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Abstract— The minimization problem of an L2-sensitivity mea-
sure subject to L2-scaling constraints on the dynamic range for
multi-input/multi-output (MIMO) linear discrete-time systems
is formulated. An iterative technique is developed to solve the
constrained optimization problem directly. The proposed solution
method largely relies on the use of a Lagrange function and some
matrix-theoretic techniques. A numerical example is presented to
illustrate the utility of the proposed technique.

I. INTRODUCTION

The state-space realization of a multi-input/multi-output
(MIMO) linear discrete-time system is known as the prob-
lem of obtaining a suitable set of state-space equations that
realize a desired MIMO transfer function H(z). However,
the state-space equations corresponding to a transfer function
H(z) are not unique. Naturally, among the infinite number
of realizations of H(z), one wants to identify a state-space
realization that minimizes a suitable sensitivity measure. When
realizing a fixed-point state-space description with finite word
length (FWL) from a transfer function with infinite accuracy
coefficients, the coefficients in the state-space description must
be truncated or rounded to fit the FWL constraints. This
coefficient quantization usually alters the characteristics of
the system. For instance, a stable system may be turned to
an unstable one. This motivates the study of the coefficient
sensitivity minimization problem. In [1]-[10], two main classes
of techniques have been proposed for constructing state-space
descriptions that minimize the coefficient sensitivity: L1/L2-
sensitivity minimization [1]-[5] and L2-sensitivity minimiza-
tion [6]-[10]. It has been argued in [6]-[10] that the sensitivity
measure based on the L2 norm is more natural and reasonable
relative to that based on the L1/L2-sensitivity minimization.
Alternatively, it is well known that the use of scaling con-
straints can be beneficial for suppressing overflow oscillations
[11],[12]. The L2-sensitivity minimization problem subject to
L2-scaling constraints for state-space digital filters has been
solved iteratively by converting it into an unconstrained op-
timization problem with an appropriate linear transformation
[13]. However, to our best knowledge, there is no study on the
minimization of the L2-sensitivity subject to the L2-scaling
constraints for MIMO linear discrete-time systems.

In this paper, we investigate the problem of minimizing
an L2-sensitivity measure subject to L2-scaling constraints

for MIMO linear discrete-time systems. An expression for
evaluating the L2-sensitivity is explored, and the L2-sensitivity
minimization problem subject to the L2-scaling constraints
is formulated. Next, an iterative procedure is developed for
minimizing the L2-sensitivity measure subject to L2-scaling
constraints. This is largely based on the use of a Lagrange
function and some matrix-theoretic techniques. Computer
simulation results demonstrate the validity of the proposed
technique.

II. L2-SENSITIVITY ANALYSIS

Consider a stable, controllable and observable MIMO linear
discrete-time system (A, B, C, D)n described by

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(1)

where x(k) is an n × 1 state-variable vector, u(k) is a q × 1
input vector, y(k) is a p × 1 output vector, and A, B, C and
D are real constant matrices of appropriate dimensions. The
transfer function of the linear system in (1) is given by

H(z) = C(zIn − A)−1B + D (2)

whose (i, j)th element is described by

Hij(z) = ci(zIn − A)−1bj + dij (3)

where
B =

[
b1 b2 · · · bq

]

C =




c1

c2

...
cp


 , D =




d11 d12 · · · d1q

d21 d22 · · · d2q

...
...

. . .
...

dp1 dp2 · · · dpq


 .

The L2-sensitivity of the linear system in (1) is defined as
follows.

Definition 1 : Let X be an m×n real matrix and let f(X)
be a scalar complex function of X , differentiable with respect
to all the entries of X . The sensitivity function of f with
respect to X is then defined as

SX =
∂f

∂X
, (SX )ij =

∂f

∂xij
(4)

where xij denotes the (i, j)th entry of matrix X .



Definition 2 : Let X(z) be an m×n complex matrix-valued
function of a complex variable z and let xpq(z) be the (p, q)th
entry of X(z). The L2-norm of X(z) is then defined as

‖X(z)‖2 =

[
1
2π

∫ 2π

0

m∑
p=1

n∑
q=1

∣∣xpq(ejω)
∣∣2 dω

] 1
2

=

(
tr

[
1

2πj

∮
|z|=1

X(z)X∗(z)
dz

z

]) 1
2

. (5)

From (3) and Definitions 1 and 2, the overall L2-sensitivity
measure for the linear system in (1) is defined by

S =
p∑

i=1

q∑
j=1

∥∥∥∥∂Hij(z)
∂A

∥∥∥∥
2

2

+
p∑

i=1

q∑
j=1

∥∥∥∥∂Hij(z)
∂bj

∥∥∥∥
2

2

+
p∑

i=1

q∑
j=1

∥∥∥∥∂Hij(z)
∂cT

i

∥∥∥∥
2

2

=
p∑

i=1

q∑
j=1

∥∥[f j(z)gi(z)]T
∥∥2

2
+ q

p∑
i=1

∥∥g T
i (z)

∥∥2

2

+ p

q∑
j=1

∥∥f j(z)
∥∥2

2
(6)

where f j(z) = (zIn −A)−1bj and gi(z) = ci(zIn −A)−1.
Since the term D in (2) and the sensitivities with respect to its
elements are independent of the state-space coordinate, they
are neglected in (6).

