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Abstract

In this paper, minimax design of infinite-impulse-
response (11 R) filters with prescribed stability margin isfor-
mulated as a conic quadratic programming (CQP) problem.
CQP isknown as a class of well-structured convex program-
ming problems for which efficient interior-point solvers are
available. By considering factorized denominators, the pro-
posed formulation incorporates a set of linear constraints
that are sufficient and near necessary for the IIR filter to
have a prescribed stability margin. Also included in thefor-
mulation isa second-order cone condition on the magnitude
of each update that ensures the validity of a key linear ap-
proximation used in the design and eliminates a line-search
step. Collectively, these features lead to improved designs
relative to several established methods.

1. Introduction

Infinite-impul se-response (1IR) digital filters are useful
in a wide range of applications where high selectivity and
efficient processing of discrete signals are desirable [1].

A magjor problem encountered in the design of IIR fil-
tersis stability. A recent trend is to treat the design prob-
lem in a constrained optimization setting, where the stabil-
ity requirement isincorporated as linear positive realness of
the denominator [3][4], Rouch&'s condition on denominator
perturbations [5], iterative Lyapunov inequality constraints
[6][7], or agenera positive realness constraint on denomi-
nator perturbations [8]. A common drawback of the above
approaches is that they are all sufficient but not necessary
conditions for stability. Consequently, good design candi-
dates may be excluded from the design process.

In this paper, we propose anew constrained optimization
method for the minimax design of stable IR digital filters.
The desigh method has severa features: (i) The design is
acomplished by performing a sequence of linear updates of
the design variables with each update carried out in aconic
quadratic programming (CQP) setting. CQP represents a
class of well-structured convex programming problems for
which efficient interior-point optimization solvers are avail -
able [12][13]. (ii) In our design formulation, the transfer
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function has a factorized denominator for which the neces-
sary and sufficient stability condition can be characterized
as a set of linear inequality constraints on the denominator
coefficients that in principle excludes no good design can-
didates and fits naturally into the CQP formulation. (iii)
The above set of linear constraints can be readily modified
to ensure a stability margin in terms of pole radius. The
modified constraints remain linear, and they are sufficient
and near necessary for the stability robustness. It should be
mentioned that CQP-based methods for filter design were
proposed in [10][11] but only FIR filters were considered
while the focus of the present paper ison IR filters, dealing
with rational transfer functions and their robust stability.

2. Preliminaries
2.1 Stability Triangle of Second-Order Systems
Consider thetransfer function of asecond-order discrete-

time system whose denominator is given by d(z) = 22 +
di1z + dy. The system is stable if and only if

Cyd+é>0 (1a)
where
11 J 1
Co=|-1 1 ,d:{dl},é: 1 (1b)
0 -1 2 1

The constraints in (1) are linear w.r.t. d; and ds, and char-
acterize the triangle in the (d,, d2)-space shown in Fig. 1.
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Figure 1. Stability triangle

For the sake of roboust stability, we consider a triangle
in (dy, d2)-spacethat isstrictly inside the stability tranglein



Fig. 1. SeeFig. 2 for theillustration. The region endosed
with the internal triangleis characterized by
Coyd+(1—7)e>0 )
2.2. Conic Quadratic Programming
Conic quadratic programming, which is sometimes
called the second-order cone programming [9], isasubclass
of convex programming problemswhere alinear functionis
minimized subject to a set of second-order cone constraints
[91[11]:
minimize fTx (3a)
subjectto: || A;z +bif| < cfx+hii=1,...,N (3b)
where f € R"<1, A, € Rvi—Dxn p e ROL-DX1 ¢ <
Rr*L and h; € R. The term “conic” here reflects the fact
that each constraint in (3b) is equivalent to a conic con-

Straint.
Al b e,
CT r hl !

