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Abstract— Techniques for the separate/joint optimization of
error-feedback and realization are developed to minimize the
roundoff noise subject to L2-norm dynamic-range scaling con-
straints for a class of 2-D state-space digital filters. In the
joint optimization, the problem at hand is converted into an
unconstrained optimization problem by using linear-algebraic
techniques. The unconstrained problem obtained is then solved
by applying an efficient quasi-Newton algorithm. A numerical
example is presented to illustrate the utility of the proposed
techniques.

I. INTRODUCTION

When implementing IIR digital filters in fixed-point arithmetic,
the problem of reducing the effects of roundoff noise (RN)
at the filter output is of critical importance. Error feedback
(EF) is a useful tool for reducing finite-word-length (FWL)
effects in IIR digital filters. Many EF techniques have been
proposed for 2-D IIR digital filters [1]-[5]. Another useful
approach is to construct the 2-D state-space filter structure
for the RN gain to be minimized by applying a linear
transformation to the state-space coordinates subject to L2-
norm dynamic-range scaling constraints [6],[7]. As a natural
extension of the fore-mentioned methods, efforts have been
made to develop new methods that combine EF and coordinate
transformation for better performance in the RN reduction. In
[8], separately/jointly-optimized iterative algorithms have been
developed for 2-D filters with EF matrix.

This paper investigates the problems of separately/jointly
optimizing EF and realization subject to L2-norm dynamic-
range scaling constraints for 2-D state-space digital filters
described by the Fornasini-Marchesini second model. The
former is solved analytically and the latter iteratively by
applying an efficient quasi-Newton algorithm [9]. Computer
simulation results demonstrate the validity of the proposed
techniques.

II. ROUNDOFF NOISE ANALYSIS AND SCALING

Consider a 2-D IIR digital filter that is described by the
Fornasini-Marchesini second local state-space (LSS) model
(A1, A2, b1, b2, c, d)n:

x(i, j) = A1x(i − 1, j) + A2x(i, j − 1)

+ b1u(i − 1, j) + b2u(i, j − 1)

y(i, j) = cx(i, j) + du(i, j)

(1)

where x(i, j) is an n× 1 local state vector, u(i, j) is a scalar
input, y(i, j) is a scalar output, and A1, A2, b1, b2, c, and d
are real matrices of appropriate dimensions. The LSS model
in (1) is assumed to be stable, locally controllable and locally
observable.

Due to finite register sizes, FWL constraints are imposed
on the local state vector, input, output, and coefficients in the
realization (A1, A2, b1, b2, c, d)n. Assuming that the quanti-
zation is carried out before matrix-vector multiplication, the
actual 2-D FWL filter of (1) with EF and error feedforward
can be implemented as

x̃(i, j) = A1Q[x̃(i − 1, j)] + A2Q[x̃(i, j − 1)]

+ b1u(i − 1, j) + b2u(i, j − 1)

+ D1e(i − 1, j) + D2e(i, j − 1)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j) + he(i, j)

(2)

where D1 and D2 are n×n EF matrices, h is a 1×n error-
feedforward vector,

e(i, j) = x̃(i, j) − Q[x̃(i, j)]

and each component of matrices A1, A2, b1, b2, c and d
assumes an exact fractional Bc-bit representation. The FWL
local state vector x̃(i, j) and output ỹ(i, j) all have a B-bit
fractional representation, while the input u(i, j) is a (B−Bc)-
bit fraction. The quantizer Q[·] in (2) rounds the B-bit fraction
x̃(i, j) to (B−Bc) bits after the multiplications and additions,
where the sign bit is not counted. The quantization error e(i, j)
is modeled as a zero-mean noise process of covariance σ2In

with
σ2 =

1
12

2−2(B−Bc).

Subtracting (2) from (1) yields

∆x(i, j) = A1∆x(i − 1, j) + A2∆x(i, j − 1)

+ (A1 − D1)e(i − 1, j)

+ (A2 − D2)e(i, j − 1)

∆y(i, j) = c∆x(i, j) + (c − h)e(i, j)

(3)

where
∆x(i, j) = x(i, j) − x̃(i, j)

∆y(i, j) = y(i, j) − ỹ(i, j).
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The 2-D transfer function from the quantization error e(i, j)
to the filter output ∆y(i, j) is given by

G(z1, z2) = c
(
In − z−1

1 A1 − z−1
2 A2

)−1

· [z−1
1 (A1 − D1) + z−1

2 (A2 − D2)
]
+ c − h.

