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ABSTRACT

The design of two-dimensional (2-D) digital filters can
be accomplished using the singular-value decomposition
(SVD) method proposed by the authors in the past. The
method in its present form treats all the elements of the sam-
pled frequency-response matrix uniformly. Although the
method works very well, in certain applications improved
designs can be achieved by preconditioning the frequency-
response matrix in order to emphasize important parts and
deemphasize unimportant parts of the matrix. The precon-
ditioning can be achieved through the use of an optimal
weighted low-rank approximation (WLRA). Current meth-
ods for WLRA provide only local solutions. In this paper,
we propose a method that can be used to perform WLRA
which is globally optimal for complex-valued matrices. The
usefulness of the proposed method will be demonstrated by
applying it to the design of 2-D digital filters.

1. INTRODUCTION

The singular-value decomposition (SVD) [1]–[3] has found
numerous applications in the past [4]–[13]. In a two dimen-
sional (2-D) filter design context, the SVD is applied to a
complex-valued matrix F obtained by sampling the desired
frequency response, which results in several pairs of sin-
gular vectors. It has been shown that the design of a 2-D
digital filter can be accomplished by designing a set of 1-D
filters whose frequency responses approximate the singu-
lar vectors [8]–[13]. Although the method works very well,
in certain applications, improved designs can be achieved
by preconditioning the frequency-response matrix in order
to emphasize important parts and deemphasize unimportant
parts of the matrix. The preconditioning can be achieved
through the use of an optimal weighted low-rank approxi-
mation (WLRA).

The WLRA was considered in [14] for real-valued ma-
trices and in [15] for complex-valued matrices. However,
the methods proposed in [14][15] only produce suboptimal
solutions. In this paper, we propose a method that can be

used to perform WLRA which is globally optimal for complex-
valued matrices. In essence, our method is based on two
facts: First, if the weighting matrix in the WLRA is a trivial
matrix whose elements are all equal to unity, then the SVD
provides a globally optimal solution for the WLRA prob-
lem; second, the globally optimal solution is a continuous
function with respect to the elements of the weighting ma-
trix. The usefulness of the proposed method is demonstrated
by applying it to the design of 2-D digital filters.

2. REVIEW OF SVD

The SVD of a complex-valued matrix F ∈ CM×N can be
expressed as

F = UΣV H =
r∑

k=1

σkukvH
k (1)

where U = [u1 u2 · · · uM ] and V = [v1 v2 · · · vN ]
are unitary matrices, Σ = diag{σ1, σ2, . . . , σr, 0 . . . 0}
with singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and r is
the rank of matrix F . An important property of the SVD
is that it offers an optimal low-rank approximation of F in
both Enclidean and Frobenius norm sense for any rank not
larger than r. That is, for any integer K between 1 and r,

min
rank(F̂K)=K

‖F − F̂ K‖2,F = ‖F − F K‖2,F (2)

where the optimal rank-K approximation F K is given by

F K =
K∑

k=1

σkukvH
k (3)

By writing ũk = σ
1/2
k uk and ṽk = σ

1/2
k vk, the SVD in

(1) and the optimal rank-K approximation in (3) can be ex-
pressed as

F =
r∑

k=1

ũkṽH
k (4)

and
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F K =
K∑

k=1

ũkṽH
k (5)

respectively.

3. WLRA OF A COMPLEX-VALUED MATRIX

Given a complex-valued matrix F ∈ CM×N and a real-
valued weighting matrix W ∈ RM×N such that rank(F ) =
r, we seek vectors uk ∈ CM×1, k = 1, . . . , K and vk ∈
CN×1, k = 1, . . . , K that minimize the error function

J(x,W ) = ‖W ◦ (F −
K∑

k=1

ukvH
k )‖F (6a)

where

x =
[

u
v

]
, u =


 u1

...
uK


 , v =


 v1

...
vK


 (6b)

W ◦ Y denotes elementwise multiplication of matrices W
and Y , and K is an integer between 1 and r.

The function J(x,W ) in (6) is a 4th-order function of
variable x. As such, the application of a general nonlinear
optimization algorithm usually yields a local minimizer and
the performance of the local minimizer depends largely on
the choice of the optimization algorithm and the initial point
[14][15]. However, there is an exception: if W 0 is an all-
one matrix, then a global minimizer of function J(x,W 0)
in (6) is provided by the SVD of F [2].

