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Abstract— Polynomial programming (PP) deals with a class
of optimization problems where both the objective function and
constraint functions are multivariable polynomials. PP covers
several popular classes of convex optimization problems such
as linear, convex quadratic, semidefinite, and second-order cone
programming problems, it also includes a good many non-convex
problems that are encountered in engineering analysis and design.
This paper describes a preliminary attempt to apply a recently
developed PP algorithm to the design of FIR digital filters
with discrete coefficients. Computer simulations are presented
to demonstrate the efficiency of the PP-based algorithm and its
ability to provide globally or near-globally optimal designs.

I. INTRODUCTION

We in this paper are concerned with the design of FIR digital
filters with discrete coefficients. Filters with sum-of-power-
of-2 coefficients admit fast implementations which require
no conventional multiplications but superposition of shifted
versions of the input. On the other hand, the design of a
general optimum filter with discrete coefficients is known
to be NP-hard as it is essentially an integer programming
problem [1]. It is the importance of the design problem
and the technical challenge encountered that have attracted
researchers’ attention for more than two decades [2]–[17].

In this paper, we describe a preliminary attempt to apply a
polynomial programming (PP) algorithm to derive a solution
to the design problem in question. PP deals with a class of
constrained optimization problems where both the objective
function and constraint functions are multivariable polynomi-
als. It covers several popular classes of convex optimization
problems such as linear, convex quadratic, semidefinite, and
second-order cone programming problems, it also includes
a good many nonconvex problems that are encountered in
engineering analysis and design. A brief introduction of PP
formulation and its potential application to several filter design
problems are presented recently [17], while this paper is
focused on filters where each coefficient is a sum of signed
power of 2 (SP2) terms. The main components of the paper
include a formulation of the design problem as a quadratic
optimization with discrete constraints; a review of the PP
formulation in connection with the problem at hand; software

implementation and computer simulations to demonstrate the
efficiency of the algorithm and its ability to provide globally
or near-globally optimal designs.

II. POLYNOMIAL PROGRAMMING

A. Polynomial Optimization Problems

Polynomial programming deals with the constrained opti-
mization problem

minimize p0(x) (1a)

subject to: pk(x) ≥ 0 for k = 1, 2, . . . , K (1b)

where pk(x) for k = 0, 1, . . . , K are real-valued polynomi-
als, and x = [x1 x2 · · · xn]T is a vector of n real variables.
Each polynomial in (1) assumes the form

p(x) =
∑
d∈F

c(α)xα (2)

where α = [α1 α2 · · · αn] ∈ F ⊂ Zn
+ — the set of

vectors with nonnegative integer components, c(α) ∈ R
and xα = xα1

1 xα2
2 · · ·xαn

n . The degree (order) of p(x) is
defined to be the largest Σiαi amongst all xα appeared
in (2). Because linear programming, quadratic programming
and second-order cone programming problems only involve
polynomials in their formulations, they are subclasses of PP.
A semidefinite programming (SDP) problem involves positive
semidefiniteness of the matrix variable, since the positive
definiteness can be characterized as all principal minors of
the matrix being nonnegative, and minors of a matrix are
polynomials of its entries, SDP is also a subclass of PP. Since
a polynomial can be nonconvex and the region defined by a
set of polynomials can be nonconvex as well, PP also covers
a great many nonconvex optimization problems. In [17] it
is pointed out that several filter design problems of current
interest, including the design of stable IIR filters, frequency-
response-masking filters, and FIR and IIR filters with SP2
coefficients, are nonconvex in nature, and they fit nicely into
the PP framework.



B. Global Solution of Problem (1)

Studies on solution methods for problem (1) are relatively
recent. Shor [18] is among the first, along the way important
progress has been made by several authors [19]–[24]. In
particular, Lasserre [21] shows that when the feasible region
defined by (1b) is compact (not necessarily convex), the
global solution of (1) can be asymptotically approached by the
solutions of a sequence of SDP problems which are formulated
by relaxing problem (1). Noticeable features of this solution
methodology are: (i) In theory the global solution can only
be approached asymptotically, in practice however the exact
minimizer can often be obtained by solving a finite sequence
of SDP problems. This is especially the case for polynomial
minimization subject to discrete constraints, e.g., the quadratic
0-1 programs [22]; (ii) The size of the SDP problems involved
grows very quickly that may lead to numerical difficulties
even for PP problems of moderate scales [21], [22]. This is
obviously an issue relating to software implementation of PP-
based algorithms. We shall come back to this in Sec. IV where
simulation results are presented.

C. SDP Relaxation of Polynomial Optimization Problems: An
Example

The basic idea behind the SDP relaxation of a general
polynomial optimization problem is linearization of the poly-
nomials involved by introducing new variables and imposing
additional linear and/or SDP constraints. These techniques,
especially the later one, can be quite tricky and involved. The
example given below illustrates these steps, and we refer the
reader to references [21], [22] for the technical details.