(4)
For the 2-D filter in (2), the noise gain I(D1, D2, h) =
σ2

out/σ2 can be evaluated by

I(D1, D2, h)

= tr
[

1
(2πj)2

∮
Γ1

∮
Γ2

G∗(z1, z2)G(z1, z2)
dz1 dz2

z1z2

] (5)

where σ2
out denotes noise variance at the output, and Γi =

{zi : |zi| = 1} for i = 1, 2.
Let the transition matrix A(i, j) be defined by

(
In − z−1

1 A1 − z−1
2 A2

)−1
=

∞∑
i=0

∞∑
j=0

A(i, j)z−i
1 z−j

2 (6)

where i, j ≥ 0. Then the following properties holds:

A(0, 0) = In, A(i, j) = 0 for i < 0 or j < 0

A(i, j) = A1A
(i−1, j) + A2A

(i, j−1)

= A(i−1, j)A1 + A(i, j−1)A2 for i, j > 0.

(7)

Substituting (6) into (4) yields

G(z1, z2) =
∞∑

i=0

∞∑
j=0

[
cA(i−1, j)(A1 − D1)

+cA(i, j−1)(A2 − D2)
]
z−i
1 z−j

2

+c − h.

(8)

Substituting (8) into (5), it follows that

I(D1, D2, h) = J1(D1, D2) + tr[(c − h)T (c − h)] (9)

where

J1(D1, D2)

= tr
[
[(A1 − D1)T , (A2 − D2)T ]W ′

[
A1 − D1

A2 − D2

]]

= tr
[
(A1 − D1)T W o(A1 − D1)

+ (A2 − D2)T W T (A1 − D1)

+ (A1 − D1)T W (A2 − D2)

+ (A2 − D2)T W o(A2 − D2)
]
.

Here, the 2n× 2n matrix W ′ is defined by

W ′ =
∞∑

i=0

∞∑
j=0

[
(cA(i−1, j))T

(cA(i, j−1))T

][
cA(i−1, j), cA(i, j−1)

]

=

[
W o W

W T W o

]
(10)

where matrix W o is the local observability Gramian of the
LSS model in (1). In the case when there is no EF but error
feedforward exists, it follows from (9) that

I(0,0, c) = tr
[
[AT

1 , AT
2 ]W ′

[
A1

A2

]]

= tr
[
AT

1 W oA1 + AT
2 W T A1

+ AT
1 WA2 + AT

2 W oA2

]
.

(11)

The local controllability Gramian Kc is defined by

Kc =
∞∑

k=1

k∑
i=0

f (i, k − i)fT (i, k − i) (12)

where
f(i, j) = A(i−1, j)b1 + A(i, j−1)b2.

The LSS model in (1) is said to satisfy L2-norm dynamic-
range scaling constraints provided that

(Kc)ii = 1 for i = 1, 2, · · · , n (13)

where (Kc)ii denotes the ith entry of matrix Kc.

III. SEPARATE OPTIMIZATION OF REALIZATION
AND ERROR FEEDBACK

Applying a coordinate transformation defined by

x(i, j) = T −1x(i, j) (14)

to the LSS model (A1, A2, b1, b2, c, d)n in (1), we obtain a
new realization (A1, A2, b1, b2, c, d)n characterized by

A1 = T −1A1T , A2 = T −1A2T

b1 = T −1b1, b2 = T −1b2, c = cT
(15)

where T is an n × n nonsingular matrix. The Gramians Kc,
W o and W in the new realization can then be written as

Kc = T −1KcT
−T , W o = T T W oT , W = T T WT

(16)
respectively. If the L2-norm dynamic-range scaling constraints
are imposed on the new realization, then we have

(Kc)ii = (T −1KcT
−T )ii = 1 for i = 1, 2, · · · , n. (17)

For the new realization with no EF and error feedforward,
we consider the problem of minimizing a measure

M(P , λ) = tr[V P ] + λ(tr[KcP
−1] − n) (18)

with respect to n×n nonsingular matrix P and scalar λ where
P = TT T , λ is a Lagrange multiplier, and

V =AT
1 W oA1 + AT

2 W T A1 + AT
1 WA2 + AT

2 W oA2.

We compute

∂J(P , λ)
∂P

= V − λP −1KcP
−1

∂J(P , λ)
∂λ

= tr[KcP
−1] − n.

