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Abstract

Roundoff noise (RN) is known to exist in digital filters
and systems under finite-precision operations and can be-
come a critical factor for severe performance degradation
in IIR filters and systems. Two classes of methods are avail-
able for RN reduction or minimization — one uses state-
space coordinate transformation, the other uses error feed-
back of state variables. In this paper, we propose a method
for the joint optimization of error feedback and state-space
realization. It is shown that the problem at hand can be
solved in an unconstrained optimization setting. With a
closed-form formula for gradient evaluation and an efficient
quasi-Newton solver, the unconstrained minimization prob-
lem can be solved efficiently.

1. Introduction

Since the work of [1][2], it has been well understood
that the roundoff noise (RN) of infinite-impulse-response
(IIR) digital filters under fixed-point arithmetic operations
can be substantially reduced by using adequately chosen
state-space realizations [3]–[5]. It has also been known that
RN reduction can be accomplished by feeding the quantiza-
tion error of state variables back to the filter’s input through
a memoryless (constant) error-feedback matrix without af-
fecting the filter’s input-output characteristics [6]–[8]. The
success of these techniques leads to the consideration of a
joint optimization of error feedback and state-space realiza-
tion so as to achieve greater reduction in RN. It turns out that
obtaining such a jointly optimized error feedback and real-
ization requires the solution of a sophisticated constrained
nonlinear minimization problem. In [8], an iterative algo-
rithm for the above optimization problem was proposed for
IIR filters with scalar error-feedback matrices, but it ap-
pears to be inherently difficult to extend the algorithm to
the cases where the error-feedback matrices are diagonal or
general.

In this paper, the problem of joint optimization of error-
feedback and state-space realization for RN minimization
is investigated in a general nonlinear optimization frame-

work where the error-feedback matrix can be a scalar, diag-
onal, or general matrix. Using linear-algebraic techniques,
we convert the constrained optimization problem at hand
into an unconstrained problem which can be solved using
powerful quasi-Newton algorithms [10]. A nice feature of
employing a general optimization setting for our problem is
that both the realization optimization [1][2] and the error-
feedback-matrix optimization [8] become special cases of
the proposed formulation that explains why digital filters
with jointly optimal error feedback and realization always
outperform previously reported systems.

2. Preliminaries

Let (A, b, c, d)n be a minimal state-space realization
of a stable IIR digital filter of order n. This realization can
be expressed as

x(k + 1) = Ax(k) + bu(k) (1a)

y(k) = cx(k) + du(k) (1b)

where A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n, and d ∈ R.
Now assume that the filter is implemented subject to finite-
word-length (FWL) constraint and quantization takes place
before matrix-vector multiplications, and an error-feedback
for state variables is used for the sake of RN reduction, then
the filter’s model becomes [8]

x̃(k + 1) = AQ[x̃(k)] + bu(k) + De(k) (2a)

ỹ(k) = cQ[x̃(k)] + du(k) (2b)

where Q[·] denotes the quantizer that rounds the fraction of
each input component to a b-bit number, e(k) is the quanti-
zation error defined by

e(k) = x̃(k) − Q[x̃(k)]

and D is referred to an error-feedback matrix. Fig. 1 shows
a block diagram of the state-space filter described by (2).

From (1) and (2), the roundoff noise for the filter can be
modeled as

∆x(k + 1) = A∆x(k) + (A − D)e(k) (3a)

∆y(k) = c∆x(k) + ce(k) (3b)
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Figure 1. Error feedback in a state-space digital filter.

where ∆x(k) = x(k) − x̃(k) and ∆y(k) = y(k) − ỹ(k).
In the frequency domain, the noise process is modeled by

∆Y (z) = GD(z)E(z) (4a)

GD(z) = c(zI − A)−1(A − D) + c (4b)

where ∆Y (z) and E(z) are the z-transforms of ∆y(k) and
e(k), respectively, and GD(z) denotes the transfer function
from the quantization error to output roundoff noise. There-
fore, a noise gain due to quantization error can be defined
as

I(D) = tr(WD) (5a)

where

WD =
1

2πj

∮
|z|=1

GD(z)G∗
D(z)

dz

z
(5b)

It is known that the matrix WD in (5b) can be expressed as
[8]

WD = (A − D)T Wo(A − D) + cT c (6)

where Wo is the observability Gramian of the filter and can
be computed by solving the Lyapunov equation [11]

Wo − AT WoA = cT c (7)

3. Joint Optimization of Error-Feedback and
Realization

3.1. An Optimization Formulation

As is well-known [11], the state-space realizations that
are equivalent to a particular realization of a given digital
filter, say (A, b, c, d)n, are characterized by (A, b, c, d)n

