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ABSTRACT 
In essence, designing a perfect-reconstruction (PR) biorthogonal 
cosine-modulated filter bank (BCM) is a non-convex 
constrained optimization problem that can be solved in principle 
using general optimization solvers. However, when the number 
of channels is large and the order of the prototype filter (PF) is 
high, numerical difficulties in using those optimization solvers 
often occur, and the computational efficiency also becomes a 
concern. This paper proposes an algorithm that carries out the 
design in two stages. In the first stage, a convex Lagrangian 
relaxation technique is used to obtain a near PR (NPR) filter 
bank and, in the second stage, the coefficient vector of the PF 
obtained is alternately projected onto the null-spaces that are 
associated with the PR constraints, which turns the NPR filter 
bank into a PR filter bank. Simulation results are included to 
demonstrate the robustness of the proposed algorithm for 
designing BCM filter banks with a large number of channels and 
high-order PF as well as satisfactory design efficiency. 

1. INTRODUCTION 

Biorthogonal cosine-modulated filter banks (BCM) have played 
an increasingly important role in multirate signal processing 
because they offer reduced system delays compared to what 
linear-phase cosine-modulated filter banks can offer and their 
efficient implementation can be readily substantiated through the 
polyphase decomposition. In addition, the optimal synthesis of a 
BCM-based multirate system can be focused on the prototype 
filter (PF) alone.  

Recent progress in the analysis and design of BCM filter banks 
has been reported by several authors, see, for example, [1] – 
[13]. Available design techniques include the quadratic-
constrained least-squares (QCLS) method [4], [9], [10] that 
minimizes the stopband energy of the PF subject to the time-
domain PR constraints; the factorization-based method [8], [11] 
that yields a parameterized realization in which the PR property 
is ensured while minimizing the stopband energy of the PF; and 
the sequential design method [13] that is carried out by first 
designing a filter bank with small number of channels and a 
relatively short filter length and then gradually increasing the 
number of channels as well as the filter length using a technique 
initiated in [3]. 

The optimization problem formulated in the time-domain is 
nonconvex. Although, in principle, general optimization solvers 
can be applied to find a solution,  when the channel number is 

large and the order of the prototype filter (PF) is high, numerical 
difficulties in using those optimization solvers often occur, and 
the computational efficiency also becomes a concern. This paper 
proposes an algorithm that carries out the design in two stages. In 
the first stage, a convex relaxation technique is used to obtain a 
near PR (NPR) filter bank. The relaxation is carried out by a 
sequential convex approximation of the Lagrangian associated 
with the original (nonconvex) optimization problem, and can be 
viewed as an enhanced version of sequential quadratic 
programming (SQP) [14]. In the second stage, the coefficient 
vector of the PF obtained from the first stage is alternately 
projected onto the null-spaces that are associated with the PR 
constraints. The projections turn the NPR filter bank into a 
nearby PR filter bank with a fairly moderate increase of the 
stopband energy for the PF. Simulation results are included to 
demonstrate the robustness of the proposed algorithm for 
designing BCM filter banks with a large number of channels and 
high-order PF as well as satisfactory design efficiency. 

2. DESIGN PROBLEM 

2.1 BCM Filter Banks 

An M-channel maximally decimated BCM filter bank is 
characterized by the coefficients of its analysis and synthesis 
filters that are given by 
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for 1 1k M≤ ≤ − and 0 1n N≤ ≤ − , respectively, where {h(n)} is 
the impulse response of the finite-impulse-response (FIR) PF, 
and D denotes the system delay. BCM filter bank structures other 
than that of (1) can also be obtained using different DCT 
modulations [10]. In this paper, however, we shall concentrate on 
the DCT-IV BCM filter banks as specified by (1) along with the 
following assumptions: (i) the channel number M is even, (ii) the 
filter length N assumes the form N = 2mM for some positive 
integer m, and (iii) the system delay assumes the form D = 2sM + 
d where s is an integer and d = 2M – 1. The rationale of these 
assumptions have been addressed in the literature [10] – [12]. 
The input-output relation of the system in the z-domain is given 
by  
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It follows that the filter bank holds the PR property if and only if 

                          0 ( ) for [0, ]j jDT e eω ω ω π−= ∈  

               ( ) 0j
lT e ω = for [0, ]ω π∈ and 1 1l M≤ ≤ −  

In the time-domain, the PR condition can be described by the 
following set of quadratic equations [10]: 
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and , ( ) / 2l nc n s Mδ= − . The performance of a BCM filter bank 

is typically measured by: 

