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Abstract  — This paper presents a least-pth approach for the design of
complex-coefficient FIR digital filters with low group delay in the mini-
max sense. Features of the proposed approach include: it does not need
to adapt the weighting function involved and no constrains are imposed
during the course of optimization. More important, the algorithm en-
joys global convergence to the minimax design regardless of the initial
design used. This property is an immediate consequence of the fact that
for each even power p, the weighted Lp objective function is convex in
the entire parameter space. Two minimax designs of FIR filter with low
passband group delay are included to illustrate the proposed method.

I. INTRODUCTION

The Parks-McClellan algorithm and its variants have been
the most efficient tools for the minimax design of FIR digi-
tal filters [1]–[3]. They however only apply to the class of
linear-phase FIR filters. In many applications, nonlinear-
phase FIR filters (e.g. those with low group-delay) are
more desirable. Several methods for the minimax design
of FIR filters with arbitrary magnitude and arbitrary phase
responses are available in the literature. Among others, we
mention the weighted least-squares approach [4] in which
the weighting function is adapted until a near equiripple filter
performance is achieved; the constrained optimization ap-
proach [5] in which the design is formulated as a linear or
quadratic programming problem; the semidefinie program-
ming approach [6] where the design is accomplished by min-
imizing an approximation-error bound subject to a set of lin-
ear and quadratic constraints that can be converted into linear
matrix inequalities. The design of FIR filters with complex
coefficients has also been studied by several authors using
for example linear programming [7], multiple criterion op-
timization technique [8], and linear constrained approxima-
tion methods [9].

This paper presents a least-pth approach for the design of
complex-coefficient FIR digital filters with low group delay
in the minimax sense. Least-pth optimization as a design
tool is not new. As a matter of fact, it was used quite suc-
cessfully for the minimax design of IIR filters, see [3] and
the references cited there. However, it appears that to date
least-pth-based algorithms for minimax design of nonlinear-
phase FIR filters have not been reported. In the proposed
method, a (near) minimax design is obtained by minimizing
a weighted Lp error function without constraints, where the
weighting function is fixed during the course of optimiza-
tion and power p is a sufficiently large even integer. We

show that for any even power p, the Lp objective function
is convex in the entire parameter space. This global con-
vexity, in conjunction with the availability of closed-form
gradient and Hessian of the objective function, provides a
basis on that the proposed algorithm is shown to be globally
convergent to the minimax design regardless of the initial
design chosen. Compared with the existing design methods
mentioned above, the proposed method does not need to up-
date the weighting function, and it is a unconstrained convex
minimization approach. In the rest of the paper, we describe
the proposed design method by highlighting the following:

• Relation of Lp-minimization to minimax design
• Weighted Lp objective function and its gradient

and Hessian
• Convexity of the Lp objective function
• Design algorithm and computational issues
• Examples

II. DESIGN FORMULATION

A. The p-norm and infinity-norm

The p-norm and infinity-norm of an n-vector v =
[v1 · · · vn]T are defined as

‖v‖p =

(
n∑

i=1

|vi|p
)1/p

and

‖v‖∞ = max
i

(|vi|, for 1 ≤ i ≤ n)

If p is even and the vector components are real numbers, then

‖v‖p =

(
n∑

i=1

vp
i

)1/p

(1)

It is well known [10] that the p-norm and infinity-norm are
related by

lim
p→∞

‖v‖p = ‖v‖∞ (2)

To get a sense of how ‖v‖p approaches ‖v‖∞, we compute
for v = [1 2 · · · 100]T its p-norm ‖v‖2 = 581.68,



‖v‖10 = 125.38, ‖v‖50 = 101.85, ‖v‖100 = 100.45,
‖v‖200 = 100.07 and, of course, ‖v‖∞ = 100. The point
here is that for an even p, the p-norm of a vector is a dif-
ferentiable function of its components but the infinite-norm
is not. So when the infinity-norm is involved in a (design)
problem, one can replace it by a p-norm (with p even) so
that powerful calculus-based tools can be used to help solve
the altered problem. Obviously, with respect to the “origi-
nal” design problem the results obtained can only be approx-
imate. However, as indicated by (2), the difference between
the approximate and exact solutions becomes insignificant if
power p is sufficiently large.