Consider the optimization problem

minimize x1 − 2x2 (3a)

subject to: x1 ≥ 0, x2 ≥ 0 (3b)

(x1 − 1)2 + x2
2 ≤ 1 (3c)

(x1 − 1)2 + (x2 − 1)2 ≥ 1 (3d)

As can be seen from Fig.1, the feasible region defined by
(3b)–(3d) is not convex, thus (3) is a nonconvex PP problem.

By introducing new variables y20 = x2
1 and y02 = x2

2, the
constraints in (3c) and (3d) can be written as

−y20 + 2x1 − y02 ≥ 0 (4a)

and
y20 − 2x1 + y02 − 2x2 + 1 ≥ 0 (4b)

respectively. In this way, all constraints are linearized. The
linear programming problem so obtained offers an approxi-
mate solution for problem (3) as (x1, x2) = (0, 0.5) which
is reasonably close to the global minimizer (see Fig. 1), but
this approximate solution is not feasible as it violates con-
straint (3c). This means that additional variables and adequate
constraints are needed to construct a more useful yet convex
problem. To this end, we define y11 = x1x2 and note that
y20 ≥ 0, y11 ≥ 0 (because x1 ≥ 0, x2 ≥ 0), and y02 ≥ 0.
Moreover, note that matrix [1 x1 x2]T [1 x1 x2] is
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Fig. 1. Feasible region for problem (3). It can be easily verified that point
A with coordinates (0.1340, 0.5) is the global minimizer.

always positive semidefinite. In terms of the new variable set
[x1 x2 y20 y11 y02], the above matrix becomes linear as

 1 x1 x2

x1 y20 y11

x2 y11 y02




This leads to an SDP relaxation of problem (3) as

minimize x1 − 2x2 (5a)

subject to: x1 ≥ 0, x2 ≥ 0, y20 ≥ 0, y11 ≥ 0 (5b)

y02 ≥ 0, −y20 + 2x1 − y02 ≥ 0 (5c)

y20 − 2x1 + y02 − 2x2 + 1 ≥ 0 (5d)
 1 x1 x2

x1 y20 y11

x2 y11 y02


 � 0 (5e)

where “� 0” means positive semidefinite. The relaxed prob-
lem in (5) has five variables and eight constrains. The (x1, x2)
components of the solution of (5) was found to be (x1, x2) =
(0.1340, 0.5) which is the exact global solution of problem
(3), see Fig.1. We see that by introducing additional variables
and constraints, a nonconvex problem can be relaxed into an
SDP problem of increased scale, through which the global
solution of the original nonconvex problem may be identified.

III. DESIGN OF FIR FILTERS WITH SP2 COEFFICIENTS

A. A Least-Squares {−1, 1}-Optimization Formulation

We seek to find a linear-phase FIR filter of length N whose
transfer function assumes the form

H(z) =
N−1∑
k=0

dkz−k

For notation simplicity, let the filter length be an odd integer,
thus the corresponding zero-phase frequency response can be
written as

A(ω) =
n∑

k=0

ak cos kω, n = (N − 1)/2 (6)



The design problem at hand is to find PS2 coefficients {ak}
so that A(ω) best approximates a desired frequency response
Ad(ω) subject to a bit budget for the representation of {ak}.

Following the usual notation in [16], let

Â(ω) =
n∑

k=0

âk cos kω (7)

be the optimal zero-phase frequency response with infinite-
precision coefficients {âk}, which can readily be obtained
using a well-established least-squares design algorithm. For
each âk and the number of SP2 terms allocated to the kth
discrete coefficient, let ak and āk be the largest SP2 lower
bound and smallest SP2 upper bound of âk, respectively. The
candidate SP2 coefficients {ak} can then be expressed as

ak = amk + xkδk for k = 0, 1, . . . , n,

amk = (āk + ak)/2
δk = (āk − ak)/2
xk ∈ {−1, 1}

It follows that the filter’s zero-phase frequency response can
be written in terms of x = [x0 x1 · · · xn]T as

A(ω) = Am(ω) + xT c(ω)

Am(ω) =
n∑

k=0

amk cos kω

c(ω) = [δ0 δ1 cosω · · · δn cosnω]T

and the least-squares design problem can be formulated as

minimize

π∫
−π

W (ω)[Am(ω) + xT c(ω) − Ad(ω)]2 (8a)

subject to: xk ∈ {−1, 1} for k = 0, . . . , n (8b)