• Amplitude distortion: 0( ) 1 ( )j
me T e ωω = −                             

• Group-delay distortion: 0( ) arg ( )j
gde D T e ωω = −    

• Worst-case aliasing error: 
1 1

( ) max ( )j
a ll M

e T e ωω
≤ ≤ −

=        

where [0, ]ω π∈ . A filter bank is said to be NPR if the above 
measures are uniformally small in magnitude for all frequencies. 
Concerning the PF, it is often desirable to construct a PR or NPR 
filter bank with the PF’s stopband energy 
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It can easily be verified that 2 ( ) Te =h h Ph where P is a symmetric 
positive definite Toeplitz matrix determined by its first row given 
by [ sin sin( 1) /( 1)]s s sN Nπ ω ω ω− − − − −L . 

2.2 PR Constraints 

It can be readily verified that with d = 2M – 1, the constraints in 
(3a) for 0 2 2n m≤ ≤ − and / 2 1M l M≤ ≤ − are identical to 

those for 0 2 2n m≤ ≤ − and 0 / 2 1l M≤ ≤ − . Therefore, the PR 
constraints to be considered in this paper are given by 

  , ,
T

l n l nc=h Q h  for 0 2 2n m≤ ≤ −  and  0 / 2 1l M≤ ≤ −  (5) 

where , 2 1 1
T T
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2.3 Problem Formulation 

The design problem can be stated in the time-domain as 

                     2minimize ( ) Te =h h Ph                          (6a) 

                     subject to: constraints in (5)                     (6b) 

A difference between (6) and the one in [10] is that the number 
of constraints involved in (6b) is a half of that in Eq. (65) of [10]. 

3. DESIGN METHOD 

3.1 Basic Sequential Quadratic Programming  

The Lagrangian of the constrained problem (6) is given by [14] 
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where K = M(2m – 1)/2 = (N – M)/2 is the number of constraints 
in (6b), and ai(h) = hTQl,nh – cl,n with i = nM/2 + l + 1. It is well 
known that a solution of problem (6) must satisfy the following 
Karush-Kuhn-Tucker (KKT) condition [14]: 
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Suppose we start with a reasonable initial PF coefficient vector 
h0 and an initial Lagrange multiplier vector 0 = 0λ . In the kth 

iteration, { , }k kh λ  is updated to 1 1{ , } { , } { , }k k k k h λ+ + = +h hλ λ δ δ  
such that  

   2
1 1( , ) ( , ) ( , ) h

k k k k k kL L L
λ

+ +

 
∇ ≈ ∇ + ∇ = 

 
0h h h

δ
λ λ λ

δ
       (9) 

which leads to the following linear system of equations: 
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Note that (11a) and (11b) are the exact KKT conditions for the 
following quadratic programming (QP) problem: 

                 
1

minimize
2

T T
k k+W gδ δ δ                     (12a) 

                 subject to: k k= −A fδ                               (12b) 

Once a solution of (12) is obtained, based on (11a) the Lagrange 
multiplier vector can be computed as 

                     1
1 ( ) ( )T

k k k h k
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and Wk, gk, and Ak can be updated to Wk+1, gk+1, and Ak+1 
accordingly. The iteration continues until certain criterion, such 
as the norm of hδ is less than a prescribed tolerance or the 
number of iterations reaches a given bound, is satisfied. 

3.2 Convex Relaxation of Problem (12) 

In general, the objective function in problem (12) is not convex. 
To obtain a meaningful iterate from the approximate KKT 
condition in (9), a convex relaxation of (12) is desirable. This 
can be accomplished in two ways. Perhaps the simplest way is to 
replace matrix Wk with constant matrix 2P. As a result, the 
modified problem in (12) is a convex QP problem that possesses 
a unique global minimizer. Also note that the modified Hessian 
matrix requires no update during the iteration process. However, 
because of the modification, the Lagrange multiplier kλ  is no 
longer able to influence the Hessian and the modified algorithm 
usually cannot enjoy a fast convergence rate. Another way to 
relax the problem in (12) into a convex QP is to use a quasi-
Newton update, such as the Broyden-Fletcher-Goldfarb-Shanno 
formula [14], [15] that replaces Wk by Yk where Yk is updated as 
follows: 
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3.3 Further Enhancements 

The algorithm can be further enhanced by including a norm 
constraint on vector hδ  and a line search step. The norm 
constraint is of importance because it validates the approximation 
(9). In doing so, the convex relaxation of problem (12) becomes 
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minimize
2

T T
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                   subject to: k k= −A fδ                             (15b) 

                                         β≤δ                                 (15c) 

where β  is a small positive scalar. The problem in (15) is a 
second-order cone programming problem [16] that can be solved 
using, for example, SeDuMi [17]. Having obtained the solution 
δ , a line search is carried out by finding a positive scalar kα that 
minimizes the following merit function  
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where µ  > 0 weighs the importance of the constraints in (6b) in 
relative to the stopband energy. Having done this, the PF 
coefficient vector is updated from hk to 1k k kα+ = +h h δ . 