7

where C; is the second-order conein &, i.e.,

Ci= {[1;] cu € ROV >0, Jlu| < t}
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Figure 2. An internal stability triangle

3. A general design method using linear CQP
updates

Let H(w, x) beanonlinear function of frequency w and
parameter vector x € RP*!, and H,(w) be adesired func-
tionof wonQ = {w: —7 < w < 7}. We seek avector
that solves the constrained weighted minimax optimization
problem

minimrmze{maxiergize W (w)|H(w, ¢) — Hy(w)|} (48)
H(w, =) stable (4b)

If 1 denotes an upper bound of W (w)|H (w, ) — Hg(w)|
on €2, then the problem in (4) can be converted into

subject to:

minimize 7 (5a)
subjectto:  W(w)|H(w, ) — Hg(w)| <1 w € Q (5b)
H(w, ) stable (5¢)

Suppose we have a reasonable initial point xq to start, and
we are how in the kth iteration. For asmooth H (w, x) ina
vicinity of point ;,, we can write

H(w, xp + 6) ~ H(w, x1) + gi (w)d (6)

provided that
16| is small ™

where g, (w) is the gradient of H(w, x) with respect to «
and evaluated at «;,. Thusfor x = x;, + 6 with § subject to
(7), we have

|H(w, @) — Ho(w)| = |gi (@) + [H(w, x1) — Ha(w)]]

For filter design problems, H (w, x) and H;(w) arein gen-
eral complex-valued, and we need to define

H(w, ) = Hy(w, ) + jH;(w, ) (8a)
Hy(w) = Hpq(w) + jHia(w) (8b)
9r(w) = gpi(w) + 79, (W) (8)
It follows that

W (w)|H(w, 2) — Ha(w)| = [|G1(w)d + er(w)]|  (9)

where

erk(w) = HT(W, wk) -
eir(w) = Hi(w, ) — Hig(w)

In thelight of (5b), (7), and (9), we see that an approximate
solution in the kth iteration can be obtained by solving the
constrained optimization problem

minimize 7 (10a)
subjectto:  |Gr(w)d +ex(w)]| <n weQ (10b)
18]l < 3 (100)

H(w, ¢, + ) dtable (10d)

where [ is a prescribed bound to control the magnitude of
4. Once a solution of (10), say 4, is obtained, point x;, is
updated to 11 = x) + d;, and the kthiteration is claimed
to be complete. The iteration process continues until |||
islessthan aprescribed convergencetolerancee. If wetreat
the upper bound 7 in (10&) and (10b) as an additional design
variable and define an augmented parameter vector

u= {g} (11)



then the problem in (10) can be expressed as

minimize c¢’u (12a)
subject to:  ||G(w)u + ex(w)]| < cTu forw € Q4(12b)
1Tu| < 3 (120)
H(w, ), + 0) stable (12d)

wherec=[1 0 --- 0], Gy (w) isgenerated by augment-
ing G, (w) with azero column on the left, T is obtained by
augmenting the identity matrix I,, with a zero column on
theleft,and Q; = {w;, 1 <i < K} C Qisaset of dense
grid points in the frequency region of interest.

If H(w, zx + &) represents the frequency response of
an IIR digital filter whose denominator is factorized into a
product of second-order sections (and a first-order section
for odd-order denominators), then, as one may expect, the
constraint in (12d) can be characterized by a set of linear
inequality constrains as

Cu+h>0 (13)

(see Sec. 4.3 for the structure of matrix C' and vector h).
Suppose matrix C' has m rows, then (13) can be ex-

pressed as
clu+h; >0 forl<i<m

where ¢; is the ith column of C” and h; is the ith compo-
nent of h, and the problem in (12) becomes

minimize c¢’u (14a)
SUb]eCt to: Hék(wl)u + ek(wi)H < CTu for 1< ZSK(14b)
[Tu| < 8 (140)
cfu+h; >0 for1<i<m (14d)

On comparing the problem in (14) with that in (3), it
is evident that problem (14) is a CQP problem with p + 1
design variables, K + 1 second-order cone constraints, and
m linear constraints.

Several interior-point methods for CQP have been devel-
oped in the past, see for example [14]-{16], and [9]. Lucid
exposition of the subject can be found in [11].