B. The objective function

Given a desired frequency response Hd(ω), we want to
determine the complex-valued coefficients {hi} in the FIR
transfer function

H(z) =
N∑

k=0

hkz−k (3)

such that the weighted L2p approximation error

f(h) =
[∫ π

−π

W (ω)|H(ejω) − Hd(ω)|2pdω

]1/2p

(4)

is minimized, where W (ω) ≥ 0 is a weighting function, p is
a positive integer, and h is defined below.

If we denote

hk = hrk + jhik

Hd(ω) = Hdr(ω) − jHdi(ω)

c(ω) = [1 cos ω · · · cos Nω]T

s(ω) = [0 sinω · · · sinNω]T

hr = [hr0 · · · frN ]T

hi = [hi0 · · · hiN ]T

h = [hT
r hT

i ]T

u(ω) = [cT (ω) sT (ω)]T

v(ω) = [sT (ω) − cT (ω)]T

then u(ω), v(ω), and h are real-valued vectors of dimension
2N + 2 and (4) becomes

f(h) =
{∫ π

−π

W [(hT u − Hdr)2 + (hT v − Hdi)2]pdω

}1/2p

(5)

where for simplicity the frequency dependence of W, u, v,
Hdr, and Hdi has been omitted. Now if we definite

e2(ω) = (hT u − Hdr)2 + (hT v − Hdi)2 (6)

then the objective function can be expressed as

f(h) =
[∫ π

−π

W (ω)ep
2(ω)dω

]1/2p

(7)

C. Gradient and Hessian of f(h)

Using (7), it is straightforward to compute the gradient
and Hessian of objective function f(h) as

∇f(h) = f1−2p(h)
∫ π

−π

W (ω)ep−1
2 (ω)q(ω)dω (8a)

where

q(ω) = (hT u − Hdr)u + (hT v − Hdi)v (8b)

and

∇2f(h) = H1 + H2 − H3 (8c)

where

H1 = 2(p − 1)f1−2p(h)
∫ π

−π

Wep−2
2 qqT dω (8d)

H2 = f1−2p(h)
∫ π

−π

Wep−1
2 (uuT + vvT )dω (8e)

H3 = (2p − 1)f−1(h)∇f(h)∇T f(h) (8f)

Of central importance to the proposed design algorithm is
the property that for each and every positive integer p, the
weighted L2p objective function defined in (4) is convex in
the entire parameter space (h ∈)R2(N+1). This property
can be proved by showing that the Hessian ∇2f(h) is posi-
tive semidefinite for all h ∈ R2(N+1) (see the Appendix).

We conclude this section with two remarks:
(a) It is obvious that a minimizer of f(h) in (4) is also

a minimizer of

f̂(h) =
∫ π

−π

W (ω)|H(ejω) − Hd(ω)|2pdω (9)

and vice versa. Hence one would naturally con-
sider minimizing f̂(h) instead because the global
convexity of f̂(h) is not hard to prove. The prob-
lem is that minimizing f̂(h) with a large p en-
counters considerable numerical difficulties, but
these difficulties do not present when one deals
with function f(h) even for a very large p.

(b) A fraction power of a convex function is not
necessarily convex (e.g., 1 + x2 is convex, but
(1 + x2)1/4 is not). So although the convexity
of f̂(h) with an even p is well known, it turns out
that proving the convexity of f(h) is a nontrivial
matter.

III. DESIGN ALGORITHM

A. The L2p minimization

It is now quite clear that up to a given tolerance, an FIR
filter that approximates a rather arbitrary frequency response
Hd(ω) in the minimax sense can be obtained by minimizing
f(h) in (4) with a sufficiently large p. It follows from the



discussion in Sec. II that for a given p, f(h) has a unique
global minimizer. Therefore, in principle any descent mini-
mization algorithm, e.g., the steepest descent method, mod-
ified Newton’s method, and quasi-Newton methods [11] can
be used to compute the minimax design regardless of the ini-
tial design chosen. On the other hand, however, the amount
of computation required to accomplish the design is largely
determined by the choice of optimization method as well as
the initial point (design).

