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Abstract

In this paper, minimax design of infinite-impulse-
response (IIR) filters with prescribed stability margin is for-
mulated as a conic quadratic programming (CQP) problem.
CQP is known as a class of well-structured convex program-
ming problems for which efficient interior-point solvers are
available. By considering factorized denominators, the pro-
posed formulation incorporates a set of linear constraints
that are sufficient and near necessary for the IIR filter to
have a prescribed stability margin. Also included in the for-
mulation is a second-order cone condition on the magnitude
of each update that ensures the validity of a key linear ap-
proximation used in the design and eliminates a line-search
step. Collectively, these features lead to improved designs
relative to several established methods.

1. Introduction

Infinite-impulse-response (IIR) digital filters are useful
in a wide range of applications where high selectivity and
efficient processing of discrete signals are desirable [1].

A major problem encountered in the design of IIR fil-
ters is stability. A recent trend is to treat the design prob-
lem in a constrained optimization setting, where the stabil-
ity requirement is incorporated as linear positive realness of
the denominator [3][4], Rouché’s condition on denominator
perturbations [5], iterative Lyapunov inequality constraints
[6][7], or a general positive realness constraint on denomi-
nator perturbations [8]. A common drawback of the above
approaches is that they are all sufficient but not necessary
conditions for stability. Consequently, good design candi-
dates may be excluded from the design process.

In this paper, we propose a new constrained optimization
method for the minimax design of stable IIR digital filters.
The design method has several features: (i) The design is
acomplished by performing a sequence of linear updates of
the design variables with each update carried out in a conic
quadratic programming (CQP) setting. CQP represents a
class of well-structured convex programming problems for
which efficient interior-point optimization solvers are avail-
able [12][13]. (ii) In our design formulation, the transfer

function has a factorized denominator for which the neces-
sary and sufficient stability condition can be characterized
as a set of linear inequality constraints on the denominator
coefficients that in principle excludes no good design can-
didates and fits naturally into the CQP formulation. (iii)
The above set of linear constraints can be readily modified
to ensure a stability margin in terms of pole radius. The
modified constraints remain linear, and they are sufficient
and near necessary for the stability robustness. It should be
mentioned that CQP-based methods for filter design were
proposed in [10][11] but only FIR filters were considered
while the focus of the present paper is on IIR filters, dealing
with rational transfer functions and their robust stability.

2. Preliminaries

2.1 Stability Triangle of Second-Order Systems

Consider the transfer function of a second-order discrete-
time system whose denominator is given by d(z) = z2 +
d1z + d2. The system is stable if and only if

C2d + ê > 0 (1a)

where

C2 =


 1 1
−1 1

0 −1


 , d =

[
d1

d2

]
, ê =


 1

1
1


 (1b)

The constraints in (1) are linear w.r.t. d1 and d2, and char-
acterize the triangle in the (d1, d2)-space shown in Fig. 1.
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Figure 1. Stability triangle

For the sake of roboust stability, we consider a triangle
in (d1, d2)-space that is strictly inside the stability trangle in



Fig. 1. See Fig. 2 for the illustration. The region endosed
with the internal triangle is characterized by

C2d + (1 − τ)ê ≥ 0 (2)

2.2. Conic Quadratic Programming

Conic quadratic programming, which is sometimes
called the second-order cone programming [9], is a subclass
of convex programming problems where a linear function is
minimized subject to a set of second-order cone constraints
[9][11]:

minimize fT x (3a)

subject to: ‖Aix + bi‖ ≤ cT
i x + hi, i = 1, . . . , N (3b)

where f ∈ �n×1, Ai ∈ �(ni−1)×n, bi ∈ �(ni−1)×1, ci ∈
�n×1, and hi ∈ �. The term “conic” here reflects the fact
that each constraint in (3b) is equivalent to a conic con-
straint. [

Ai

cT
i

]
x +

[
bi

hi

]
∈ Ci

where Ci is the second-order cone in �ni , i.e.,

Ci =
{[

u
t

]
: u ∈ �(ni−1)×1, t ≥ 0, ‖u‖ ≤ t

}
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Figure 2. An internal stability triangle

3. A general design method using linear CQP
updates

Let H(ω, x) be a nonlinear function of frequency ω and
parameter vector x ∈ �p×1, and Hd(ω) be a desired func-
tion of ω on Ω = {ω : −π ≤ ω ≤ π}. We seek a vector x
that solves the constrained weighted minimax optimization
problem

minimize
x

{maximize
ω∈Ω

W (ω)|H(ω, x) − Hd(ω)|} (4a)

subject to: H(ω, x) stable (4b)

