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ABSTRACT

This paper considers the problem of minimizing round-
off noise in two-dimensional (2-D) state-space digital
filters subject to L2-norm dynamic-range scaling con-
straints. The minimization will be achieved by using er-
ror feedback. Several techniques for the determination
of the optimal full-scale, block-diagonal, diagonal, and
scalar error-feedback matrices for a given 2-D state-
space digital filter are proposed. A numerical example
is presented to illustrate the utility of the proposed tech-
niques.

I. INTRODUCTION

One of the primary finite-word-length (FWL) reg-
ister effects in fixed-point digital filters is the roundoff
noise caused by the rounding of products/summations
within the realization. One can reduce the roundoff
noise at the filter output using error feedback, which
is achieved by extracting the quantization error after
multiplications and additions, and then feeding the er-
ror signal back to a certain point through a simple cir-
cuit. Several techniques for error feedback have been
presented in the past for 1-D digital filters [1]-[5], and
more recently for 2-D digital filters [6]-[9].

This paper proposes several new algorithms for the
reduction of roundoff noise in 2-D state-space digital
filters. Several closed-form formulas for evaluating the
optimal full-scale, block-diagonal, diagonal, and scalar
error-feedback matrices for a given 2-D state-space dig-
ital filter are derived. A numerical example is presented
to illustrate the algorithms proposed and to demon-
strate their performance.

II. 2-D STATE-SPACE DIGITAL FILTERS
WITH ERROR FEEDBACK

Consider the Roesser local state-space (LSS) model
(A, b, c, d)m,n which is stable, separately locally con-

trollable and separately locally observable:

x11(i, j) = Ax(i, j) + bu(i, j)

y(i, j) = cx(i, j) + du(i, j)
(1)

where

x11(i, j) =
[

xh(i + 1, j)
xv(i, j + 1)

]
, x(i, j) =

[
xh(i, j)
xv(i, j)

]

A =
[

A1 A2

A3 A4

]
, b =

[
b1

b2

]
, c =

[
c1 c2

]
.

Here, xh(i, j) is an m × 1 horizontal state vector,
xv(i, j) is an n × 1 vertical state vector, u(i, j) is a
scalar input, y(i, j) is a scalar output, and A1, A2,
A3, A4, b1, b2, c1, c2, and d are real constant matrices
of appropriate dimensions.

Carrying out the quantization before matrix-vector
multiplication, an FWL implementation of (1) can be
expressed as

x̃11(i, j) = AQ[x̃(i, j)] + bu(i, j)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j)
(2)

where each component of A, b, c, and d assumes an
exact fractional Bc bit representation. The FWL local
state vector x̃(i, j) and the output ỹ(i, j) all have a B
bit fractional representation, while the input u(i, j) is
a (B − Bc) bit fraction.

The quantizer Q[·] in (2) rounds the B bit frac-
tion x̃(i, j) to (B − Bc) bits after multiplications and
additions, where the sign bit is not counted. The quan-
tization error

e(i, j) = x̃(i, j) − Q[x̃(i, j)] (3)

coincides with the residue left in the lower part of
x̃(i, j). The roundoff error e(i, j) is modeled as a zero-
mean noise process of covariance σ2Im+n with

σ2 =
1
12

2−2(B−Bc).
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To reduce the filter’s roundoff noise, the quantization
error e(i, j) is fed back to each input of delay operators
through an (m + n) × (m + n) constant matrix D in
the FWL filter (2). The 2-D filter with error feedback
can be characterized by

x̃11(i, j) = AQ[x̃(i, j)] + bu(i, j) + De(i, j)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j)
(4)

where D is referred to as an error-feedback matrix.
Subtracting (4) from (1) yields

∆x11(i, j) = A∆x(i, j) + (A − D)e(i, j)

∆y(i, j) = c∆x(i, j) + ce(i, j)
(5)

where

∆x(i, j) = x(i, j) − x̃(i, j)

∆x11(i, j) = x11(i, j) − x̃11(i, j)

∆y(i, j) = y(i, j) − ỹ(i, j).