B. Choice of initial design

A reasonable initial design is the L2-optimal design ob-
tained by minimizing f(h) in (4) with p = 1. In this case
we have

f(h) = (hT Qh − 2hT p + const)1/2 (10a)

where

Q =
∫ π

−π

W (uuT + vvT )dω (10b)

p =
∫ π

−π

W (Hdru + Hdiv)dω (10c)

Since Q is positive definite, the global minimizer of f(h) in
(10) is given by

h = Q−1p (11)

We note that Q in (10b) is a positive-definite, symmetric,
block Toeplitz matrix for which fast algorithms to compute
its inverse are available [12].

C. Choice of optimization method

Minimizing convex objective function f(h) can be ac-
complished in a number of ways. Since the gradient and
Hessian of f(h) are available in closed-form, the Newton’s
method and the family of quasi-Newton methods are among
the most appropriate.

From (8), we see that the evaluations of f(h), ∇f(h),
and ∇2f(h) all involve numerical integration. In computing
∇2f(h), the error introduced in the numerical integration
slightly perturbs the Hessian so that the perturbed Hessian is
no longer positive definite. The problem can be easily fixed
by modifying ∇2f(h) to ∇2f(h) + εI where ε > 0 is a
small scalar. The Newton’s method with above modification
is called the modified Newton’s method [11].

Quasi-Newton methods do not require ∇2f(h) yet pro-
vide efficiency comparable to that of the Newton’s method.
Among others, we choose the Broyden-Fletcher-Glodfarb-
Shanno (BFGS) algorithm [11] which has been a preferred
choice in DSP-related optimization problems [3].

D. Direct and indirect implementations

With power p, weighting function W (ω), and initial de-
sign h0 chosen, the design can be implemented directly or
indirectly.

A direct implementation applies a selected unconstrained
optimization method to minimize the L2p objective function
in (4). Based on rather extensive trials, it is found that to
achieve a near minimax design the value of p should in any
case be larger than 20, and for high-order FIR filters a power
p comparable to filter order N should be used.

In an indirect implementation, the L2-optimal design ob-
tained by minimizing the L2p function with p = 1 is taken
to be the initial design h0 in a subsequent optimization step
where the objective function is the L2p function with p mod-
erately increased to, say, p = 2. Evidently, it is an “easy”
problem because the minimizer, h1, in this case cannot be
far from the initial point. Next, h1 is used as the initial point
to minimize the L2p function with p = 3. Again, this is an
“easy” problem. The sequential L2p optimization continues
until p reaches a prescribed value.

IV. EXAMPLES

We now present two design examples to illustrate the pro-
posed method. The first is minimax design of a complex-
coefficient lowpass FIR filter or order N = 54. The de-
sign parameters were as follows: normalized passband edge
ωp = 0.225, stopband edge ωa = 0.275, passband group
delay = 23, W (ω) ≡ 1 in both passband and stopband and
W (ω) ≡ 0 elsewhere, and p = 130. Both direct and indi-
rect implementations using modified Newton’s method and
BFGS algorithm were carried out. As was expected, all trials
converge to the same near minimax design with the modified
Newton’s method in the direct implementation the most ef-
ficient: it took the algorithm 46 iterations with 4.15 × 107

Kflops to converge. The amplitude response, passband rip-
ple, and passband group delay of the filter obtained are
shown in Fig. 1. It is observed that equiripple stopband at-
tenuation and passband gain have been achieved. Note that
the passband group delay does not show equiripple varia-
tions. This is because the minimax optimization was carried
out for the complex-valued frequency response Hd(ω), not
the phase-response alone (see Eq. (4)).