= (T−1AT , T−1 b, cT , d)n where T ∈ Rn×n is a non-
singular coordinate transformation matrix. Under a trans-
formation T , the noise gain defined in (5) becomes

I(D) = tr(WD) (8a)

where
WD = (A − D)T Wo(A − D) + c Tc (8b)

Wo = T T W 0T (8c)

A basic constraint imposed on RN minimization is the l2-
norm dynamic range of the state variables [1][2]. Under a

coordinate transformation, this constraint can be expressed
as

(Kc)ii = 1 for 1 ≤ i ≤ n (9a)

where
Kc = T−1KcT

−T (9b)

and Kc is the controllability Gramian of the original real-
ization and can be computed by solving the Lyapunov equa-
tion [11]

Kc − AKcA
T = bbT (10)

Primarily we are concerned with the minimization of the
roundoff noise gain I(D) in (8) subject to the constraints in
(9). For the sake of reducing solution sensitivity (as will be
detailed shortly), however, the “magnitude” of the observ-
ability Gramian, Wo, needs to be controlled during the op-
timization process. To this end the objective function needs
to be modified and the constrained minimization problem
can be described as

minimize
D, T

J(D,T ) = tr[(1 − µ)WD + µWo] (11a)

subject to: (T−1KcT
−T )ii = 1 for 1 ≤ i ≤ n (11b)

where WD and Wo are given in (8), and 0 ≤ µ ≤ 1 is a
scalar that weighs the importance of reducing tr(Wo) rela-
tive to reducing tr(WD).

The problem formulation in (11) is rather general. As a
matter of fact, it includes the following two special cases:
(i) if error feedback is not used, then D is set to zero, which
in conjunction with (8b) and (7) implies that

J(0,T ) = tr(Wo) (12)

Several methods of minimizing J(0,T ) in (12) subject to
(11b) were investigated in [1][2]. (ii) to minimize the ob-
jective function J(D,T ) for a fixed T (i.e., for a given
state-space realization). This problem has been addressed
in [8]. Consequently, the solution of the general optimiza-
tion problem in (11) that finds the jointly optimized error-
feedback matrix D and coordinate transformation matrix T
is expect to be superior to the solutions obtained from these
two special cases.

3.2. An Equivalent Unconstrained Problem

Since the IIR filter at hand is assumed to be stable,
controllable and observable, the controllability matrix Kc

is positive definite [11]. Let K1/2
c denote the symmetric

square root of Kc, i.e., K1/2
c is a symmetric matrix satis-

fying K1/2
c K1/2

c = Kc, then K1/2
c is also positive define

and we can define

T̂ = T T K−1/2
c (13)

which implies that T−1 = T̂
−T

K−1/2
c and the constraints

in (11b) become

(T̂
−T

T̂
−1

)ii = 1 for 1 ≤ i ≤ n (14)



The constraints in (14) simply mean that each cloumn in

T̂
−1

must be a unity vector. This can be satisfied if T̂
−1

assumes the form

T̂
−1

=
[

t1
‖t1‖

t2
‖t2‖

· · · tn

‖tn‖

]
(15)

with ti ∈ Rn×1. To complete our problem conversion, we
need to re-write the objective function in (11a) in terms of
D and T̂ , and this can be done as follows.

From (8) and (13), we can write

WD =
(T−1AT − D)T T T WoT (T−1AT − D) + T T cT cT

=T̂ [(Â − T̂
T

DT̂
−T

)T Ŵ o(Â − T̂
T

DT̂
−T

) + Ĉ ]T̂
T

(16a)

where

Â = K−1/2
c AK1/2

c (16b)

Ĉ = K1/2
c cT cK1/2

c (16c)

Ŵo = K1/2
c WoK

1/2
c (16d)

and the objective function in (11a) becomes

J(D, T̂ ) = tr{T̂ [(1 − µ)(Â − T̂
T
DT̂

−T
)T Ŵo

(Â − T̂
T
DT̂

−T
) + (1 − µ)Ĉ + µŴo]T̂

T } (17)

which can also be expressed as

J(D, T̂ ) = (1 − µ)(J1 + J2) + µJ3 (18a)

with
J1 = tr[T̂ (Â − T̂

T
DT̂

−T
)T Ŵ o(Â − T̂

T
DT̂

−T
)T̂

T
](18b)

J2 = tr(T̂ ĈT̂
T
) (18c)

J3 = tr(T̂ ŴoT̂
T
) (18d)

