Realization of MIMO Linear Discrete-Time Systems
with Minimum L,-Sensitivity and No Overflow Oscillations
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Abstract— The minimization problem of an L,-sensitivity mea-
sure subject to L2-scaling constraints on the dynamic range for
multi-input/multi-output (MIMO) linear discrete-time systems
is formulated. An iterative technique is developed to solve the
constrained optimization problem directly. The proposed solution
method largely relies on the use of a Lagrange function and some
matrix-theoretic techniques. A numerical example is presented to
illustrate the utility of the proposed technique.

I. INTRODUCTION

The state-space realization of a multi-input/multi-output
(MIMO) linear discrete-time system is known as the prob-
lem of obtaining a suitable set of state-space equations that
realize a desired MIMO transfer function H(z). However,
the state-space equations corresponding to a transfer function
H (z) are not unique. Naturally, among the infinite number
of realizations of H(z), one wants to identify a state-space
realization that minimizes a suitable sensitivity measure. When
realizing a fixed-point state-space description with finite word
length (FWL) from a transfer function with infinite accuracy
coefficients, the coefficients in the state-space description must
be truncated or rounded to fit the FWL constraints. This
coefficient quantization usually alters the characteristics of
the system. For instance, a stable system may be turned to
an unstable one. This motivates the study of the coefficient
sensitivity minimization problem. In [1]-[10], two main classes
of techniques have been proposed for constructing state-space
descriptions that minimize the coefficient sensitivity: L1 /Lo-
sensitivity minimization [1]-[5] and Lo-sensitivity minimiza-
tion [6]-[10]. It has been argued in [6]-[10] that the sensitivity
measure based on the Ly norm is more natural and reasonable
relative to that based on the L;/Lo-sensitivity minimization.
Alternatively, it is well known that the use of scaling con-
straints can be beneficial for suppressing overflow oscillations
[11],[12]. The Lo-sensitivity minimization problem subject to
Lo-scaling constraints for state-space digital filters has been
solved iteratively by converting it into an unconstrained op-
timization problem with an appropriate linear transformation
[13]. However, to our best knowledge, there is no study on the
minimization of the Ly-sensitivity subject to the Lo-scaling
constraints for MIMO linear discrete-time systems.

In this paper, we investigate the problem of minimizing
an Lo-sensitivity measure subject to Lo-scaling constraints
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for MIMO linear discrete-time systems. An expression for
evaluating the Lo-sensitivity is explored, and the Lo-sensitivity
minimization problem subject to the Lo-scaling constraints
is formulated. Next, an iterative procedure is developed for
minimizing the Ly-sensitivity measure subject to Lo-scaling
constraints. This is largely based on the use of a Lagrange
function and some matrix-theoretic techniques. Computer
simulation results demonstrate the validity of the proposed
technique.

II. L,-SENSITIVITY ANALYSIS

Consider a stable, controllable and observable MIMO linear
discrete-time system (A, B, C, D),, described by

z(k+1) = Azx(k) + Bu(k)
y(k) = Cx(k) + Du(k)

where x(k) is an n x 1 state-variable vector, u(k) is a ¢ X 1
input vector, y(k) is a p x 1 output vector, and A, B, C and
D are real constant matrices of appropriate dimensions. The
transfer function of the linear system in (1) is given by
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H(z)=C(zI,-A)™'B+D )
whose (4, j)th element is described by
Hij(2) = ei(zI, — A)"'b; + dy; A3)
where
B = [ b1 b b, }
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The Lo-sensitivity of the linear system in (1) is defined as
follows.

Definition 1: Let X be an m x n real matrix and let f(X)
be a scalar complex function of X, differentiable with respect
to all the entries of X. The sensitivity function of f with
respect to X is then defined as
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where x;; denotes the (7, j)th entry of matrix X.