Let GD(z1, z2) be the 2-D transfer function from the
quantization error, e(i, j), to the filter output, ∆y(i, j).
Then, we obtain

GD(z1, z2) = c(Z − A)−1(A − D) + c (6)

where Z = z1Im ⊕ z2In. The noise variance gain
I(D) = σ2

out/σ2 is then defined by

I(D) = tr[W D] (7)

where σ2
out denotes noise variance at the output, and

W D =
1

(2πj)2

∮
Γ1

∮
Γ2

G∗
D(z1, z2)GD(z1, z2)

dz1dz2

z1z2

with Γi = {zi : |zi| = 1} for i = 1, 2. By applying the
2-D Cauchy integral theorem, we obtain

W D = (A − D)T W o(A − D) + cT c (8)

where W o is called the local observability Gramian of
the 2-D filter, and is defined by

W o =
1

(2πj)2

∮
Γ1

∮
Γ2

(Z∗ − AT )−1cT c(Z − A)−1

·dz1dz2

z1z2
=

∞∑
i=0

∞∑
j=0

g(i, j)T g(i, j). (9)

If there is no error feedback in the 2-D filter, then
the noise variance gain I(D) with D = 0 becomes

I(0) = tr[AT W oA + cT c]

= tr[W o].
(10)

The l2-norm dynamic-range scaling constraints on
the local state vector involves the local controllability
Gramian of the 2-D filter, which is defined by

Kc =
1

(2πj)2

∮
Γ1

∮
Γ2

(Z − AT )−1bbT (Z∗ − AT )−1

·dz1dz2

z1z2
=

∞∑
i=0

∞∑
j=0

f(i, j)f(i, j)T . (11)

The problem considered is to design the error-
feedback matrix D that minimizes (7), where matrix
W D is specified by (8), subject to that all the diagonal
elements of Kc equal unity.

III. DETERMINATION OF OPTIMAL
ERROR FEEDBACK MATRICES

In this section, we derive closed-form formulas
for the determination of the optimal full-scale, block-
diagonal, diagonal, and scalar error-feedback matrix D
to minimize I(D) = tr[W D] for a given 2-D state-space
digital filter.

Case 1: D is a general matrix

Substituting (8) into (7), we obtain

I(D) = tr[cT c + (A − D)T W o(A − D)]

= tr[W o] + tr[DT W oD] − 2 tr[DT W oA].
(12)

Differentiating (12) with respect to the error-feedback
matrix D yields

∂I(D)
∂D

= 2W o(D − A). (13)

By choosing the error-feedback matrix as D = A, the
noise gain I(D) in (12) achieves its minimum value

Imin(D) = tr[W o] − tr[AT W oA]

= tr[cT c].
(14)

Case 2: D is a block-diagonal matrix

In this case, matrix D assumes the form

D = D1 ⊕ D4 (15)

where D1 and D1 are m × m and n × n matrices,
respectively, which leads (12) to

I(D) = tr[W o] + tr[DT
1 W o1D1] + tr[DT

4 W o4D4]
−2 tr[DT

1 (W o1A1 + W o2A3)]
−2 tr[DT

4 (W o3A2 + W o4A4)] (16)
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where

W o =
[

W o1 W o2

W o3 W o4

]
.

Letting ∂I(D)/∂Di = 0 for i = 1, 4 yields

D1 = A1 + W −1
o1 W o2A3

D4 = A4 + W −1
o4 W o3A2.

(17)

By substituting (17) into (16), we obtain the minimum
value of the noise variance gain I(D) as

Imin(D) = tr[W o] − tr[DT
1 (W o1A1 + W o2A3)]

−tr[DT
4 (W o3A2 + W o4A4)]. (18)

Case 3: D is a diagonal matrix

In this case, matrix D assumes the form

D1 = diag{α1, α2, · · · , αm}
D4 = diag{β1, β2, · · · , βn}

(19)

which leads (16) to

I(D) = tr[W o] + tr[D2
1W o1] + tr[D2

4W o4]

−2 tr[D1(W o1A1 + W o2A3)]

−2 tr[D4(W o3A2 + W o4A4)].

(20)

This implies that if αi’s and βi’s satisfy

αi

(
αi − 2

(W o1A1 + W o2A3)ii

(W o1)ii

)
< 0, i = 1, 2, · · · ,m

βi

(
βi − 2

(W o3A2 + W o4A4)ii

(W o4)ii

)
< 0, i = 1, 2, · · · , n

(21)

then I(D) = tr[W D] < tr[W o]. Letting ∂I(D)/∂αi =
0 for i = 1, 2, · · · ,m and letting ∂I(D)/∂βi = 0 for
i = 1, 2, · · · , n gives

αi =
(W o1A1 + W o2A3)ii

(W o1)ii
, i = 1, 2, · · · ,m

βi =
(W o3A2 + W o4A4)ii

(W o4)ii
, i = 1, 2, · · · , n

(22)

at which I(D) achieves its minimum as

Imin(D) = tr[W o] −
m∑

i=1

(W o1A1 + W o2A3)2ii
(W o1)ii

−
n∑

i=1

(W o3A2 + W o4A4)2ii
(W o4)ii

(23)

where (A)ii denotes the ith diagonal element of a
square matrix A.

