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Abstract— In a fast fading channel, Doppler spread caused
by user mobility destroys the orthogonality among orthogonal
frequency division multiplexing (OFDM) subcarriers, resulting
in intercarrier interference (ICI). In this paper, the OFDM
ICI reduction problem is first formulated as a combinatorial
optimization problem with integer constraints. Two relaxation
methods are then utilized to relax the maximum likelihood (ML)
detection problem into convex quadratic programming (QP)
problems. To further reduce computational complexity, the QP
problems are solved by limiting the search to a 2-dimensional
subspace. A low-bit descent search (LBDS) can also be employed
to improve the system performance. Performance results are
given which demonstrate that the integer QP relaxation based
algorithms provide excellent performance with reasonable com-
putational complexity.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) mod-
ulation has been widely used in communication systems to
meet the demand for ever increasing data rates with low
receiver complexity. It has the ability to provide high data
rate transmission over frequency selective channels. Several
standards have adopted OFDM as the modulation scheme,
including digital audio broadcasting (DAB), digital video
broadcasting (DVB), IEEE 802.11 and 802.16 [1].

In an OFDM system, the data stream is divided into
N parallel lower-rate data streams and multiplexed onto a
number of subcarriers using an inverse fast Fourier transform
(IFFT). These subcarriers are overlapped orthogonally to pro-
vide bandwidth efficient transmission. However, in a rapidly
fading environment, the channel can be time-varying, even
within one symbol duration. Doppler spread caused by user
mobility then destroys the orthogonality among subcarriers,
resulting in intercarrier interference (ICI) and degraded system
performance [2] - [5].

Various algorithms have been proposed to mitigate the ICI
and improve system performance over doubly-selective chan-
nels [2]-[4]. In [2], Li and Cimini provide universal bounds on
the ICI in an OFDM system over time-varying fading channels,
which can be evaluated and compared with the exact ICI. In
[3], a decision feedback (DF) equalizer algorithm utilizing
signals from several nearby subcarriers to eliminate the ICI
for a certain subcarrier is described. Furthermore, an ICI
suppression algorithm using parallel canceling with frequency-
domain equalization techniques is presented in [4].

Based on the maximum likelihood (ML) criterion, the
OFDM ICI reduction problem can be formulated as a combi-
natorial optimization problem with integer constraints. It has

been shown that in the multiuser detection of DS-CDMA
systems [7] such a problem can be solved more efficiently
by using suboptimal detectors. In this paper, two relaxation
methods are utilized to convert the ICI reduction problem
into convex quadratic programming (QP) problems. To further
reduce the computational complexity, the QP problems can be
solved by limiting the search to the 2-dimensional subspace
spanned by its steepest-descent and Newton directions. A low-
bit descent search (LBDS) can also be employed to improve
the system performance. Performance results demonstrate that
the integer QP relaxation based algorithms provide excellent
performance with reasonable computational complexity.

II. SYSTEM MODEL

In an OFDM system, the bandwidth is split into N orthog-
onal subchannels. The lower-rate parallel data streams employ
quadrature amplitude modulation (QAM) or phase-shift keying
(PSK), and the transmitted signals are modulated onto the N
subcarriers via an IFFT

xn =
1√
N

N−1∑

k=0

Xk exp
(

j2πkn

N

)
for n = 0, . . . N − 1 (1)

where xn is the time-domain signal at the nth sampling instant,
and Xk is the frequency-domain symbol at the kth subcarrier.
Equation (1) can be written in vector form as

x = FX (2)

where x = [x0 x1 · · · xN−1]T and X = [X0 X1 · · · XN−1]T

represent the time-domain and frequency-domain OFDM sym-
bols, respectively, and F is the IFFT matrix with elements
fn,k = 1√

N
exp( j2πkn

N ). The OFDM symbol duration is
denoted by Ts, so the chip duration of each subchannel is
Tc = Ts/N .

In this paper, we adopt a doubly frequency selective fading
channel model. Thus, we have a wide sense stationary un-
correlated scattering (WSSUS) channel with impulse response
given by

h(t; τ) =
D∑

d=1

h(t; τd)δ(τ − τd) (3)

where τd is the dth path delay with τ1 < τ2 < . . . < τD.
In a rich scattering environment, the channel autocorrelation
function is separable in terms of time and delay [3].