Because Ŵo is positive definite and Ĉ is positive semidefi-
nite, we have Ji ≥ 0 for i = 1, 2, 3. It follows immediately
that if the error-feedback matrix D is allowed to be a gen-
eral matrix, then the optimal choice of D is

D = T̂
−T

ÂT̂
T

(19)

as it leads to J1 = 0. In other words, in the case of D being
a general matrix, the objective function is simplified to

J(T̂
−T

ÂT̂
T
, T̂ ) = tr{T̂ [(1 − µ)Ĉ + µŴo]T̂

T } (20)

Another case that entails a simplified J(D, T̂ ) is when D

is a scalar matrix, i.e., D = αI , which leads J(D, T̂ ) to

J(αI, T̂ ) = tr{T̂ [(1 − µ)(Â − αI)T Ŵo(Â − αI)

+(1 − µ)Ĉ + µŴo]T̂
T } (21)

In summary, the joint optimization problem in (11) is
now re-formulated as

minimize
D, T̂

J(D, T̂ ) (22)

where J(D, T̂ ) assumes the form in (20) if D is a general
matrix, the form in (21) if D is a scalar matrix, and oth-
erwise the form in (17); and T̂ assumes the form in (15).
From above discussion, it is quite clear that the variables
in problem (22) consist of the vectors t1, t2, · · · , tn (see
(15)) plus certain entries of D: for example it would include
α if D = αI , the n diagonal elements of D if D is a di-
agonal matrix, but no entries of D need to be included if D
is a general matrix. It should be emphasized that although
the vectors {ti, 1 ≤ i ≤ n} have to be such that T̂ is non-
singular, this type of “constraint” needs not to be imposed
explicitly because a near singular T̂ would make the value
of J(D, T̂ ) very large, hence the process of minimizing
J(D, T̂ ) automatically avoids considering ill-conditioned
T̂ . Consequently, the problem in (22) is practically an un-
constrained minimization problem.

Finally, a remark on the term µJ3 in (18): from (8) it
is clear that if D 
= A then the contribution from term
(A − D)T Wo(A − D) to the noise gain is critically de-
pending on the “magnitude” of Wo. Since in a practical
implementation D is of finite precision, A − D is always
a nonzero matrix and therefore the magnitude of Wo (in
terms of its norm, for example) should be controlled. In
particular, when D is allowed to be a general matrix, the
objective function then becomes the form in (20) and µJ3 is
the only term there to control the value of J3 (which turns

out to be the Frobenius norm of W
1/2

o ). This necessitates
the use of a nonzero µ for the objective function in (20). In
other cases such as those in (17) and (21), the term equiv-
alent to (A − D)T Wo(A − D) always presents, and the
use of µ = 0 would not in general lead to ill-conditioned
results.

3.3. A Quasi-Newton Algorithm for Problem (22)

Let x be the column vector that collects the variables
in D and T̂ , thus J(D, T̂ ) is a function of x, denoted by
J(x). The algorithm starts with a trivial initial point x0

obtained by letting D = I and T̂ = I . Now suppose we
are in the kth iteration to update the most recent point xk.
A quasi-Newton algorithm updates xk to xk+1 as

xk+1 = xk + λkdk (23)

in two steps: (i) Determine a search direction dk = −Skgk
where gk = ∇J(x) is the gradient of the objective func-
tion and Sk is a positive-definite approximation of the in-
verse Hessian matrix of J(x). A popular quasi-Newton al-
gorithm is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [10] which updates Sk through the recursive re-
lation

S k+1 = S k+

(
1 +

γ T
k S kγ k

γ T
k δk

)
δkδT

k

γ T
k δk

− (δkγ T
k S k + S kγ kδT

k )

γ T
k δk

(24)
where S0 = I , δk = xk+1 − xk, and γk = gk+1 − gk,
(ii) Once the search direction dk is computed, the one-
dimensional optimization (often called line search)

λk = arg minimize
λ

J(xk + λdk) (25)



is carried out to determine the value of λk. If the iteration
progress measured by ‖xk+1 − xk‖, is greater than a pre-
scribed tolerance ε, then set k := k + 1 and repeat from
Step (i), otherwise the iteration is terminated and xk+1 is
claimed to be a solution point.

The implementation of (24) requires the gradient of
J(x). Closed form expressions for J(x) with scalar, di-
agonal, and general error-feedback matrix D are given in
Appendix A.