If η denotes an upper bound of W (ω)|H(ω, x)−Hd(ω)|
on Ω, then the problem in (4) can be converted into

minimize η (5a)

subject to: W (ω)|H(ω, x) − Hd(ω)| ≤ η ω ∈ Ω (5b)

H(ω, x) stable (5c)

Suppose we have a reasonable initial point x0 to start, and
we are now in the kth iteration. For a smooth H(ω, x) in a
vicinity of point xk, we can write

H(ω, xk + δ) ≈ H(ω, xk) + gT
k (ω)δ (6)

provided that
‖δ‖ is small (7)

where gk(ω) is the gradient of H(ω, x) with respect to x
and evaluated at xk. Thus for x = xk + δ with δ subject to
(7), we have

|H(ω, x) − Hd(ω)| ≈ |gT
k (ω)δ + [H(ω, xk) − Hd(ω)]|

For filter design problems, H(ω, xk) and Hd(ω) are in gen-
eral complex-valued, and we need to define

H(ω, x) = Hr(ω, x) + jHi(ω, x) (8a)

Hd(ω) = Hrd(ω) + jHid(ω) (8b)

gk(ω) = grk(ω) + jgik(ω) (8c)

It follows that

W (ω)|H(ω, x) − Hd(ω)| ≈ ‖Gk(ω)δ + ek(ω)‖ (9)

where

Gk(ω) = W (ω)
[

gT
rk(ω)

= gT
ik(ω)

]

ek(ω) = W (ω)
[

erk(ω)
eik(ω)

]

erk(ω) = Hr(ω, xk) − Hrd(ω)
eik(ω) = Hi(ω, xk) − Hid(ω)

In the light of (5b), (7), and (9), we see that an approximate
solution in the kth iteration can be obtained by solving the
constrained optimization problem

minimize η (10a)

subject to: ‖Gk(ω)δ + ek(ω)‖ ≤ η ω ∈ Ω (10b)

‖δ‖ ≤ β (10c)

H(ω, xk + δ) stable (10d)

where β is a prescribed bound to control the magnitude of
δ. Once a solution of (10), say δk, is obtained, point xk is
updated to xk+1 = xk +δk and the kth iteration is claimed
to be complete. The iteration process continues until ‖δk‖
is less than a prescribed convergence tolerance ε. If we treat
the upper bound η in (10a) and (10b) as an additional design
variable and define an augmented parameter vector

u =
[

η
δ

]
(11)



then the problem in (10) can be expressed as

minimize cT u (12a)

subject to: ‖Ĝk(ω)u + ek(ω)‖ ≤ cT u for ω ∈ Ωd (12b)

‖Îu‖ ≤ β (12c)

H(ω, xk + δ) stable (12d)

where c = [1 0 · · · 0]T , Ĝk(ω) is generated by augment-
ing Gk(ω) with a zero column on the left, Î is obtained by
augmenting the identity matrix In with a zero column on
the left, and Ωd = {ωi, 1 ≤ i ≤ K} ⊂ Ω is a set of dense
grid points in the frequency region of interest.

If H(ω, xk + δ) represents the frequency response of
an IIR digital filter whose denominator is factorized into a
product of second-order sections (and a first-order section
for odd-order denominators), then, as one may expect, the
constraint in (12d) can be characterized by a set of linear
inequality constrains as

Cu + h ≥ 0 (13)

(see Sec. 4.3 for the structure of matrix C and vector h).
Suppose matrix C has m rows, then (13) can be ex-

pressed as

cT
i u + hi ≥ 0 for 1 ≤ i ≤ m

where ci is the ith column of CT and hi is the ith compo-
nent of h, and the problem in (12) becomes

minimize cT u (14a)

subject to: ‖Ĝk(ωi)u + ek(ωi)‖ ≤ cT u for 1≤ i≤K(14b)

‖Îu‖ ≤ β (14c)

cT
i u + hi ≥ 0 for 1 ≤ i ≤ m (14d)

On comparing the problem in (14) with that in (3), it
is evident that problem (14) is a CQP problem with p + 1
design variables, K + 1 second-order cone constraints, and
m linear constraints.