(19)



If we let ∂J(P , λ)/∂P = 0 and ∂J(P , λ)/∂λ = 0, then

P V P = λKc, tr[KcP
−1] = n. (20)

It follows from (20) that

P =
√

λV − 1
2 [V

1
2 KcV

1
2 ]

1
2 V − 1

2

1√
λ

tr[KcV ]
1
2 =

1√
λ

(
n∑

i=1

θi

)
= n

(21)

where θ2
i for i = 1, 2, · · · , n are the eigenvalues of KcV .

Therefore, we obtain

P =
1
n

(
n∑

i=1

θi

)
V − 1

2 [V
1
2 KcV

1
2 ]

1
2 V − 1

2 . (22)

Substituting (22) into (18) yields the minimum value of
M(P , λ) as

min
P , λ

M(P , λ) =
1
n

(
n∑

i=1

θi

)2

. (23)

Note that matrix T assumes the form

T = P
1
2 U (24)

where P 1/2 is the square root of P obtained above, and U
is the n × n orthogonal matrix such that (17) is satisfied.

If the coordinate transformation in (14) is applied to the
LSS model in (1), then (9) is changed to

I(D1, D2, h, T ) = J2(D1, D2, T ) + tr[(c − h)T (c − h)]
(25)

where

J2(D1, D2, T ) = tr
[
(A1 − D1)T W o(A1 − D1)

+ (A2 − D2)T W
T
(A1 − D1)

+ (A1 − D1)T W (A2 − D2)

+ (A2 − D2)T W o(A2 − D2)
]
.

Case 1: D1 and D2 are general matrices
In this case, we select the matrices D1 and D2 as

D1 = A1, D2 = A2. (26)

Case 2: D1 and D2 are diagonal matrices
We define

D1 = diag{α1, α2, · · · , αn}
D2 = diag{β1, β2, · · · , βn}.

(27)

From ∂J2(D1, D2, T )/∂αi = 0 and ∂J2(D1, D2, T )/∂βi =
0, it is derived that for i = 1, 2, · · · , n

αi =
W o(i, i)M1(i, i) − W (i, i)M2(i, i)

W o(i, i)2 − W (i, i)2

βi =
W o(i, i)M2(i, i) − W (i, i)M1(i, i)

W o(i, i)2 − W (i, i)2

(28)

where X(i, j) denotes the ijth element of matrix X and

M 1 = W oA1 + W A2

M 2 = W oA2 + W
T
A1.

Case 3: D1 and D2 are scalar matrices
With scalars α and β, we define

D1 = αIn, D2 = βIn. (29)

From ∂J2(D1, D2, T )/∂α = 0 and ∂J2(D1, D2, T )/∂β =
0, we obtain

α =
tr[W o]tr[M 1] − tr[W ]tr[M 2]

(tr[W o])2 − (tr[W ])2

β =
tr[W o]tr[M 2] − tr[W ]tr[M 1]

(tr[W o])2 − (tr[W ])2
.

(30)

IV. JOINT OPTIMIZATION OF ERROR FEEDBACK
AND REALIZATION

Define
T̂ = T T K

− 1
2

c . (31)

Then (17) can be written as

(T̂
−T

T̂
−1

)ii = 1 for i = 1, 2, · · · , n. (32)

The constraints in (32) simply state that each column in matrix
T̂

−1
must be a unity vector. These are satisfied if T̂

−1
assumes

the form
T̂

−1
=
[

t1

||t1|| ,
t2

||t2|| , · · · ,
tn

||tn||
]

(33)

where ti’s for i = 1, 2, · · · , n are n × 1 real vectors. In such
a case, (25) can be expressed as

Î(D1, D2, h, T̂ ) = J3(D1, D2, T̂ ) + tr[(ĉ − h)T (ĉ − h)]
(34)

where

J3(D1, D2, T̂ ) = tr
[
(Â1 − D1)T Ŵ o(Â1 − D1)

+ (Â2 − D2)T Ŵ
T
(Â1 − D1)

+ (Â1 − D1)T Ŵ (Â2 − D2)

+ (Â2 − D2)T Ŵ o(Â2 − D2)
]

with

Â1 = T̂
−T

(K− 1
2

c A1K
1
2
c ) T̂

T

Â2 = T̂
−T

(K− 1
2

c A2K
1
2
c ) T̂

T
, ĉ = (cK

1
2
c )T̂

T

Ŵ o = T̂ (K
1
2
c W oK

1
2
c )T̂

T
, Ŵ = T̂ (K

1
2
c WK

1
2
c )T̂

T
.