B. A Polynomial Programming Formulation

The objective function in (8a) is a convex quadratic func-
tion, thus we can write (8) more compactly as

minimize p(x) = xT Qx + qT x (9a)

subject to: xk ∈ {−1, 1} (9b)

where

Q =

π∫

−π

W (ω)c(ω)cT (ω)dω

q = 2

π∫
−π

W (ω)[Am(ω) − Ad(ω)]c(ω)dω

and the constant term in (8a) has been neglected in (9a).
Concerning the discrete constraints in (9b), we note that
xk ∈ {−1, 1} can be characterized as x2

k = 1 which is in

turn equivalent to x2
k−1 ≥ 0 and −x2

k +1 ≥ 0. Consequently,
problem (9) becomes

minimize p(x) = xT Qx + qT x (10a)

subject to: pk(x) = x2
k − 1 ≥ 0 (10b)

pn+1+k(x) = −x2
k + 1 ≥ 0 (10c)

for k = 0, 1, . . . , n

Problem (10) is to minimize a quadratic (and convex) polyno-
mial objective function subject to a total of 2(n+1) 2nd-order
polynomial constraints that fits nicely into the formulation in
(1), hence it is a PP problem.

IV. SOFTWARE AND SIMULATION RESULTS

A. Software for Polynomial Programming

Two easy-to-use, MATLAB-compatible software implemen-
tations of the SDP relaxation methods reported in [21], [22]
and [24] are available as public-domain shareware [25], [26].
Glopti Poly [26] is in principle applicable to problem (10).
However, since the number of variables is limited to 19 in
its current version, the simulation results reported below were
obtained using SparsePOP [25].

B. Design Exmaples

The SDP-relaxation algorithm for PP [21], [22] was applied
to design a total of 25 linear-phase lowpass FIR filters with
SP2 coefficients and odd lengths from N = 5 to N = 53. The
normalized passband and stopband edges were set to ωp =
0.4π and ωa = 0.5π, respectively. The weighting function
was set to W (ω) ≡ 1 for both passband and stopband, and
W (ω) ≡ 0 elsewhere. A critical parameter in the algorithm is
the relaxation order which starts with the smallest value being
an half of the highest order of all the polynomials involved.
In the present case this relaxation order starts with one. In
case the global minimizer cannot be identified, the relaxation
order should start with a larger value, but this would in turn
cause a considerable increase in the size of the subsequent
SDP sequence, leading to increase in CPU time as well as
computer memory problems.

For these reasons, in our simulations the relaxation order
was set to one for all the designs conducted. As a result, global
solutions may not always be reached. It should be stressed
that with the support of the rigorous theory [21], [22], this
is merely a technical difficulty that shall be overcome as the
algorithm gets more efficient and numerically more robust.
For the first nine designs with N = 5, 7, . . . , 21, the SDP-
relaxation algorithm implemented by SparsePOP all converged
to the global designs. This was verified by comparing them
to the designs obtained by exhaustive global search. For the
remaining sixteen designs with length N = 23, 25, . . . , 53,
five of them were globally optimal and the rest of eleven
designs were only suboptimal. The numerical results in terms
of L2 approximation error in (8a) and CPU time (in seconds)
for a given filter length N and a bit budget M for the last
16 designs are given in Table 1. For comparison purposes,
the L2-error and CPU time consumed by global search to



obtain the global solutions are also given in the table. It is
observed that the SDP relaxation method is able to provide
excellent designs that are either exactly globally optimal or
satisfactory suboptimal with a very low design complexity.
As a sample plot, the amplitude responses of the FIR filter of
length N = 53 and M = 68 bits of the SDP relaxation design
versus globally optimal design are shown in Fig. 2.

TABLE I

PERFORMANCE OF THE SDP-RELAXATION DESIGN METHOD

Length Bit # SDP Relaxation Global Search

N M

L2-error CPU L2-error CPU

23 17 0.0025 1.55 0.0025 6.97

25 18 0.0021 1.60 0.0021 10.22

27 20 0.0012 1.63 0.0012 10.58

29 24 0.8186e−3 1.67 0.7683e-3 10.92

31 25 0.7210e−3 1.80 0.7177e-3 11.19

33 28 0.3732e−3 1.92 0.3637e-3 11.98

35 29 0.3626e−3 2.10 0.3242e-3 13.89

37 31 0.3519e−3 2.22 0.3048e-3 17.31

39 33 0.2896e−3 2.48 0.2590e-3 24.31

41 38 0.2368e−3 2.86 0.2265e-3 38.22

43 41 0.1622e−3 3.25 0.1622e-3 67.06

45 45 0.7125e−4 3.52 0.6870e-4 123.56

47 48 0.3239e−4 3.94 0.3052e-4 237.41

49 55 0.1686e−4 4.05 0.1421e-4 470.64

51 65 0.1148e−4 5.45 0.1148e-4 928.94

53 68 0.9940e−5 6.34 0.9685e-5 1.91e3
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