3.4 Alternating Null-Space Projections 

The above method can be used to obtained a practically PR BCM 
filter bank when a sufficient number of iterations are carried out. 
Below we sketch a method that can be used to turn an NPR into a 
PR filter bank quickly provided that the NPR filter bank is 
sufficiently “close” to its PR counterpart.  

A careful examination of the constraints in (5) shows that these 
equations can be expressed as either o ek k=C h b  or e ok k=C h b , 
where hek and hok are N/2-dimensional vectors formed by the 
even-indexed and odd-indexed components of hk, respectively, 
Co and Ce are (N – M)/2 by N/2 matrices that are linearly 
determined by hok and hek, respectively, and bk is a constant 
vector of dimension (N – M)/2. Matrices Co and Ce are in general 
of full row-rank. Consequently, for a fixed hok (or hek), the null-
spaces of linear operators Co (or Ce) are M/2-dimension 
subspaces in space RN/2. Therefore, for a fixed hok, if we denote a 
special solution of the linear system o ek k=C h b by hes, then all 

solutions of the system can be expressed as ek es e e= +h h V ξ where 

eV is a N/2 by M/2 matrix whose columns are a set of basis 

vectors in the null space of Co, and eξ  is an M/2-dimensional 
“free” vector that can be determined by minimizing the stopband 
energy of the PF. The above process can be viewed as projecting 
vector hk onto the null space so as to force the resulting 
coefficient vector to be PR. As such, it is expected that the 
change in the resulting coefficient vector will remain moderate if 
vector hk is already close enough to its PR counterpart. Next, a 
similar projection is performed by fixing an hek and expressing 
the solutions of e ok k=C h b as ok os o o= +h h V ξ where oV is formed 

by the basis vectors of the null space of Ce, and oξ is an M/2-
dimensional free vector that can be determined by minimizing 
the stopband energy of the PF. The projection continues several 
times until the difference between the PF coefficient vectors 
before and after the projection becomes insignificant. 

4. DESIGN EXAMPLES 
The proposed algorithm was applied to design several BCM filter 
banks. In each design 1ρ = and 100µ = were assumed. The 
algorithm was implemented using MATLAB on a Pentium III 
1GHz PC. The design parameters and performance evaluation 
results are shown in Table I, where Ki denotes the number of 
iterations carried out in the first stage of the design, and Proj. # 
denotes the number of projections performed. As a representative 
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of the designs, the amplitude responses of the PF and those 
analysis filters in the frequency range 0 /16ω π≤ ≤ for the 
256-channel filter bank are shown in Figs. 1a and b, respectively. 

Concerning the computational efficiency, note that solving the 
problem in (15) takes most of the CPU time in each iteration of 
the first design stage. The average CPU time for solving (15) in 
the four designs listed in Table I was 6.46, 40.60, 81.45, and 
402.71 seconds, respectively. The CPU time required to carry out 
the second stage of the design was found insignificant in relative 
to that of the first stage.  

Table I: Design Parameters and Performance Evaluation Results 

M 32 64 128 256 

N 320 640 1280 2560 

D 255 511 1023 1535 

e2(h) 61.04 10−⋅  75.77 10−⋅  73.01 10−⋅  72.65 10−⋅  

max|em| 142.68 10−⋅  144.34 10−⋅  131.24 10−⋅  132.05 10−⋅  

max|egd| 114.71 10−⋅  101.17 10−⋅  111.29 10−⋅  111.44 10−⋅  

max|ea| 142.99 10−⋅  145.87 10−⋅  131.26 10−⋅  132.68 10−⋅  

Ki 100 200 550 590 

Proj. # 10 10 0 0 

 

Figure 1. Amplitude responses of (a) the PF for the BCM filter 
bank with M = 256, N = 2560 and D = 1535; and (b) its analysis 
filter bank in the frequency range 0 /16ω π≤ ≤ .                              
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