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Abstract— A new constellation extension technique for peak-to-
average power-ratio reduction (PAPR) in orthogonal frequency-
division multiplexing systems is proposed. Two new algorithms
for PAPR reduction are developed by applying the so-called
method of conditional probability (MCP) and coordinate descent
optimization (CDO). Our simulations demonstrate that the pro-
posed algorithms outperform several existing algorithms and the
performance can be further improved by combining the MCP,
CDO, and the selective mapping algorithms.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has
recently been used for data transmission in a number of com-
munication systems [1][2]. A major problem associated with
OFDM is its large peak-to-average power-ratio (PAPR) which
renders system performance sensitive to distortion introduced
by nonlinear devices, e.g., power amplifiers (PAs). Recently,
a number of algorithms [3]-[5] have been proposed to reduce
the PAPR of the transmit signal before it enters the PAs.

In this paper, a new constellation is proposed whereby
the data are represented either by points in the original
constellation or by extended points. Two new algorithms
are then developed by applying the so-called method of
conditional probablity (MCP) [6]-[7] and coordinate descent
optimization (CDO) [8], which can be used to find the op-
timal representation of the OFDM signal. Design examples
are presented which demonstrate that significant reduction in
PAPR as well as reduced computational effort can be achieved
by the proposed algorithms over several existing algorithms.
The performance of the proposed algorithms can be further
improved by combining them with the selective mapping
(SLM) algorithm [3].

II. PAPR REDUCTION VIA CONSTELLATION EXTENSION

Consider an N -subcarrier OFDM transmitter as illustrated
in Fig. 1, where S/P, P/S, and D/A represent serial-
to-parallel, parallel-to-serial, and digital-to-analog converter,
respectively, and the block labeled as “Amp.” represents
a power amplifier. A 16-QAM modulation is adopted for
each subcarrier and its constellation is shown in Fig. 2a.
The proposed constellation extension scheme is illustrated in
Fig. 2b where any data point with a value greater than or

equal to 4 and less than 12 can be represented by a pair of
two possible constellation points. For example, the data point
Dk = 11 (or 1011 in binary form) can be represented by either
X0

k = −1 − 3j or X1
k = −1 + 5j where the superscript of

Xk is used to identify which constellation point is selected
to represent Dk, i.e., X0

k indicates that an exterior point of
the conventional constellation is used to represent Dk; on the
other hand, X1

k indicates that a corresponding extended point
is used to represent Dk. For the purpose of comparison, the
constellation extension scheme proposed in [5] is shown in
Fig. 2c.

The 16-QAM modulated symbol Xk is referred to as
the subsymbol at the kth subcarrier, and vector X =
[X0 · · · XN−1] is referred to as the OFDM symbol. The
discrete complex baseband representation of the nth sample
of the OFDM symbol is given by

xn =
1
N

N−1∑
k=0

skXke
j2πkn

N for n = 0, . . . , N − 1 (1)

If we let x = [x0 · · · xN−1]
T , the PAPR of signal x can be

defined as

PAPR =
‖x‖2

∞
E [‖x‖2

2]/N
(2)

where E [·] denotes expectation. Our objective is to obtain an
optimal representation of the data points by either the exterior
or the extended points such that the PAPR of the OFDM
symbol X is minimized. For the sake of a fair comparison
with other PAPR-reduction algorithms, the peak power of
the transmit signal will be used as a performance measure
in the computer simulations presented in Sec. IV. Denoting
the number and index set of subcarriers which are applicable
to constellation extension as K and I = {i1, i2, . . . , iK},
respectively, and letting X̄ = [Xi1 · · ·XiK ]T , the PAPR-
reduction problem can be formulated as

minimize
X̄

max
0≤n≤N−1

∣∣∣∣∣∣
N−1∑

k=0,k∈I
Xke

j2πkn
N

∣∣∣∣∣∣ (3a)

subject to:Xk ∈ {X0
k , X1

k} for k ∈ I (3b)