Several interior-point methods for CQP have been devel-
oped in the past, see for example [14]–[16], and [9]. Lucid
exposition of the subject can be found in [11].

It should also be pointed out that although problem (14)
is merely an approximation of (5), as the iteration continues
and the local minimizer gets closer, the increment vector δ
obtained by solving (14) gradually shrinks in magnitude and
within a limited number of iterations it eventually becomes
such a value that the updated solution point is practically
the same as the true minimizer.

4. Design of 1-D IIR Filters

4.1. The Design Problem

Consider the transfer function of an IIR digital filter

H(z) =
a(z)

zn−rd(z)
(15a)

where

a(z) =
n∑

i=0

aiz
n−i (15b)

d(z) is a polynomial of order r expressed as product of 2nd-
order sections (and a first-order section if r is odd):

d(z) =




r/2∏
i=1

(z2 + di1z + di2) if r even

(z + do)
(r−1)/2∏

i=1

(z2 + di1z + di2) if r odd

(15c)
and r is an integer between 0 and n. The reason our design
formulation uses the above form of denominator, namely
zn−rd(z), is that assigning a certain number of poles at the
origin was found beneficial for the design of several types
of digital filters as observed in [5]. The design problem at
hand is to determine the coefficients of H(z) in (15) that
solves the minimax optimization problem

minimize
x

[maximize
ω∈Ω

W (ω)|H(ω, x) − Hd(ω)|] (16a)

subject to: d(z) �= 0 for |z| >
√

1 − τ (16b)

where the filter coefficients form vector x =
[a0 . . . an d0 d11 d12 . . . dL1 dL2]T with L
representing the L = r/2 if r even and (r − 1)/2 if odd,
and W (ω) ≥ 0 is a weighting function on Ω, Hd(ω) is the
desired frequency response, and H(ω, x) is the frequency
response of the filter, which can be expressed as

H(ω, x) =
a(ω)
d(ω)

(17)

a(ω) = aT v(ω), a = [a0 a1 . . . an]T

v(ω) = c(ω) − js(ω)
c(ω) = [1 cos ω · · · cos nω]T

s(ω) = [0 sinω · · · sinnω]T

d(ω) =




L∏
i=1

[1 + dT
i v2(ω)] if r even

[1 + d0v1(ω)]
L∏

i=1

[1 + dT
i v2(ω)] if r odd

v1(ω) = cos ω − j sinω

di =
[

di1

di2

]
,v2(ω) =

[
cos ω
cos 2ω

]
− j

[
sinω
sin 2ω

]

The constraint in (16b) characterizes the requirement of ro-
bust stability that the pole radius of the filter be

√
1 − τ . On

comparing (16) with (4), it is quite clear that the design can
be accomplished using a sequence of linear updates, i.e.,
xk+1 = xk + δk for k = 0, 1, . . . with δk solving the
CQP problem in (14).



4.2. Gradient of H(ω, x)

Parameter vector x can be expressed in terms of vectors
a and di defined in (17) as

x =
[

a
d

]
=




a
d0

d1
...

dL




} n + 1 components
 r components

(18)

where d = [d0 dT
1 · · · dT

L]T with component d0 present
only if r is odd. Using (17), the gradient of H(ω, x) with
respect to x is evaluated as

g(ω, x) =




∂H(ω,x)
∂a

∂H(ω,x)
∂d0

∂H(ω,x)
∂d1

...
∂H(ω,x)

∂dL




(19)

with

∂H(ω, x)
∂a

=
v(ω)
d(ω)

(20a)

∂H(ω, x)
∂d0

= −H(ω, x)
v1(ω)

1 + d0v1(ω)
(20b)

∂H(ω, x)
∂di

= −H(ω, x)
v2(ω)

1 + dT
i v2(ω)

(20c)

4.3. Constraints for Robust Stability

Suppose that point xk represents a stable design and the
next point, xk+1 = xk + δk is required to remain stable.
Let

xk + δ =
[

a + δa

d + δd

]
(21)

and note that only vector d + δd effects the stability of the
filter in question. For description convenience, we assume
r is an odd integer so that vector d + δd assumes the form

d + δd =




d0 + δ0

d1 + δ1
...

dL + δL


 (22)

where the first component is associated with the only first-
order section in d(z) whose robust stability is ensured if

−1 + τ ≤ d0 + δ0 ≤ 1 − τ

i.e., [
1
−1

]
(d0 + δ0) + (1 − τ)

[
1
1

]
≥ 0 (23a)

Each vector di + δi is connected to a 2nd-order section
in d(z) whose robust stability is satisfied if (2) is imposed
upon, i.e.,

C2(di + δi) + (1 − τ)ê ≥ 0 for 1 ≤ i ≤ L (23b)

where C2 and ê are defined in (1b). Therefore, xk + δ in
(21) represents an IIR filter with stability margin 1−

√
1 − τ

if
Ĉ(d + δd) + (1 − τ)e ≥ 0 (24)

where e = [1 · · · 1]T ∈ Rm×1 with m = 3L + 2, and

Ĉ =




c1

C2 0
. . .