Definition 2 : Let X (z) be an m x n complex matrix-valued
function of a complex variable z and let x,4(z) be the (p, ¢)th
entry of X (z). The Lo-norm of X (z) is then defined as
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From (3) and Definitions 1 and 2, the overall Lo-sensitivity
measure for the linear system in (1) is defined by
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where f;(z) = (21, — A)"'b; and g,(2) = ¢; (21, — A)~".
Since the term D in (2) and the sensitivities with respect to its
elements are independent of the state-space coordinate, they
are neglected in (6).

Using simple algebraic manipulations, the Lo-sensitivity
measure in (6) can be expressed as

S = ZZ“ )+ au[Wo +pulK]  (7)
with o
K, - % |Z|1F(z)FT(zl)%
W, = % |Z|1GT(z)G(zl)%
My(L) = 5= 1100071, e ) S
where F(z) = (2, — A)"'B and G(z) = C(zI, — A)~".

The matrices K. and W, in (7) are called the controllability
and observability Gramians, respectively, and can be obtained
by solving the following Lyapunov equations [14]:

K.= AK_A" + BBT

@)

w,=A"W,A+C"C.

If a coordinate transformation defined by
z(k) =T 'x(k) )

is

S 4 £ _d to the linear system in (1), then the new realization
(A,B,C,

D),, can be characterized by

A=T'AT, B=T'B, C=CT
— _ (10)
W,=T"w,T, K.=T 'K.T T
and _ — o
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Moreover, M ;;(I,,) is transformed to M ;(I,) as follows:

My (1) = 55§ FEm e FEaE T
=T"M;;(P)T (12)
with P = TT” where
My(P)= 5= § 166190 P e )T
Noting that
F,(2)8,2)
= Tﬁlfj(z)gi(z)T (13)
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and denoting the observability Gramian of a composite system
in (13) by Y ;;(P), it can be shown that for an arbitrary P,
matrix M ;;(P) can be obtained by solving the Lyapunov
equation

A b " A b
vor =g 0| vam | o o
(14)
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and then taking the lower-right n x n block of Y;;(P) as
M'L'j (P), i.e.,

0
M(P)=[0 I, |Y;(P) [ I } : (15)
n
Thus, the Lo-sensitivity measure in (7) is changed to
P4
P)=>) "> ulM + qt[W, P]
i=1 j=1 (16)
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From (2) and (10), it is clear that the transfer function H (z)
is invariant under the coordinate transformation in (9).
Moreover, if the Lo-norm dynamic-range scaling constraints
are imposed on the new state-variable vector E(k), then it is
required that for ¢ = 1,2,--- |n
(Kc)ii = (T 71KCT 7T)ii

=1. (17)



The problem of minimizing an Ls-sensitivity measure sub-
ject to Lo-scaling constraints is now formulated as follows:
Given A, B and C, obtain an n x n nonsingular matrix T
which minimizes (16) subject to the scaling constraints in (17).

III. Lo-SENSITIVITY MINIMIZATION

The problem of minimizing S(P) in (16) subject to the
constraints in (17) is a constrained nonlinear optimization
problem where the variable is matrix P. If we sum up the
n constraints in (17), then we have

u[T'K.T ' =u[K.P'|=n. (18)

Consequently, the problem of minimizing (16) subject to the

constraints in (17) can be relaxed into the following problem:
minimize S(P) in (16)

. : (19)
subject to tr[ K. P~ "] =

We now address problem (19) as the first step of our
solution strategy. In order to solve (19), we define the Lagrange
function of the problem as

J(P.X) =Y u[M;;(P)P]
i=1 j=1

N+ \Nu[K.P 7' —n)

+ qtr[W,P]
(20)
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where X is a Lagrange multiplier. It is well known that the
solution of problem (19) must satisfy the Karush-Kuhn-Tucker

(KKT) conditions J(P,\)/OP = 0 and 0J(P,\)/OX =0
where the gradients are found to be
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where IN;;(P) is obtained by solving the Lyapunov equation
T
A bjc A bjc
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and then taking the upper-left n x n block of Z;;(P), i.e.,

Ni(P)=[ 1. 0]Z;(P) [ IO” } :

Hence the KKT conditions in (21) become

PF(P)P=G(P,)), u[K.P '1=n (22

where

F(P) =33 My(P)+qW,

G(P,)\) = + (A +p)K..