When selecting vector h as h = ĉ, the problem of obtaining
matrices D1, D2 and T that minimize J2(D1, D2, T ) in (25)
subject to the scaling constraints in (17) can be converted into
an unconstrained optimization problem of obtaining matrices
D1, D2 and T̂ that minimize J3(D1, D2, T̂ ) in (34).

Let x be the column vector that collects the variables in
matrices D1, D2 and T̂ . Then, J3(D1, D2, T̂ ) is a function



of x, denoted by J3(x). The algorithm starts with a trivial
initial point x0 obtained from an initial assignment D1 =
D2 = T̂ = In. In the kth iteration, a quasi-Newton algorithm
updates the most recent point xk to point xk+1 as [9]

xk+1 = xk + αkdk (35)

where

dk = −Sk∇J3(xk), αk = arg min
α

J3(xk + αdk)

Sk+1 = Sk+
(

1+γT
k Skγk

γT
k
δk

)
δkδ

T

k

γT
k
δk

− δkγT
k Sk+Skγkδ

T

k

γT
k
δk

S0 = I, δk = xk+1 − xk, γk = ∇J3(xk+1)−∇J3(xk).

Here, ∇J3(x) is the gradients of J3(x) with respect to x, and
Sk is a positive-definite approximation of the inverse Hessian
matrix of J3(x). This iteration process continues until

|J3(xk+1) − J3(xk)| < ε (36)

where ε > 0 is a prescribed tolerance. If the iteration is
terminated at step k, xk is viewed as a solution point.

When D1 and D2 are general matrices, vector x consists
of matrix T̂ only. After obtaing matrix T̂ , we select matrices
D1 and D2 as

D1 = Â1, D2 = Â2. (37)

The gradient of J(x) with respect to the ijth element of T̂ is
found to be

∂J(x)
∂tij

= lim
∆→0

J(T̂ ij) − J(T̂ )
∆

(38)

where T̂ ij is the matrix obtained from T̂ with a perturbed
(i, j)th component, and is given by [10]

T̂ ij = T̂ +
∆T̂ gije

T
j T̂

1 − ∆eT
j T̂ gij

and gij is computed using

gij = ∂

{
tj

||tj ||
}

/∂tij =
1

||tj ||3 (tijtj − ||tj ||2ei).

V. A NUMERICAL EXAMPLE

Consider a stable, locally controllable, and locally observable
2-D state-space digital filter with order n = 4 specified by

A1 =




0 0 0 −0.00411
1 0 0 0.08007
0 1 0 −0.42458
0 0 1 1.04460


 , b1 =




−0.01452
0.01234
0.02054
0.04762




A2 =




−0.22608 −0.40594 −0.30955 −0.14469
1.61428 1.61040 1.02336 0.43872
0.10054 −0.60615 −0.45322 −0.31019

−0.00723 0.24580 0.38668 0.56289




b2 =
[

0.01189 0.02351 −0.00637 0.02094
]T

c =
[

0 0 0 1
]
, d = 0.00943.

After carrying out the L2-scaling for the above LSS model
with a diagonal coordinate transformation matrix, the noise
gain of the scaled LSS model with error feedforward was
computed as I(0,0, c) = 76.641884. Next, the matrix P
was derived from (22) and substituting it into (18) produced
M(P , λ) = 3.230958. The other results obtained by applying
the proposed technique are summarized in Tables I and II.

VI. CONCLUSION

The separate/joint optimization of EF and realization has been
investigated to minimize RN subject to L2-scaling constraints
for a class of 2-D state-space digital filters. It has been shown
that the problem in the joint optimization can be converted
into an unconstrained optimization problem by using linear
algebraic techniques. An efficient quasi-Newton algorithm has
then been employed to solve the unconstrained optimization
problem iteratively. Our computer simulation results have
demonstrated the effectiveness of the proposed techniques.
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TABLE I
ROUNDOFF NOISE GAIN IN SEPARATE OPTIMIZATION

Error Feedback Matrices General Diagonal Scalar
Infinite Precision 0 0.454620 0.469953

3-Bit Quantization 0.049936 0.461004 0.481157
Integer Quantization 3.100355 2.217879 1.586120

TABLE II
ROUNDOFF NOISE GAIN IN JOINT OPTIMIZATION

Error Feedback Matrices General Diagonal Scalar
Infinite Precision 0 0.186190 0.233562

3-Bit Quantization 0.049936 0.216724 0.243361
Integer Quantization 3.100355 1.736732 1.808645