3.4. Examples

We present two examples to illustrate the proposed op-
timization method. The first example concerns a 3rd-order
lowpass IIR digital filter which was also used in [8]. The
second example is about a 9th-order lowpass IIR filter
which is used to demonstrate the ability of the proposed al-
gorithm to deal with relatively large number of variables.
Example 1 Consider a 3rd-order stable IIR lowpass digital
filter whose controllable canonical realization is denoted by
(A, b, c, d)3 with

A =


 0 1 0

0 0 1
0.339377 −1.152652 1.52016


 (26a)

b = [0 0 0.4437881]T (26b)

c = [0.212964 0.293733 0.718718] (26c)

d = 6.59592 × 10−2 (26d)

The controllability Gramian Kc of the above filter has been
normalized to satisfy the constraints (Kc)ii = 1 for i =
1, 2, 3. Without error feedback (i.e., D = 0), the noise
gain of filter (26) was found to be [8]

tr(Wo) = 11.1332

If one applies the method of [1][2] to filter (26) to obtain a
realization (A, b, c, d)3 for roundoff noise minimization
(without error feedback), then the noise gain was reduced
to [8]

tr(Wo) = 2.3554

Next, we compute jointly optimal error-feedback and state-
space realization, with D being scalar, diagonal, and gen-
eral matrices, by solving the respective minimization prob-
lem (22) using BFGS updates. The total number of vari-
ables involved in the optimization are 10 (for a scalar D),
12 (for a diagonal D), and 9 (for a general D). For the cases
where D is either a scalar or diagonal matrix, µ = 0 was
used. For the case of D being a general matrix, µ = 0.01
was assumed. In all three cases the initial point used cor-
responds to D = I and T̂ = I , and with ε = 10−8

the algorithm converges with less than 20 iterations. The
minimized noise gains obtained are given in Table 1. For
comparison purposes, Table 1 also includes the noise gain
values obtained in [8] where the error-feedback matrix is
optimized for a fixed state-space realization that is optimal
(without error feedback) for roundoff noise minimization.

These values are listed in Table 1 in the lines where “Sepa-
rate” is indicated for the column “Joint/Separate”. Form the
simulation results, it is evident that the proposed joint opti-
mization offers improved performance for RN reduction for
all three types of D.

Table 1. Performance Comparison for Example 1

Realization Error Joint/Separate Noise Gain
Feedback Optimization

Canonical 0 — 11.1332
Optimal 0 — 2.3554
Optimal Scalar Separate 1.5350
Optimal Scalar Joint 1.4500
Optimal Diagonal Separate 1.4338
Optimal Diagonal Joint 1.3090
Optimal General Separate 0.7798
Optimal General Joint 0.4208

Example 2 Now we consider a 9th-order stable IIR lowpass
filter whose transfer function is denoted by

H(z) =
b1z

9 + b2z
8 + · · · + b9z + b10

a1z9 + a2z8 + · · · + a9z + a10

where the coefficients are given in Table 2.

Table 2. Coefficients of H(z)

i ai bi

1 1 0.002198
2 −3.640015 −0.007993
3 7.148374 0.010478
4 −9.521133 −0.007251
5 9.297299 0.011297
6 −6.830931 −0.010582
7 3.754299 −0.017728
8 −1.485109 0.023996
9 0.384233 0.006712
10 −0.049851 0.046116

Next we obtain the controllable canonical realization of
the filter and normalize its controllability matrix by scal-
ing so as to satisfy the constraints (Kc)ii = 1 for i =
1, 2, . . . , 9. The state-space realization obtained is de-
noted by (A, b, c, d)9 and its noise gain (without error
feedback) was found to be

tr(Wo) = 3.1354 × 103

Without using error feedback, the method of [1][2] was ap-
plied to obtain a realization (A, b, c, d)9 for RN mini-
mization, whose noise gain was reduced to

tr(Wo) = 2.5315



The proposed joint optimization method was then applied
to the controllable canonical realization with error-feedback
matrix D being scalar, diagonal, and general matrices. For
the cases of scalar and diagonal D, the weighting factor µ
was set to zero; while for the case of a general D, µ = 0.03
was used. As in Example 1, for all three cases the same
initial point, which corresponds to the choice of D = I ,
T̂ = I , was used. With ε = 10−4, it took the algorithm
35 (for a scalar D), 196 (for a diagonal D), and 54 (for
a general D) iterations to converge. The minimized noise
gains are given in Table 3. Again, for comparison purposes,
Table 3 also lists the noise gains obtained using separate re-
alization and error-feedback matrix optimization proposed
in [8]. From the table, it is observed that the performance
improvement provided by using the joint optimization ap-
pears to be more pronounced. Based on this and a large
number of simulations conducted so far, we conclude that
the proposed joint optimization can offer improved perfor-
mance gain for IIR state-space digital filters of relatively
high order.