The first equation in (22) is highly nonlinear with respect to
P. An effective approach to solving the first equation in (22)
is to relax it into the following recursive second-order matrix
equation:

P, F(Py)Pyy =

G(Py, k) (23)

where Py, is assumed to be known from the previous recursion
and the solution Py is given by [10]

Pii1=F(Py) 2 [F(Py):G(P, M) F(Py)2]2 F(Py,) 2.
24)

To derive a recursive formula for the Lagrange multiplier A,
we use (22) to write

P g
u[PF(P)] =YY u[N;(P)P'+n(A+p) (25)
i=1 j=1
which naturally suggests the following recursion for A:
P q
[Pk Pk Z Z tl‘ ij Pk ]
Akt1 = = - p.
n
(26)

The initial estimates are given by Py = I,, and any value of
Ao > 0. This iteration process continues until (22) is satisfied
within a prescribed numerical tolerance.

As the second step of the solution strategy, we now turn
our attention to the construction of the optimal coordinate
transformation matrix T that solves the problem of minimizing
(16) subject to the constraints in (17). Since P = TTT, the
optimal T" assumes the form

T =P:U 27)
where P/? is the square root of the matrix P obtained above,
and U is an n x n orthogonal matrix to be determined as
follows. From (10) and (27) it follows that

K.=T 'K.T T=UTP :K.P 2U. (28)

In order to find an n x n orthogonal matrix U such that the
matrix K. in (28) satisfies the scaling constraints in (17),
we perform the eigenvalue-eigenvector decomposition for the
positive definite matrix P YK P2

P :K._P %= ROR’ (29)

where ©® = diag{61,02,---,0,} with 6; > 0 and R is an
orthogonal matrix. Next, an orthogonal matrix .S such that



1 % *
T * 1
SOS" = (30)
*
SRR * 1

can be obtained by numerical manipulations [12, p.278].
Using (28), (29) and (30), it can be readily verified that the
orthogonal matrix U = RS7T leads to a K. in (28) whose
diagonal elements are equal to unity, hence the constraints in
(17) are now satisfied. This matrix T together with (27) gives
the solution of the problem of minimizing (16) subject to the
constraints in (17) as

T — Pz RST. 31
IV. NUMERICAL EXAMPLE

Consider a two-input/three-output linear discrete-time system
(A,, B,,C,, D), specified by

0 0 0072 0 150 10

1 0 0300 0 0.20 0 0
A, =0 1 —-0100 0 090 |, B,=|0 0

00 0 0 005 0 1

0 0 0 1 0.40 0 0 |

1.1 27 09 04 1.5 1.0 0.8 ]
C,=1]21 31 03 02 01|, D=|03 06 ]|.

54 1.6 —1.7 —6.6 3.0 0.5 0.4 |

After carrying out the Lo-scaling for the above system with a
diagonal coordinate transformation matrix, the Lo-sensitivity
of the scaled system was computed as S = 3.130822 x 10%.
When applying the iterative algorithm in (24) and (26) to the
scaled system, the profiles of the Lo-sensitivity, parameter A,
as well as tr[K,P '] during the first 200 iterations of the
algorithm are shown in Figs. 1 and 2, respectively, where
S(P) = 2.065454 x 10* at k = 200.

V. CONCLUSION

The minimization problem of an Ls-sensitivity measure sub-
ject to Lo-scaling constraints has been investigated for MIMO
linear discrete-time systems. An efficient iterative technique
has been developed by using a Lagrange function and some
matrix-theoretic techniques. This makes it possible to solve
the constraint optimization problem directly. Our computer
simulation results have demonstrated the effectiveness of the
proposed technique.
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