Hdi(ω1k, ω2k)

III. AN SOCP-BASED SOLUTION

A. SOCP

SOCP is a class of convex programming problems, in which
a linear objective function is minimized subject to second-
order cone constraints [8]. Also known as quadratic or Lorentz
cone, a second-order cone of dimension n is defined as

K =
{[

t
u

]
, t ∈ R, u ∈ Rn−1, ‖u‖2 ≤ t

}

For n = 1, the second-order cone is degenerated to a ray on
the t-axis starting from t = 0 and for n = 3 the second-order
cone is depicted in Fig. 1.

u1

u2

t

Fig. 1. Second-order cone of dimension n = 3.

A standard SOCP formulation favored in many engineering
applications can be expressed as

minimize bT x (6a)

subject to: ‖AT
k x + ck‖2 ≤ bT

k x + dk (6b)

for k = 1, 2, . . . , K

The reason we call (6) an SOCP problem is because of the
fact that if we let

Â
T

k =


 bT

k

AT
k


 , ĉk =


 dk

ck




then the constraints in (6b) are equivalent to that each Â
T

k x+
ĉk belongs to a second-order cone Kk .

B. An SOCP formulation of problem (5)

The function ak(h) in (5c) can be written as

ak(h) = [(p̂T
k h − Ĥdrk)2 + (q̂T

k h − Ĥdik)2]1/2

=

∥∥∥∥∥∥

 p̂T

k

q̂T
k


h −


 Ĥdrk

Ĥdik



∥∥∥∥∥∥

2

=

∥∥∥∥∥∥

 0 p̂T

k

0 q̂T
k


x +


 Ĥdrk

Ĥdik



∥∥∥∥∥∥

2



where p̂k = W
1/2
k pk, q̂k = W

1/2
k qk, Ĥdrk = W

1/2
k Hdrk,

and Ĥdik = W
1/2
k Hdik. Hence the constraints in (5b) become

the constraints in (6b) with

Ak =
[

0 0
p̂k q̂k

]
, bk = e, ck = −

[
Ĥdrk

Ĥdik

]
, dk = 0 (7)

and the objective function in (5a) becomes the objective
functin in (6a) with b = e.

C. MATLAB implementation

MATLAB toolbox SeDuMi version 1.1R2 was used to
solve the SOCP problem in (6) where the data required are
specified in (7). The name of the toolbox stands for self-
dual minimization as it implements a self-dual embedding
technique for optimization over self-dual homogeneous cones
[9].

For implementation purposes, define

At = [Ã1 Ã2 · · · ÃK ]
Ãk = −[bk Ak]
bt = = −b

ct =




c̃1
...

c̃K


 , c̃k =

[
dk

ck

]

In addition, define a K-dimensional vector q =
[n1 n2 . . . nK ] where nk denotes the number of
columns of matrix Ãk. The key commands for SeDuMi to
solve problem (6) are as follows:

K.q = q;
pars.fid = 0;
[xs, ys, info] = sedumi (At, bt, ct, K, pars);
x = ys;

info

The solution of the problem is then given as vector x.

IV. DESIGN EXAMPLES

The proposed algorithm was applied to design 2-D FIR
filters of various types and sizes. As a representative, Fig. 2
depicts the amplitude response and passband group delay of
a circularly symmetric lowpass filter of size 43 × 43 with
normalized passband edge ωp = 0.5 and stopband edge ω1 =
0.65 that approximates a desired lowpass frequency response
with passband group delay = 19. A total of K = 1986 grid
points. It took the proposed algorithm 25 iterations and 652.69
seconds CPU time on a 3.4 GHz Pentium 4 PC to converge
to the solution as shown in Fig. 2 whose maximum passband
error and minimum stopband attenuation were found to be
0.0021 and 54.1529 dB, respectively. The maximum relative
deviation of group delay in passband was 0.0279.

For comparison purposes, the proposed algorithm was also
applied to design five linear-phase circularly symmetric low-
pass filters with fp = 0.425, fa = 0.575, and N = 7, 11, 15,
19, and 23. The filters with the same design specifications were
also carried out using the algorithms of [3] and [6] and the
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Fig. 2. (a) Amplitude response and (b) passband group delay of the 43×43
circularly symmetric lowpass filter.

results are summarized in Table 1. The amplitude responses of
these filters are shown in Fig. 3. From these design examples,
it is quite obvious that the SOCP-based algorithm can be used
to design filters of fairly high order and offers considerably
reduced computational complexity relative to that of several
existing design methods.

V. CONCLUSIONS

The minimax design of 2-D filters with low group delay
can be formulated as an SOCP problem which is a convex
constrained optimization that admits a unique, global solution.
Thanks to the public-domain toolbox SeDuMi which has
proven to be a reliable and efficient LP-SDP-SOCP solver,
the proposed design method is expected to be a useful utility
for 2-D digital filter designers whose interest is not limited to
linear phase responses and low order filters.



TABLE I

COMPARISON OF THE PROPOSED METHOD WITH THE METHODS IN [3], [6]

N Grid points maximum ripple CPU time in seconds
K passband stopband proposed [3] [6]

method
7 345 0.1769 0.1787 0.36 8.10 1.72
11 345 0.0931 0.1093 0.83 15.74 3.36
15 351 0.0629 0.0643 1.88 33.67 6.65
19 629 0.0317 0.0451 8.71 117.99 23.42
23 761 0.0193 0.0227 20.02 282.18 55.44
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Fig. 3. Amplitudes of circularly symmetric linear-phase lowpass 2-D FIR
filters of size (a) 7×7, (b) 11×11, (c) 15×15, (d) 19×19, and (e) 23×23.