Using simple algebraic manipulations, the L2-sensitivity
measure in (6) can be expressed as

S =
p∑

i=1

q∑
j=1

tr[M ij(In)] + q tr[W o] + p tr[Kc] (7)

with

Kc =
1

2πj

∮
|z|=1

F (z)F T (z−1)
dz

z

W o =
1

2πj

∮
|z|=1

GT (z)G(z −1)
dz

z

M ij(In) =
1

2πj

∮
|z|=1

[f j(z)gi(z)]T f j(z
−1)gi(z

−1)
dz

z

where F (z) = (zIn − A)−1B and G(z) = C(zIn − A)−1.
The matrices Kc and W o in (7) are called the controllability
and observability Gramians, respectively, and can be obtained
by solving the following Lyapunov equations [14]:

Kc = AKcA
T + BBT

W o = AT W oA + CT C.
(8)

If a coordinate transformation defined by

x(k) = T −1x(k) (9)

is applied to the linear system in (1), then the new realization
(A, B, C, D)n can be characterized by

A = T −1AT , B = T −1B, C = CT

W o = T T W oT , Kc = T −1KcT
−T

(10)

and
f j(z) = (zIn − A)−1bj = T−1f j(z)

gi(z) = ci(zIn − A)−1 = gi(z)T
(11)

where
B =

[
b1 b2 · · · bq

]
C =

[
cT
1 cT

2 · · · cT
p

]T
.

Moreover, M ij(In) is transformed to M ij(In) as follows:

M ij(In) =
1

2πj

∮
|z|=1

[f j(z)gi(z)]T f j(z
−1)gi(z

−1)
dz

z

= T T M ij(P )T (12)

with P = T T T where

M ij(P ) =
1

2πj

∮
|z|=1

[f j(z)gi(z)]TP−1f j(z
−1)gi(z

−1)
dz

z
.

Noting that

f j(z)gi(z)

= T −1f j(z)gi(z)T

=
[
T −1 0

] [ zIn − A −bjci

0 zIn − A

]−1 [
0
T

] (13)

and denoting the observability Gramian of a composite system
in (13) by Y ij(P ), it can be shown that for an arbitrary P ,
matrix M ij(P ) can be obtained by solving the Lyapunov
equation

Y ij(P ) =
[

A bjci

0 A

]T

Y ij(P )
[

A bjci

0 A

]

+
[

P−1 0
0 0

] (14)

and then taking the lower-right n × n block of Y ij(P ) as
M ij(P ), i.e.,

M ij(P ) =
[

0 In

]
Y ij(P )

[
0
In

]
. (15)

Thus, the L2-sensitivity measure in (7) is changed to

S(P ) =
p∑

i=1

q∑
j=1

tr[M ij(P )P ] + q tr[W oP ]

+p tr[KcP
−1].

(16)

From (2) and (10), it is clear that the transfer function H(z)
is invariant under the coordinate transformation in (9).

Moreover, if the L2-norm dynamic-range scaling constraints
are imposed on the new state-variable vector x(k), then it is
required that for i = 1, 2, · · · , n

(Kc)ii = (T −1KcT
−T )ii = 1. (17)



The problem of minimizing an L2-sensitivity measure sub-
ject to L2-scaling constraints is now formulated as follows:
Given A, B and C, obtain an n × n nonsingular matrix T
which minimizes (16) subject to the scaling constraints in (17).

III. L2-SENSITIVITY MINIMIZATION

The problem of minimizing S(P ) in (16) subject to the
constraints in (17) is a constrained nonlinear optimization
problem where the variable is matrix P . If we sum up the
n constraints in (17), then we have

tr[T−1KcT
−T ] = tr[KcP

−1] = n. (18)

Consequently, the problem of minimizing (16) subject to the
constraints in (17) can be relaxed into the following problem:

minimize S(P ) in (16)

subject to tr[KcP
−1] = n.

(19)

We now address problem (19) as the first step of our
solution strategy. In order to solve (19), we define the Lagrange
function of the problem as

J(P , λ) =
p∑

i=1

q∑
j=1

tr[M ij(P )P ] + q tr[W oP ]

+ p tr[KcP
−1] + λ(tr[KcP

−1] − n)

(20)

where λ is a Lagrange multiplier. It is well known that the
solution of problem (19) must satisfy the Karush-Kuhn-Tucker
(KKT) conditions ∂J(P , λ)/∂P = 0 and ∂J(P , λ)/∂λ = 0
where the gradients are found to be

∂J(P , λ)
∂P

=
p∑

i=1

q∑
j=1

M ij(P ) + q W o

−P −1
p∑

i=1

q∑
j=1

N ij(P )P −1

− (λ + p)P −1KcP
−1

∂J(P , λ)
∂λ

= tr[KcP
−1] − n

(21)

where N ij(P ) is obtained by solving the Lyapunov equation

Zij(P ) =
[

A bjci

0 A

]
Zij(P )

[
A bjci

0 A

]T

+
[

0 0
P 0

]

and then taking the upper-left n × n block of Zij(P ), i.e.,

N ij(P ) =
[

In 0
]
Zij(P )

[
In

0

]
.