4. A GLOBAL SOLUTION OF WLRA

4.1. The Solution Method

From (6), it follows that function J(x,W ) is a quadratic
function of the elements of matrix W . Consequently, for
a fixed F , the global minimizer of J(x,W ) is a continu-
ous function of W . In other words, if x∗(W ) is the global
minimizer of J(x,W ) for a given W , then the difference
‖x∗(W + ∆W ) − x∗(W )‖ can be made arbitrarily small
if ‖∆W ‖ is sufficiently small. Given a weighting matrix
W , let {W l, l = 0, 1. . . . , L} be a sequence of weighting
matrices that satisfies three conditions: (i) W 0 is the all-one
matrix, (ii) ‖W l−W l+1‖ is small for l = 1, . . . , L−1, and
(iii) W L = W . In other words, {W l, l = 0, 1, . . . , L}
is a sequence of matrices that interpolates between W 0 and
W with sufficiently high interpolation density. To obtain
a global minimizer of J(x,W 0), we use the SVD of F to
obtain a global minimizer of J(x,W ) and denote the min-
imizer by x∗(W 0). Next, point x∗(W 0) is used as the
initial point to minimize function J(x,W 1). Since W 1 is
close to W 0, x∗(W 1) is close to x∗(W 0). Moreover, since
the optimization starts with x∗(W 0), it is expected that the

algorithm will converge to x∗(W 1) in a small number of
iterations. This can then serve as the initial point for the
minimization of J(x,W 2). This process is continued until
the minimization of J(x,W L) is achieved.

4.2. Minimization of J(x,W l)

A key step in the implementation of the above solution me-
thod is to minimize function J(x,W l) for each weighting
matrix W l. Since the initial point x∗(W l−1) is not far
from the solution, it is quite appropriate to consider per-
turbed vectors uk + γk and vk + δk for k = 1, . . . , K. In
order to ensure that the perturbed vectors are not widely dif-
ferent from their unperturbed counterparts, the constraints

‖γk‖∞ ≤ bk and ‖δk‖∞ ≤ bk for 1 ≤ k ≤ K (7b)

are imposed where bk are prescribed upper bounds, and
‖ · ‖∞ denotes the infinity norm which is equal to the max-
imum magnitude of the vector’s components. Under these
conditions, the optimization problem at hand becomes

minimize
γ,δ

‖W ◦ [F −
K∑

k=1

(uk + γk)(vk + δk)H ]‖2
F (8a)

subject to: ‖γk‖∞ ≤ bk and ‖δk‖∞ ≤ bk (8b)

for k = 1, . . . , K

Since the perturbation vectors γk and δk are all small in
magnitude, the second-order term W ◦

∑K
k=1 γkδH

k can be
neglected and the objective function in (8a) can be approxi-
mated as

Ĵ(z,W ) = ‖D−
K∑

k=1

W ◦ (γkvH
k )−

K∑
k=1

W ◦ (ukδH
k )‖2

F

(9)
where

z =
[

γ
δ

]
, γ =




γ1
...

γK


 , δ =


 δ1

...
δK




D = W ◦
(

F −
K∑

k=1

ukvH
k

)

It can be verified that Ĵ(z,W ) in (9) is a quadratic function
of z with a positive definite Hessian matrix. Consequently,
the optimization problem.

minimize Ĵ(z,W ) (10a)

subject to: constraints in (8b) (10b)

is a quadratic programming (QP) problem. Efficient algo-
rithms for QP problems are available in the literature [16][17].

III-695



4.3. A Special Case

A special case of practical importance is the WLRA for real-
valued matrices. If F ∈ RM×N , then the quadratic function
Ĵ(z,W ) in (9) can be expressed as

Ĵ(z,W ) = zT Qz − 2zT q + ‖D‖2
F (11a)

where

Q =
[

E Y
Y T G

]
, q =

[
qγ

qσ

]
(11b)

E = {E(k,m), 1 ≤ k ≤ K, 1 ≤ m ≤ K} (11c)

E(k,m) = diag{e(k,m)
1 , . . . , e

(k,m)
M } (11d)

e
(k,m)
i =

N∑
j=1

w2
ijv

(k)
j v

(m)
j (11e)

G = {G(k,m), 1 ≤ k ≤ K, 1 ≤ m ≤ K} (11f)

G(k,m) = diag{g(k,m)
1 , . . . , g

(k,m)
N } (11g)

g
(k,m)
j =

M∑
i=1

w2
iju

(k)
i u

(m)
i (11h)

Y = {Y (k,m), 1 ≤ k ≤ K, 1 ≤ m ≤ K} (11i)

y
(k,m)
ij = w2

iju
(m)
i v

(k)
j for 1 ≤ i ≤ M, 1 ≤ j ≤ N (11j)

qγ =




qγ1

...
qγK


 , qδ =




qδ1
...

qδK


 (11k)

qγk = (W ◦ D)vk (11l)

qδk = (W ◦ D)T uk (11m)

In the above formulas, wij denotes the (i, j)th element of

W and u
(k)
i denotes the ith element of uk.