Table 3. Performance Comparison for Example 2

Realization Error Joint/Separate Noise Gain
Feedback Optimization

Canonical 0 — 3.1354 × 103

Optimal 0 — 2.5315
Optimal Scalar Separate 1.3622
Optimal Scalar Joint 1.1628
Optimal Diagonal Separate 1.2995
Optimal Diagonal Joint 0.9866
Optimal General Separate 0.2776
Optimal General Joint 0.0868

Appendix A Evaluation of ∇J(x)

Depending on the type of matrix D, the objective func-
tion J(x) may assume one of the three expressions in (17),
(20), and (21). In what follows, the derivation of ∇J(x) is
carried out for two separate cases.

A.1 If D is a general or a scalar matrix

The objective function in both (20) and (21) has the form

J(x) = tr(T̂MT̂
T
) which, in the light of (15), can be

expressed as

J(x) = tr

{[
t1

‖t1‖
· · · tn

‖tn‖

]−1

M

[
t1

‖t1‖
· · · tn

‖tn‖

]−T
}

(A1)

• In the case of D being a general matrix, M is a
constant matrix (see (20)) and x contains a total
of n2 variables, i.e., t1, t2, . . . , tn. To compute
∂J(x)/∂tij , we perturb the ith component of vec-
tor tj by a small amount, say δ, and keep the rest
of T̂ unchanged. If we denote the perturbed jth

column of T̂
−1

by t̃j/‖t̃j‖, then we can write a
linear approximation of t̃j/‖t̃j‖ as

t̃j

‖t̃j‖
≈ tj

‖tj‖
− δgij

where gij is a vector given by

gij =
1

‖tj‖3
(tijtj − ‖tj‖2ei) (A2)

and ei is the ith coordinate vector. Now let T̂ ij

be the matrix obtained from T̂ with a perturbed
(i, j)th component, then up to the first order the
matrix inversion formula [11, p. 655] gives

T̂ ij = T̂ +
δ(T̂ gij)(eT

j T̂ )

1 − δeT
j T̂ gij

Consequently, we have

∂J(x)
∂tij

= lim
δ→0

[tr(T̂ ijMT̂
T

ij) − tr(T̂MT̂
T
)]/δ

= 2tr[(T̂ gij)(e
T
j T̂ )MT̂

T
]

= 2eT
j (T̂MT̂

T
T̂ )gij for 1 ≤ i, j ≤ n (A3)

• If D is a scalar matrix, D = αI , then vec-
tor x contains a total of n2 + 1 variables, i.e.,
α, t1, t2, . . . , tn. In this case ∂J(x)/∂tij can
also be computed using (A3), and it follows from
(21) that

∂J(x)
∂α

= (1−µ)tr[T̂ (2αŴo−Â
T
Ŵo−ŴoÂ)T̂

T
]

(A4)

A.2 If matrix D contains certain number of zero
components in fixed places

The type of D matrices we deal with here obviously in-
cludes the case of D being a diagonal matrix. To evaluate
the gradient of J(D, T̂ ) in (17), we write it as

J(x) = tr(T̂MT̂
T
) + (1 − µ)[tr(DT T̂ ŴoT̂

T
D)

−2tr(T̂ Â
T
ŴoT̂

T
D)] (A5)



where

M = (1 − µ)(Â
T
ŴoÂ + Ĉ) + µŴo

and x in this case contains the nonzero entries of D plus
vectors t1, t2, . . . , tn. To compute ∂J(x)/∂tij , we treat
all the quantities other than tij in (A5) including D as con-
stant terms. It then follows from Sec. A.1 that

∂J(x)
∂tij

= 2β1 + 2(1 − µ)(β2 − β3) for 1 ≤ i, j ≤ n

(A6)
with

β1 = eT
j (T̂MT̂

T
T̂ )gij (A7)

β2 = eT
j (T̂ ŴoT̂

T
DDT T̂ )gij (A8)

β3 = eT
j T̂ (Â

T
ŴoT̂

T
D + ŴoÂT̂

T
DT )T̂ gij (A9)

Finally, using (A5) we compute for D = {dij} the deriva-
tive

∂J(x)
∂dij

= 2(1 − µ)eT
j (DT T̂ − T̂ Â

T
)ŴoT̂

T
gij (A10)

In particular, if D is a diagonal matrix, i.e., D =
diag{d1, d2, . . . , dn}, then

∂J(x)
∂di

= 2(1 − µ)eT
i (DT T̂ − T̂ Â

T
)ŴoT̂

T
gii (A11)
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