A discrete version of the WSSUS channel in (3) can be
modeled as a tapped delay line (TDL) with random taps [9]

h(n; l) =
D∑

d=1

h(nTc; τd)sinc
(

τd

Tc
− l

)
(4)

where h(n; l) denotes the channel coefficient for the lth tap at
the nth sampling instant, n = 0, . . . , N−1, l = 0, . . . , L−1
with L = bτD/Tcc+1, and the delay between two taps is Tc.

We assume that a cyclic prefix (CP) is inserted at the
beginning of each OFDM symbol before transmission, and the
length Np of the cyclic prefix is greater than or equal to that
of the channel impulse response to eliminate the intersymbol
interference. Thus, the discrete signal at the receiver can be
expressed as

yn =
L−1∑

l=0

h(n, l)x(n− l)+wn for n = −Np, . . . N −1 (5)

where wn is additive white Gaussian noise (AWGN) with zero
mean and variance σ2. In vector form, (5) can be written as

y = Hx + w (6)

where y and w denote the time-domain received signal and
AWGN noise, respectively, and H is the channel matrix. After
removing the CP and performing a fast Fourier transform
(FFT), we obtain

Y = AX + W (7)

where Y = [Y0 · · · YN−1]T is the frequency-domain received
signal, A = FHHF, W = FHw, and H denotes Hermitian
transpose.

If h(t; τd) in (3) remains constant within one OFDM symbol
duration, then no ICI will occur. Conversely, if the channel
varies within one OFDM symbol, the orthogonality of the
subcarriers does not hold, and the received signal contains
both the transmitted signal and ICI from other subcarriers [5].

III. PROBLEM FORMULATION AND RELAXATION

Based on the ML detection criterion, the ICI reduction prob-
lem in OFDM systems can be formulated as the optimization
problem

minimize ‖Y −AX‖22 (8a)
subject to: Xk ∈M, for k = 0, 1, . . . , N − 1 (8b)

where M contains the constellation points according to the
modulation being used.

The variables in (8) are complex-valued. If we define
Y = Yr + jYi, A = Ar + jAi, and X = Xr + jXi, then (8)
can be reformulated into an optimization problem with real-
valued variables as

minimize ‖Ŷ − Âz‖22 (9a)

subject to: zk ∈ M̂, for k = 0, 1, . . . , N − 1 (9b)

where Ŷ =
[
Yr

Yi

]
, z =

[
Xr

Xi

]
, and Â =

[
Ar −Ai

Ai Ar

]
.

In what follows, the OFDM system is assumed to employ 4-
QAM modulation, which corresponds to M̂ = {±1}. Clearly,

(9) is a quadratic optimization problem with discrete variables
and can be expressed as

minimize zT Qz + qT z (10a)
subject to: zk = {−1, 1}, for k = 0, . . . , 2N − 1 (10b)

where Q = ÂT Â, and q = −2ÂT Ŷ.

A. Convex relaxation

Since the vector z in the ML problem (10) is a discrete set,
we have a combinatorial problem with exponential computa-
tional complexity that becomes prohibitive even for a moderate
number of variables. It has been shown [7] that this type of ML
detection problem can be solved more efficiently by expanding
the discrete feasible set into a continuous and convex feasible
region. In this paper, two convex relaxation methods are
utilized that allow us to consider convex QP problems that
admit a fast solution which yields good performance. The
first QP problem minimizes a convex quadratic objective
function subject to the solution being contained within an
n-dimensional box centered at the origin. The second QP
problem minimizes the same objective function subject to the
solution being contained within an n-dimensional ball.
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Fig. 1. The feasible set defined by (10b) (points on the circle), the feasible
region defined by (11b) (I), and the feasible region defined by (12b) (I+II)

1) Bounded constraint relaxation: The discrete constraints
in (10b) imply that −1 ≤ zk ≤ 1, for k = 0, . . . , 2N − 1.
Thus the ICI reduction problem (10) can be relaxed into a
bounded constraint optimization problem

minimize zT Qz + qT z (11a)
subject to: − 1 ≤ zk ≤ 1, for k = 0, . . . , 2N − 1 (11b)

The feasible region in (11b) is a n-dimensional hypercube
centered at the origin with linear constraints. Thus the problem
(11) is a convex QP problem which can be solved efficiently
to provide suboptimal performance to that of (10).