If we let

Yk =
X0

k + X1
k

2
and Zk =

X0
k − X1

k

2
for k ∈ I (4a)

then we have

X0
k = Yk + Zk and X1

k = Yk − Zk for k ∈ I (4b)

where the variables in (3) and (4) are complex. If we define

cn =




Re
[∑N−1

k=0,k/∈I Xke
j2πkn

N +∑K
k=1 Yik

e
j2πikn

N

]
0 ≤ n ≤ N − 1

Im
[∑N−1

k=0,k/∈I Xke
j2πk(n−N)

N +∑K
k=1 Yik

e
j2πik(n−N)

N

]
N ≤ n ≤ 2N − 1

(5a)

and

dnk =




Re
[
Zik

e
j2πikn

N

]
0 ≤ n ≤ N − 1

Im
[
Zik

e
j2πik(n−N)

N

]
N ≤ n ≤ 2N − 1

(5b)

then the problem in (3) can be relaxed to

minimize
s

max
0≤n≤2N−1

∣∣∣∣∣cn +
K∑

k=1

skdnk

∣∣∣∣∣ (6a)

subject to: sk ∈ {1,−1} for k = 1, . . . , K (6b)

where the variables involved are real. It can be shown that
the solution of the problem in (6) can be regarded as a good
approximation of the solution of the problem in (3). For
this reason, a reasonable suboptimal solution to the PAPR-
reduction problem in (3) can be obtained by solving the
problem in (6).
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Fig. 1. Block diagram of a typical OFDM transmitter.

III. PAPR-REDUCTION ALGORITHMS

The minimax optimization problem in (6) is an integer
programming problem which can be solved by using the MCP
along with the pessimistic estimator reported in [6][7] or
by using the CDO reported in [8].

A. Algorithm Based on Method of Conditional Probability

Consider sign vector s = [s1 · · · sK ] where s1, . . . , sK are
treated as random variables which can assume the values of
1 or −1 with equal probability. Let Aλ

n be the event that∣∣∣cn +
∑K

k=1 dnksk

∣∣∣ ≥ λ and let Pr
(
Aλ

n

)
be the probability

that event Aλ
n occurs. For the problem in (6), a pessimistic

estimator is defined as an upper bound of the conditional
probability Pr

(
Aλ

n|s1, . . . , sj

)
and can be characterized by

Pr
(
Aλ

n|s1, . . . , sj

) ≤ Un (λ, s1, . . . , sj) (7)
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Fig. 2. (a) 16-QAM constellation with Gray code bit mapping. (b) An 8-
point extension scheme for 16-QAM constellation. (c) A 12-point extension
scheme for 16-QAM constellation.

for j = 1, . . . , K , where the following condition is satisfied

min
sj∈{1,−1}

2N−1∑
n=0

Un (λ, s1, . . . , sj−1, sj)

≤
2N−1∑
n=0

Un (λ, s1, . . . , sj−1) (8)

Let us assume that λ is chosen such that
2N−1∑
n=0

Un (λ) < 1 (9)

where Un (λ) denotes the upper bound of Pr
(
Aλ

n

)
with all

the components of s, i.e., s1, . . . , sK treated as random
variables. If the first component of the optimal sign vector
is taken to be s�

1 = 1, a suboptimal sign vector s� can be
obtained sequentially as

s�
j = arg

[
min

sj∈{1,−1}

2N−1∑
n=0

Un

(
λ, s�

1, . . . , s�
j−1, sj

)]

= −sign

[
2N−1∑
n=0

Un

(
λ, s�

1, . . . , s�
j−1, 1

)

−
2N−1∑
n=0

Un

(
λ, s�

1, . . . , s�
j−1, −1

)]
(10)

for j = 2, . . . , K . Consequently, we have

2N−1∑
n=0

Un

(
λ, s�

1, . . . , s�
j−1, s�

j

)