It should also be pointed out that although problem (14)
ismerely an approximation of (5), asthe iteration continues
and the local minimizer gets closer, the increment vector §
obtained by solving (14) gradually shrinksin magnitude and
within alimited number of iterations it eventually becomes
such a value that the updated solution point is practically
the same as the true minimizer.

4. Design of 1-D IIR Filters
4.1. The Design Problem

Consider the transfer function of an IIR digital filter

where

a(z) = zn:aiz”*i (15b)
i=0

d(z) isapolynomial of order r expressed as product of 2nd-
order sections (and a first-order section if r is odd):

r/2
1_[(22 +di1z + di2) if 7 even
_ ) =1
d(z) = (r-1)/2
(Z + do) (22 +dij1z + d,g) if r odd
i=1
(15¢)

and r is an integer between 0 and n. The reason our design
formulation uses the above form of denominator, namely
2" "d(z), isthat assigning a certain number of poles at the
origin was found beneficial for the design of several types
of digital filters as observed in [5]. The design problem at
hand is to determine the coefficients of H(z) in (15) that
solves the minimax optimization problem

minimize[maxiergize W (w)|H(w, ) — Hg(w)|] (168)
for|z] > 1 —7 (16b)

where the filter coefficients form vector x =
[Clo co.ay do dy1 dip ... dp dLQ]T with L
representing the L = /2 if » even and (r — 1)/2 if odd,
and W(w) > 0 isaweighting function on 2, Hy(w) isthe
desired frequency response, and H (w, x) is the frequency
response of the filter, which can be expressed as

subject to: d(z) # 0

Hio,7) = 5 a7

a(w) = a’v(w), a=[ag @ an)”
v(w) = c(w) —js(w)
c(w) =[1 cosw --- cosnw]”
s(w) = [0 sinw --- sinnw]”

L

H[l + dl vy (w)] if  even
dw) = { =1 ;

[1+ dovy ()] [[1 + df v2(w)] if r odd
i=1
v1(w) = cosw — jsinw
_|da _|cosw | .| sinw
d; = |:di2:| V2 (W) = {cos2w} J [sian}

The constraint in (16b) characterizes the requirement of ro-
bust stahility that the pole radius of thefilter be /1 — 7. On
comparing (16) with (4), it is quite clear that the design can
be accomplished using a sequence of linear updates, i.e.,

Tp+1 = o + 0 for k = 0, 1, ... with §; solving the
CQP problemin (14).



4.2. Gradient of H(w, x)

Parameter vector x can be expressed in terms of vectors
a and d; defined in (17) as

; } n + 1 components
0

- [3)-|4

dr

r components (18)

whered = [dy d --- d%]" with component d,, present
only if r isodd. Using (17), the gradient of H(w, ) with
respect to x is evaluated as

aH(u},m)
aa.
OH (,)
ddg
glw, @) = | e (19)
6H(:w,a:)
ddr,
with
0H(w,z)  wv(w)
da  dw) (202)
OH(w,x) vy (w)
T _ g /A
Bd (@, )77 G0 (@) (20b)
O0H (w, x) va(w)
R H(w, ®)—2Y (200
od; T 29

4.3. Constraintsfor Robust Stability

Suppose that point x;, represents a stable design and the
next point, xx11 = oy + dy iSrequired to remain stable.
Let
d+ 6y (21)
and note that only vector d + 64 effects the stability of the
filter in question. For description convenience, we assume
r isan odd integer so that vector d + §, assumes the form

ot 6= {a+6a}

do + 6o

di + 01
d+ 6, = . (22)
dr +90r,

where the first component is associated with the only first-
order section in d(z) whose robust stability is ensured if

—1+7<dy+6<1—-7

[_11} (do + o) + (1 —7) H >0 (233)

Each vector d; + 6; is connected to a 2nd-order section
in d(z) whose robust stability is satisfied if (2) isimposed
upon, i.e.,

where C5 and é are defined in (1b). Therefore, x; + 4 in
(21) representsan IR filter with stability margin1—+/1 — 7
if