Hence the KKT conditions in (21) become

P F (P )P = G(P , λ), tr[KcP
−1] = n (22)

where

F (P ) =
p∑

i=1

q∑
j=1

M ij(P ) + q W o

G(P , λ) =
p∑

i=1

q∑
j=1

N ij(P ) + (λ + p)Kc.

The first equation in (22) is highly nonlinear with respect to
P . An effective approach to solving the first equation in (22)
is to relax it into the following recursive second-order matrix
equation:

P k+1F (P k)P k+1 = G(P k, λk) (23)

where P k is assumed to be known from the previous recursion
and the solution P k+1 is given by [10]

P k+1 =F (P k)−
1
2 [F (P k)

1
2 G(P k, λk)F (P k)

1
2 ]

1
2 F (P k)−

1
2 .

(24)

To derive a recursive formula for the Lagrange multiplier λ,
we use (22) to write

tr[P F (P )] =
p∑

i=1

q∑
j=1

tr[N ij(P )P−1] + n(λ + p) (25)

which naturally suggests the following recursion for λ:

λk+1 =

tr[P kF (P k)] −
p∑

i=1

q∑
j=1

tr[N ij(P k)P−1
k ]

n
− p.

(26)

The initial estimates are given by P 0 = In and any value of
λ0 > 0. This iteration process continues until (22) is satisfied
within a prescribed numerical tolerance.

As the second step of the solution strategy, we now turn
our attention to the construction of the optimal coordinate
transformation matrix T that solves the problem of minimizing
(16) subject to the constraints in (17). Since P = TT T , the
optimal T assumes the form

T = P
1
2 U (27)

where P 1/2 is the square root of the matrix P obtained above,
and U is an n × n orthogonal matrix to be determined as
follows. From (10) and (27) it follows that

Kc = T −1KcT
−T = U T P− 1

2 KcP
− 1

2 U . (28)

In order to find an n × n orthogonal matrix U such that the
matrix Kc in (28) satisfies the scaling constraints in (17),
we perform the eigenvalue-eigenvector decomposition for the
positive definite matrix P−1/2KcP

−1/2 as

P− 1
2 KcP

− 1
2 = RΘRT (29)

where Θ = diag{θ1, θ2, · · · , θn} with θi > 0 and R is an
orthogonal matrix. Next, an orthogonal matrix S such that



SΘST =




1 ∗ · · · ∗
∗ 1

. . .
...

...
. . . . . . ∗

∗ · · · ∗ 1


 (30)

can be obtained by numerical manipulations [12, p.278].
Using (28), (29) and (30), it can be readily verified that the
orthogonal matrix U = RST leads to a Kc in (28) whose
diagonal elements are equal to unity, hence the constraints in
(17) are now satisfied. This matrix T together with (27) gives
the solution of the problem of minimizing (16) subject to the
constraints in (17) as

T = P
1
2 RST . (31)

IV. NUMERICAL EXAMPLE

Consider a two-input/three-output linear discrete-time system
(Ao, Bo, Co, D)n specified by

Ao =




0 0 0.072 0 1.50
1 0 0.300 0 0.20
0 1 −0.100 0 0.90
0 0 0 0 0.05
0 0 0 1 0.40


 , Bo =




1 0
0 0
0 0
0 1
0 0




Co =


 1.1 2.7 0.9 0.4 1.5

2.1 3.1 0.3 0.2 0.1
5.4 1.6 −1.7 −6.6 3.0


 , D=


 1.0 0.8

0.3 0.6
0.5 0.4


 .

After carrying out the L2-scaling for the above system with a
diagonal coordinate transformation matrix, the L2-sensitivity
of the scaled system was computed as S = 3.130822 × 104.
When applying the iterative algorithm in (24) and (26) to the
scaled system, the profiles of the L2-sensitivity, parameter λ,
as well as tr[KcP

−1] during the first 200 iterations of the
algorithm are shown in Figs. 1 and 2, respectively, where
S(P ) = 2.065454× 104 at k = 200.

V. CONCLUSION

The minimization problem of an L2-sensitivity measure sub-
ject to L2-scaling constraints has been investigated for MIMO
linear discrete-time systems. An efficient iterative technique
has been developed by using a Lagrange function and some
matrix-theoretic techniques. This makes it possible to solve
the constraint optimization problem directly. Our computer
simulation results have demonstrated the effectiveness of the
proposed technique.
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