The constraints in (8b) become[
−bγ

−bδ

]
≤

[
γ
δ

]
≤

[
bγ

bδ

]

where

bγ =




b1eγ

...
bKeγ


 , bδ =


 b1eδ

...
bKeδ




eγ = [1 · · · 1]T ∈ RM×1 and eδ = [1 · · · 1]T ∈ RN×1.
Therefore, the QP problem in (10) becomes

minimize zT Qz − 2zT q (12a)

subject to: − b ≤ z ≤ b (12b)

where b = [bT
γ bT

δ ]T . The problem in (12) involves (M +
N)K variables and 2(M + N)K linear constraints.

The solution obtained by solving the problem in (12) is
used to update vectors u and v (see (6a)). The updated u
and v are then used to update Q and q using (11b)–(11m),

and the updated Q and q are used in the problem in (12)
to find a new perturbation vector z. The iteration continues
until the magnitude of z is less than a prescribed tolerance.

5. APPLICATION FOR THE DESIGN OF 2-D
DIGITAL FILTERS

For the sake of simplicity, we consider the design of linear-
phase 2-D digital filters. In this case, matrix F consists of
the desired amplitude response at a set of frequency grid
points over the region {−π ≤ ω1 ≤ π, −π ≤ w2 ≤ π}. A
piecewise constant weighting matrix W with large values
for the passbands and stopbands and small values for the
transition bands can be used to emphasize important parts
and deemphasize unimportant parts of matrix F . Having
determined matrices F and W , the method described in
Sec. 4 can be applied for a given number of sections, K,
to obtain vectors uk, 1 ≤ k ≤ K and vk, 1 ≤ k ≤ K that
minimize J(x,W ) in (6a).

The vectors uk and vk obtained can be viewed as the
desired amplitude responses of a pair of 1-D digital filters.
On the basis of these amplitude responses, corresponding
transfer functions Fk(z1) and Gk(z2) can be obtained by
solving the approximation problems involved. Using these
transfer functions, a 2-D transfer function can be obtained
as

H(z1, z2) =
K∑

k=1

Fk(z1)Gk(z2) (13)

whose amplitude response approximates
∑K

k=1 ukvT
k .

The use of WLRA in the SVD method offers consider-
able design flexibility, in practice, and enables the designer
to achieve not only a better design but also a more econom-
ical one.

6. A DESIGN EXAMPLE

The proposed method was applied to design a circularly
symmetric, linear phase, lowpass, FIR 2-D filter. The nor-
malized passband and stopband edges of the filter were set
to ωp = 0.25 and ωa = 0.35, respectively. Because the
filter is quadrantally symmetric, matrix F was composed
of the desired magnitude response in the frequency region
{0 ≤ ω1 ≤ π, −π ≤ ω2 ≤ 0} over 31 × 31 grid points.
The weighting function was given by

W (ω1, ω2) =




1 for 0 ≤
√

ω2
1 + ω2

2 ≤ 0.26
0.1 for 0.26 <

√
ω2

1 + ω2
2 < 0.35

1 for
√

ω2
1 + ω2

2 ≥ 0.35
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The sequence of interpolating weighting matrices, {W i, i =
0, 1, . . . , 9}, were specified by

Wi(ω1, ω2) =




1 for 0 ≤
√

ω2
1 + ω2

2 ≤ 0.26
1 − 0.1i for 0.26 <

√
ω2

1 + ω2
2 < 0.35

1 for
√

ω2
1 + ω2

2 ≥ 0.35

For each W i, the MATLAB routine called quadprog was
used to solve the QP problem in (12) and the algorithm de-
scribed in Sec. 4.3 converged in 5 iterations. In our design,
four pairs of linear-phase FIR 1-D filters of order 40 were
used to construct the 2-D digital filter. The maximum pass-
band ripple and minimum stopband attenuation of the 2-D
filter were 0.0783 and 24.11 dB, respectively. The ampli-
tude response of the filter is shown in Fig. 1. For compari-
son purposes, a 2-D filter was obtained using the same de-
sign specifications by applying the SVD method [10][11]
without WLRA. The maximum passband ripple and min-
imum stopband attenuation of the filter were 0.0814 and
22.76 dB, respectively, and the amplitude response was sim-
ilar to that in Fig. 1. In effect, significant improvements
have been achieved through the use of weighting.

0. 5

0

0.5

0. 5

0

0.5
0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Amplitude response of the filter designed using
the proposed method.

7. CONCLUSIONS

We have developed a method that can be used to perform
WLRA that is globally optimal for complex-valued matri-
ces. It has been shown that the global solution can be ob-
tained by solving QP subproblems in an iterative manner.
The usefulness of the proposed method has been demon-
strated by showing that it yields designs with reduced pass-
band ripple and increased stopband attenuation relative to
the SVD method without WLRA.
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