Case 4: D1 and D4 are scalar matrices αIm and βIn

If D1 = αIm and D4 = βIn with scalars α and β,
then (20) becomes

I(D) = tr[W o] + tr[W o1]α2 + tr[W o4]β2

−2tr[W o1A1 + W o2A3]α

−2tr[W o3A2 + W o4A4]β.

(24)

Hence, if α and β satisfy

α

(
α − 2

tr[W o1A1 + W o2A3]
tr[W o1]

)
< 0

β

(
β − 2

tr[W o3A2 + W o4A4]
tr[W o4]

)
< 0 (25)

then I(D) = tr[W D] < tr[W o]. Moreover, from
∂I(D)/∂α = 0 and ∂I(D)/∂β = 0, it follows that

α =
tr[W o1A1 + W o2A3]

tr[W o1]

β =
tr[W o3A2 + W o4A4]

tr[W o4]

(26)

which lead (24) to

Imin(D) = tr[W o] − (tr[W o1A1 + W o2A3])2

tr[W o1]

− (tr[W o3A2 + W o4A4])2

tr[W o4]
. (27)

IV. A NUMERICAL EXAMPLE

Let a 2-D state-space digital filter (A, b, c, d)3,3

with d = 0.0 be described by

A1 =


 0.621553 0.014666 −0.476979

−0.081625 0.621548 −0.181986
0.181983 0.476990 0.663600




A2 =


 0.059369 −0.004829 −0.024002

−0.646852 0.061969 0.227715
−0.229635 0.021958 0.076674




A3 =


 0.000378 0.000763 0.001503

−0.000463 −0.001501 0.000812
−0.000021 −0.000219 0.000908




A4 =


 0.620418 0.016504 −0.479313

−0.083124 0.620420 −0.181961
0.181967 0.479315 0.661692




b1 =
[ −0.007708 0.081835 0.028969

]T

b2 =
[ −0.079883 0.846271 0.294745

]T

c1 =
[ −0.766526 0.072050 0.267706

]
c2 =

[ −0.074064 0.007031 0.026238
]
.
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which is stable, separately locally controllable and sep-
arately locally observable. This corresponds to the op-
timal realization with minimum roundoff noise I(0) =
4.927082, subject to the l2-norm dynamic-range scaling
constraints.

In case D is allowed to be a general matrix, then
(13) suggests that we should choose D = A which
yields Imin(D) = 0.670643. Suppose the elements of
matrix D are rounded to power-of-two quantization
with 3 bits after binary point (integer quantization),
then the noise gain is given by

I(D) = 0.700468 (1.726719).

If D is constrained to be a block-diagonal matrix,
then the optimal D = D1 ⊕ D4 is calculated using
(17), which gives

D1 =


 0.621550 0.014658 −0.476971

−0.081619 0.621565 −0.181992
0.181976 0.476968 0.663613




D4 =


 0.618351 0.016703 −0.478595

−0.082737 0.620382 −0.182106
0.181250 0.479384 0.661937




Imin(D1 ⊕ D4) = 1.331653.

After 3-bit quantization (integer quantization), this
block-diagonal matrix D = D1 ⊕ D4 gives

I(D1 ⊕ D4) = 1.351427 (2.247670).

If D is constrained to be a diagonal error-feedback
matrix, then it can be calculated using (22) as

D1 = diag{0.523405, 0.934410, 0.859620}
D4 = diag{0.521174, 0.934021, 0.858810}

which yields Imin(D) = 1.833208. After 3-bit quan-
tization (integer quantization), this diagonal matrix
D = D1 ⊕ D4 yields

I(D1 ⊕ D4) = 1.840195 (2.247670).

If a scalar error-feedback matrix is calculated using
(26), then we obtain

α = 0.772479, β = 0.771335

which yields Imin(D) = 1.991329. After 3-bit quan-
tization (integer quantization), this scalar matrix D
results in

I(D) = 1.993695 (2.247670).

From these results, it is observed that the utilization
of an optimal error feedback matrix leads to consider-
able reduction in roundoff noise, even when a scalar
D = αIm ⊕ βIn with quantized α and β.

V. CONCLUSION

In this paper, the problem of minimizing roundoff
noise in 2-D state-space digital filters has been inves-
tigated by means of error feedback. General, block-
diagonal, diagonal, and scalar error-feedback matrices
for minimizing the noise variance gain in a given 2-D
state-space digital filter have been derived. Simulation
results have been presented to illustrate the validity of
our theoretical analysis and proposed algorithms.
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