≤
2N−1∑
n=0

Un

(
λ, s�

1, . . . , s�
j−1

)
(11)



which in conjunction with (7), (8), and (9) implies that
2N−1∑
n=0

Pr
(
Aλ

n|s�
1, . . . , s�

K

) ≤
2N−1∑
n=0

Un (λ, s�
1, . . . , s�

K)

< 1 (12)

With the vector s� known, the probability Pr
(
Aλ

n|s�
1,

. . . , s�
K) for each n is either zero or one. Hence, it can be

inferred from (12) that Pr
(
Aλ

n|s�
1, . . . , s�

K

)
= 0 for n =

0, . . . , 2N − 1, which means that
∣∣∣cn +

∑K
k=1 s�

kdnk

∣∣∣ < λ.

In other words, the sign vector s� = [s�
1 · · · s�

K ] obtained
using (10) can be regarded as a suboptimal solution for which
the objective function in the problem in (6) is guaranteed to
be smaller than λ.

In what follows, a pessimistic estimator is derived based
on the Chernoff bound [9] which can be described by the
inequality

Pr(Y ≥ δ) ≤ e−γδE(eγY ) (13)

where γ is a nonnegative parameter to be optimized. By
applying the Chernoff bound to the conditional probability,
we obtain

Pr
(
Aλ

n|s1, . . . , sj

) ≤ 2e−γλcosh

(
γcn + γ

j∑
k=1

skdnk

)

·
N∏

k=j+1

cosh(γdnk) (14)

where the fact that the random variables sj+1, . . . , sK are
independent and assume the values of 1 or −1 with equal
probability has been used. Using the above analysis, a pes-
simistic estimator can be derived as

Un (λ�, s1, . . . , sj) = 2e−γ�λ�

cosh

(
γ�cn + γ�

j∑
k=1

skdnk

)

·
N∏

k=j+1

cosh (γ�dnk) (15)

for j = 1, . . . , K , where λ� =
√

2ε log(4N), γ� =
λ�/ε, and ε = max

0≤n≤2N−1

(
c2
n +

∑K
k=1 d2

nk

)
. By using (10)

and (15), a suboptimal solution s� for the problem in (6) can
be obtained as

s�
j = −sign

[
2N−1∑
n=0

sinh

(
γ�cn + γ�

j−1∑
k=1

s�
kdnk

)

· sinh (γ�dnk)
K∏

k=j+1

cosh (γ�dnk)


 (16)

for j = 2, . . . , K . Using (4b) and (16), the optimized OFDM
symbol X � can be obtained as

X�
k =

{
Xk for k /∈ I
Yk + s�

l Zk for k ∈ I
(17)

where l is the index of element k in set I in case that k ∈ I .
It can be shown that the peak power of the optimized OFDM
symbol X� is guaranteed to be smaller than 2λ�2.

B. Algorithm Based on Coordinate Descent Optimization

Define f(s) = max {fn(s) for 0 ≤ n ≤ 2N − 1} where

fn(s) =

∣∣∣∣∣cn +
K∑

k=1

skdnk

∣∣∣∣∣ for n = 0, . . . , 2N − 1

The idea of CDO [8] can be applied to reduce the value of
f(s) iteratively where only one element of the sign vector s
is allowed to switch in each iteration. First, the value of fn(s)
after the sign switch of element skc can be obtained as

fn(s, kc) =

∣∣∣∣∣∣cn +
K∑

k=1,k �=kc

skdnk − skcdnkc

∣∣∣∣∣∣
for n = 0, . . . , 2N − 1 and kc = 1, . . . , K . Let ∆f be the
change in the value of f , i.e.,

∆f (kc) = f(s) − max
0≤n≤2N−1

fn(s, kc) for kc = 1, . . . , K

and k̂c be the index that yields the maximum of
{∆f (kc), 1 ≤ kc ≤ K}. If ∆f (k̂c) ≤ ε where ε is a pre-
defined tolerance, then a local minimum of function f (s) is
achieved and the algorithm terminates. Otherwise, the sign
of sk̂c

is switched and the sign vector can be updated as
s = [s1 · · · sk̂c−1 − sk̂c

sk̂c+1 . . . sK ]. Since the value
of f(s) is monotonically reduced in each iteration, the CDO
technique can be applied to enhance the performance of the
MCP algorithms proposed in Secs. III.A and B.