2) Quadratic convex relaxation: The constraints in (10b)
imply that zT z = 2N , which is associated with the feasible
region of a 2N -dimensional ball centered at the origin with
radius

√
2N . If we expand such a feasible region within the

ball, the ICI reduction problem (10) is relaxed into the problem

minimize zT Qz + qT z (12a)

subject to: zT z ≤ 2N (12b)



The problem (12) is to minimize a quadratic objective function
over a convex feasible region, thus, it is a convex QP minimiza-
tion problem. A unique global solution can be obtained using
efficient interior-point QP solvers with reduced computational
complexity.

The feasible regions of the problems (10), (11) and (12) are
depicted in Fig. 1. Efficient optimization algorithms are avail-
able in the literature [8] to solve the minimization problems
(11) and (12). Once the solution z∗ of (11) or (12) is obtained,
the solution of (10) can be approximated as sign(z∗).

B. 2-dimensional search method

To further reduce computational complexity, the solutions of
(11) or (12) can be obtained by limiting the search to the 2-
dimensional subspace spanned by its steepest-descent direction
(i.e., negative gradient of the objective function) and Newton
direction. In doing so, we set

z = η1v1 + η2v2 (13)

where v1 = q, v2 = Q−1q, and η1, η2 are two scalar
variables. Then the problem (11) is converted to the 2-
dimensional problem

minimize ηT Sη + pT η (14a)
subject to : − 1 ≤ Vkη ≤ 1 (14b)

where η = [η1 η2]T , S = VT QV, p = VT q, Vk is the kth
row of the matrix V, and V = [v1 v2].

Similarly, the problem (12) can be reformulated to the 2-
dimensional problem

minimize ηT Sη + pT η (15a)

subject to : ηT Rη ≤ 2N (15b)

where R = VT V. If we denote the solution of the problem
(14) or (15) as η∗, the solution z∗ of problem (11) or (12)
can be calculated using (13) accordingly, and sign(z∗) is then
taken as the solution of (10).

C. Performance Enhancement by Low-Bit Descent Search

In LBDS, a given binary sequence is associated with an
objective function to be minimized. The search process eval-
uates, compares, and determines the optimal sign switches
of a relatively small number of sequence components to
yield maximum reduction in the objective function in (10).
LBDS has been applied recently to various problems [10].
As will be demonstrated, the performance of the proposed
algorithm can be considerably enhanced using 1-bit, 2-bit, or
a combined 1-bit-and-2-bit LBDS, at an insignificant increase
in computational complexity.

From [10], the one-bit descent search can be carried out
by evaluating z ¯ ξ (here ¯ denotes component-wise multi-
plication), where ξ = Q̃z + q/2, and Q̃ is generated from
Q with its diagonal components set to zero. Index k∗ is
then identified as where the corresponding component ξk∗ has
maximum value, and the sign of zk∗ is switched to obtain
an improved solution. Similarly, a 2-bit LBDS is performed
by computing G = ξeT + eT ξ − 2Q ¯ (zzT ), where e is

the all-one vector. The index (k∗, m∗) is identified as where
the component Pk∗,m∗ reaches its maximum value, and an
improved solution is then obtained by switching the signs of
the k∗th and m∗th components of z∗.

IV. PERFORMANCE EVALUATION

The proposed algorithms were applied to an OFDM system
with N = 64 subcarriers. The length of the cyclic prefix was
chosen to be Np = N/8. We assume 4-QAM modulation
with a system bandwidth of 200kHz. A two-tap WSSUS
fading channel was employed, where each channel tap was
an independent complex Gaussian random process with Jakes’
Doppler spectrum. The normalized Doppler frequency of the
channel is denoted as fdTs. Simulations were carried out
to evaluate the performance of the integer QP relaxation
based ICI reduction algorithms in terms of bit error rate
(BER) and computational complexity. The BER performance
of the conventional one-tap equalizer and DF MMSE [3] are
provided for comparison purposes. Perfect channel informa-
tion was assumed, and combined 1-bit-and-2-bit LBDS was
adopted to improve system performance. The algorithms were
implemented using the MATLAB SeDuMi toolbox [11].