Cd+dq)+(1—-71)e>0 (24)
wheree = [1 --- 1]T € R™! withm = 3L + 2, and
C1
. C, 0
C:
0 C, mxr

withe; = [1 — 1)7 (if r iseven, then the top-left ¢, in C
does not present and m = 3L). Now if we augment matrix
C in (24) with n+1 columns of zeroson theleft and replace
d + §4 thereby x;, + 6, then (24) becomes

0 Cl(xx+8)+(1—7)e>0

i.e,
[0 Cl6+h>0 (254)
where
h=[ 0 Cley + (1 —1)e (25h)

(n+1) columns

Finaly, by augmenting the matrix in (25a) with one more
zero column on the left and replacing vector § there by u
(defined in (11)), the stability constraint in (25) becomes

Cu+h>0 (26)

where

n~+2 columns

Equivalently, (26) can be expressed as m linear inequality
constraints as seen in (14d) where ¢; denotesthe ith column
of matrix C” and h; isthe ith component of h.

4.4. A Design Example

A well-known IR design is the minimax |IR lowpass
filter of order (n, r) = (12, 12) presented as Example
1 in Deczky [2], which has been used by many authors
as a “benchmark filter” for comparison purposes. With
wp = 0571, w, = 0.6m, and passband group delay
D = 15.9 samples, the performance of the Deczky filter
is shown in Table 1 and Fig. 3 (dash-dotted curves). The
proposed method was applied to design an IR filter of or-
der (n, r) = (12, 12) with the same design parameters as



specified above. The toolbox SeDuMi 1.05 [12] was used o Ameluderesponses
to implement the design agorithm on a 866 MHz Pentium
I PC.

Two digtinct initial points were tried. The first initial
point, :nél), was obtained by designing an linear-phase FIR
filter of length 33 using MATLAB functionf i r 1 and then
applying balanced order reduction method [17] to obtain a
stable IR filter of order (12, 12). The second initial point,
:ch), corresponds to a trivial IR transfer function of the
form a(z)/z'? where a(z) was obtained by simply design- | \
ing linear-phase FIR filter of length 13 using MATLAB o oo o1 ois 02 o3 o3 0% 04 o8 o5

function fi r 1. Obviously, mél) was a considerably better °
initial point because its frequency responseis much ‘ closer’
to the desired frequency response. With e = 5 x 10710,
K = 600, 7 = 0.05, b = 0.005, w = 1 and initial point

x{", the algorithm converged in 16 iterations with 473.23

Error of frequency response in passband
T T

Mflops and 66.42 seconds of CPU time. It is worthwhile oo

to report that with initial point w((f), the proposed algo- 006 -~ .

rithm converged to the same solution point after 47 itera- oour SRS B

tions. More iterations were expected because a:éz) is far °°ZMN\N

away from the solution in comparison with :cél). The per- ° ]

formance of the IR filter designed are evaluated in terms of 00z 5 008 o1 on 02 525
Error of frequency response in passhand, passband magni- Y

tude ripple, stopband attenuation, average deviation in pass- 00s it e vople i pessband

band group delay, and maximum magnitude of the poles,
and is illustrated in Fig. 3 and Table 1. From Fig. 3 and
Table 1, considerable performance improvement over the
Deczky filter were observed.

Table 1. Performance Comparison

IIR Filter of Deczky | Proposed -
Order (n, r) (12,12) | (12,12) 00s |
maximum error of frequency 0.1141 0.0156
responw |n pag:)and 0.08 0 0.!‘35 O.‘l © 0.‘15 012 0.25
maximum passband 0.0549 0.0156
maghnitude ripple . Group delay npassand
minimum stopband 31.7603 | 36.1455
attenuation (dB) i
passband group delay (sample) 15.9 15.9 wr
average deviation in 0.0233 0.0087
passband group delay g
maximum magnitude 0.8929 0.9220 &
of poles

0.05 01 0.15 0.2 0.25
(@

Figure 3. (a) Amplitude responses, (b) error of fre-
quency response in passband , (c) passband ampli-
tude responses, and (d) passband group delays of the
proposed design (solid curves) the Deczky filter (dash-
dotted curves).
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