The second example is minimax design of a complex-
coefficient bandpass FIR filter of length N = 160. The
design parameters were: normalized passband = [0.2, 0.3];
stopband = [0, 0.1875]

⋃
[0.3125, 0.5]; passband group de-

lay = 65; W (ω) ≡ 1 in passband, W (ω) ≡ 50 in stop-
bands, and W (ω) ≡ 0 elsewhere; and p = 130. When
the modified Newton’s method was directly implemented,
it took the algorithm 82 iterations with 3.47 × 108 Kflops
to converge. The amplitude response, passband ripple, and
passband group delay are depicted in Fig. 2.

V. CONCLUDING REMARKS

We have described a weighted least-pth approach to
designing near minimax nonlinear-phase FIR filters with
complex-valued coefficients. The proposed algorithm is con-
ceptually simple and user friendly as there is no need to ad-
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Fig. 1. Minimax design of a complex-coefficient lowpass filter with low
passband group delay.
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Fig. 2. Minimax design of a complex-coefficient bandpass filter with low
passband group delay.

just the weight, no constraints are imposed, and the design
can start “anywhere” in the parameter space.

The least-pth approach proposed in this paper can be ex-
tended to obtain minimax design of two-dimensional FIR fil-
ters with low passband group delay. Details of this develop-
ment will be reported elsewhere.

APPENDIX

In what follows we show that yT (∇2f(h)) y ≥ 0 for any
y ∈ R2(N+1). We start by writing

yT∇2fy = a1 + a2 − a3

where

a1 = yT H1y = 2(p − 1)f1−2p(h)
∫

Wep−2
2 (qT y)2

a2 = yT H2y = f1−2p(h)
∫

Wep−1
2 [(uT y)2 + (vT y)2]

a3 = yT H3y = (2p − 1)f−1(h)(yT∇f)2

For simplicity, in a1 and a2 the upper and lower limits as
well as term dω of the integrals have been omitted. Next we
split a1 as a1 = a11 − a12 where

a11 = (2p − 1)f1−2p(h)
∫

Wep−2
2 (qT y)2

a12 = f1−2p(h)
∫

Wep−2
2 (qT y)2

Hence

yT∇2fy = (a11 − a3) + (a2 − a12)

Below we show that a11 − a3 ≥ 0 and a2 − a12 ≥ 0.

• Proof of a11 − a3 ≥ 0

By (8a), a3 can be expressed as

a3 = (2p − 1)f1−4p(h)
[∫

Wep−1
2 (qT y)

]2

thus

a11 − a3

(2p − 1)f1−4p(h)

= f2p(h)
∫

Wep−1
2 (qT y)2 −

[∫
Wep−1

2 (qT y)
]2

=
∫

Wep
2

∫
Wep−1

2 (qT y)2 −
[∫

Wep−1
2 (qT y)

]2

Writing the integrand in the second term as

Wep−1
2 (qT y) = W

1
2 e

p
2
2 · W 1

2 e
p−2
2

2 (qT y)

and applying the Canchy-Schwarz inequality, we obtain[∫
Wep−1

2 (qT y)
]2

≤
∫

Wep
2 ·

∫
Wep−2

2 (qT y)2

which implies that

a11 − a3

(2p − 1)f1−4p(h)
≥ 0

Since (2p−1)f1−4p(h) > 0 we conclude that a11−a3 ≥ 0.

• Proof of a2 − a12 ≥ 0

a2 − a12

f1−2p(h)

=
∫

Wep−1
2 [(uT y)2 + (vT y)2] −

∫
Wep−2

2 (qT y)2



Using (8b), (6), and the Cauchy-Schwarz inequality, we have

(qT y)2

= [(hT u − Hdr)(uT y) + (hT v − Hdi)(vT y)]2

≤ [(hT u − Hdr)2 + (hT v − Hdi)2][(uT y)2 + (vT y)2]

= e2[(uT y)2 + (vT y)2]

Hence∫
Wep−2

2 (qT y)2 ≤
∫

Wep−1
2 [(uT y)2 + (vT y)2]

which implies that

a2 − a12

f1−2p(h)
≥ 0

Since f1−2p(h) > 0, we conclude a2 − a12 ≥ 0 that com-
pletes the proof.
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