The BER performance of an OFDM system with fdTs = 0.1
and the bounded constraint relaxation method is shown in Fig.
2. The performance with a one-tap equalizer and a 25-tap DF
MMSE [3] are also given for comparison. It can be observed
that the one-tap equalizer provides unsatisfactory performance
in time-varying channels, but the bounded constraint relaxation
methods considerably mitigate the intercarrier interference.
The performance can be further improved by employing the
LBDS method. Both the n-dimensional and 2-dimensional
algorithms offer superior performance to that with the DF
MMSE, but with higher computational complexity. Because
the solution of (14) is an approximation to that of (11),
the n-dimensional algorithm outperforms the 2-dimensional
algorithm, however, it is more complex. For example, at an
Eb/N0 of 25dB, the DF MMSE has a BER of 9×10−5, while
the 2-dimensional bounded constraint relaxation algorithm
with LBDS has a BER of 5 × 10−5 (with a 20% increase
in computational complexity). The n-dimensional algorithm
has a BER of 2.5× 10−5 with LBDS (with a 40% increase in
computational complexity).

The BER performance of the quadratic convex relaxation
algorithms is given in Fig. 3. This shows that the quadratic
convex relaxation algorithms exhibit behavior similar to that
of the bounded constraint relaxation algorithms, and offer
better performance than the one-tap equalizer or DF MMSE.
However, the performance is a little worse with the quadratic
convex relaxation algorithms. This is because the optimization
problem in (12) can be obtained by relaxing (11), so one
would expect the bounded constraint relaxation algorithm to
offer superior performance with the price of slightly higher
computational complexity. For example, with Eb/N0 = 25dB,
the 2-dimensional quadratic convex relaxation algorithm with
LBDS has a BER of 7 × 10−5 (with a 18% increase in
computational complexity than that with DF MMSE), while
the n-dimensional algorithm with LBDS offers a BER of
4.5×10−5 (with a 35% increase in computational complexity).



Simulations were also carried out to determine the impact
of normalized doppler spread fdTs on performance. The BER
of the 2-dimensional bounded constraint relaxation algorithm
for fdTs = 0.05, 0.1, 0.3 is plotted in Fig. 4. It can be
observed that the performance of the 2-dimensional bounded
constraint relaxation algorithm degrades as the Doppler spread
increases, while time diversity can be achieved after combining
with the LBDS method. For example, an Eb/N0 of 25dB is
required to achieve a BER of 10−4 for fdTs = 0.05 with
LBDS, while with fdTs = 0.1, an Eb/N0 of 24dB is required
to achieve the same BER. The required Eb/N0 is lowered
to 22.5dB to obtain the same BER with fdTs = 0.3. This
improvement with increasing fdTs can be attributed to the
increased temporal diversity introduced by the larger Doppler
spread [6]. Similar diversity gain can be realized by employing
the quadratic convex relaxation algorithm as well.

V. CONCLUSIONS

In this paper, the OFDM ICI reduction problem was first
formulated as a combinatorial optimization problem with
integer constraints. Two relaxation methods were then utilized
to convert the discrete ML detection problem into convex QP
problems. To further reduce the computational complexity,
the QP problems were solved by limiting the search to a
2-dimensional subspace. A LBDS method was employed to
improve the system performance with slightly increased com-
putational complexity. Simulations were carried out to exam-
ine the performance of the proposed ICI reduction algorithms.
The results demonstrated that the integer QP relaxation based
algorithms provide excellent performance with reasonable
computational complexity, and that temporal diversity can be
achieved with increased Doppler spread.
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Fig. 2. BER performance of the bounded constraint relaxation method with
fdTs = 0.1.
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Fig. 3. BER performance of the quadratic constraint relaxation method with
fdTs = 0.1.
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Fig. 4. BER performance of the 2-dimensional bounded constraint relaxation
method with different doppler spreads.