C. Combination of the Proposed and the SLM Algorithms

In the proposed algorithms only one data set has been
utilized for PAPR reduction. The performance can be improved
by combining the proposed algorithms with the SLM algo-
rithm, as illustrated in Fig. 3. First, multiple candidate data sets
are generated at the transmitter. Second, for each of the data
sets the proposed MCP algorithm is applied and the one with
the least PAPR is selected. Third, the selective rotation (SR)
[5] and CDO algorithms are applied to the data set selected
in the second stage for further PAPR reduction.
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Fig. 3. Combination of the proposed and the SLM algorithms.

D. Computational Complexity Analysis

Note that compared with the scheme in Fig. 2c, the scheme
in Fig. 2b requires fewer extended points for PAPR reduction.
Statistically, the number of variables in (6) associated with the
scheme in Fig. 2b is two thirds that associated with the scheme
in Fig. 2c. Since the computation complexity of the MCP and
CDO algorithms is propotional to the number of variables in



problem (6), the computation required by the algorithms using
the scheme in Fig. 2b is only about two thirds that required
by the algorithms using the scheme in Fig. 2c.

IV. SIMULATIONS

The proposed algorithms were applied to an OFDM system
with 64 subcarriers and the performance was evaluated and
compared with that of the algorithms proposed in [4][5].
In order to approximate the analog signal accurately, over-
sampling was applied as in [5]. In the case where multiple
candidate sequences are used, the number of sequences is
denoted as U . In the case where the proposed MCP algorithm
is combined with the SR algorithm, the number of rotations
is denoted as K and the rotation angles θ assume the values
θ = 0, π/K, . . . , (K − 2)π/K, (K − 1)π/K .
Example: Applying the proposed algorithms to the extended
constellations in Fig. 2b and 2c, the clipping probabilities
versus various power threshold values are plotted as the solid
and dash curves in Fig. 4, respectively. For the SLM algo-
rithm, a 16-QAM constellation was adopted. For the sake of
comparison, the clipping probabilities obtained using the SLM
algorithm and for the original OFDM signal are plotted in the
same figure as dot-dashed curves. First, it can be observed
from Fig. 4 that by combining the SR and the CDO algorithms
with the MCP algorithm, significant PAPR reduction can be
achieved over that obtained with the SLM algorithm. For
example, for the MCP algorithm using the scheme in Fig. 2b
with K = 4 for a clipping probability of 10−3, a 0.5-dB
improvement can be achieved compared with the performance
of the SLM algorithm with U = 16. Second, it can be observed
from Fig. 5 that the performance can be further improved by
combining the proposed algorithms with the SLM algorithm.
For example, a 1.5-dB improvement can be achieved by using
the combined algorithm with U = 4, K = 2 over the SLM
algorithm with U = 16. Third, it can be observed from Figs. 4
and 5 that the performance of the algorithms using the scheme
in Fig. 2b is quite close to that of the algorithms using the
scheme in Fig. 2c. However, the CPU time required by the
former scheme is only about two thirds that required by the
latter one.

V. CONCLUSIONS

Two new algorithms for PAPR reduction based on a new
constellation extension scheme have been proposed. Simula-
tions have demonstrated that the proposed algorithms outper-
form the SLM algorithm in [4] in terms of PAPR reduction
and the algorithm in [5] in terms of computational complexity.
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Fig. 4. Performance of the proposed algorithms.
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