0 C2




m×r

with c1 = [1 − 1]T (if r is even, then the top-left c1 in Ĉ
does not present and m = 3L). Now if we augment matrix
Ĉ in (24) with n+1 columns of zeros on the left and replace
d + δd there by xk + δ, then (24) becomes

[0 Ĉ](xk + δ) + (1 − τ)e ≥ 0

i.e.,

[0 Ĉ]δ + h ≥ 0 (25a)

where
h = [ 0︸︷︷︸

(n+1) columns

Ĉ]xk + (1 − τ)e (25b)

Finally, by augmenting the matrix in (25a) with one more
zero column on the left and replacing vector δ there by u
(defined in (11)), the stability constraint in (25) becomes

Cu + h ≥ 0 (26)

where
C = [ 0︸︷︷︸

n+2 columns

Ĉ]

Equivalently, (26) can be expressed as m linear inequality
constraints as seen in (14d) where ci denotes the ith column
of matrix CT and hi is the ith component of h.

4.4. A Design Example

A well-known IIR design is the minimax IIR lowpass
filter of order (n, r) = (12, 12) presented as Example
1 in Deczky [2], which has been used by many authors
as a “benchmark filter” for comparison purposes. With
ωp = 0.5π, ωa = 0.6π, and passband group delay
D = 15.9 samples, the performance of the Deczky filter
is shown in Table 1 and Fig. 3 (dash-dotted curves). The
proposed method was applied to design an IIR filter of or-
der (n, r) = (12, 12) with the same design parameters as



specified above. The toolbox SeDuMi 1.05 [12] was used
to implement the design algorithm on a 866 MHz Pentium
III PC.

Two distinct initial points were tried. The first initial
point, x

(1)
0 , was obtained by designing an linear-phase FIR

filter of length 33 using MATLAB function fir1 and then
applying balanced order reduction method [17] to obtain a
stable IIR filter of order (12, 12). The second initial point,
x

(2)
0 , corresponds to a trivial IIR transfer function of the

form a(z)/z12 where a(z) was obtained by simply design-
ing linear-phase FIR filter of length 13 using MATLAB
function fir1. Obviously, x

(1)
0 was a considerably better

initial point because its frequency response is much ‘closer’
to the desired frequency response. With ε = 5 × 10−10,
K = 600, τ = 0.05, b = 0.005, w = 1 and initial point
x

(1)
0 , the algorithm converged in 16 iterations with 473.23

Mflops and 66.42 seconds of CPU time. It is worthwhile
to report that with initial point x

(2)
0 , the proposed algo-

rithm converged to the same solution point after 47 itera-
tions. More iterations were expected because x

(2)
0 is far

away from the solution in comparison with x
(1)
0 . The per-

formance of the IIR filter designed are evaluated in terms of
Error of frequency response in passband, passband magni-
tude ripple, stopband attenuation, average deviation in pass-
band group delay, and maximum magnitude of the poles,
and is illustrated in Fig. 3 and Table 1. From Fig. 3 and
Table 1, considerable performance improvement over the
Deczky filter were observed.

Table 1. Performance Comparison

IIR Filter of Deczky Proposed
Order (n, r) (12, 12) (12, 12)

maximum error of frequency 0.1141 0.0156
response in passband
maximum passband 0.0549 0.0156
magnitude ripple
minimum stopband 31.7603 36.1455
attenuation (dB)
passband group delay (sample) 15.9 15.9
average deviation in 0.0233 0.0087
passband group delay
maximum magnitude 0.8929 0.9220
of poles
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Figure 3. (a) Amplitude responses, (b) error of fre-

quency response in passband , (c) passband ampli-

tude responses, and (d) passband group delays of the

proposed design (solid curves) the Deczky filter (dash-

dotted curves).
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