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ABSTRACT

This paper is concerned with the design of M -channel,
biorthogonal filter banks that are adapted to input statistics
in terms of a certain coding gain criterion. Using a linear
approximation of the coding gain together with a norm con-
straint on the parameter perturbation vector which validates
such an approximation, and parameterization of a first-order
approximation of the perfect reconstruction condition, we
show that the design problem at hand can be formulated as
a second-order cone programming problem. Simulation re-
sults are presented to illustrate the proposed design method.

1 Instruction

There has been a great deal of interest in orthogonal and
biorthogonal filter banks that are optimal in terms of some
coding gain criterion [1]–[6]. Biorthogonal filter banks offer
improved performance over orthogonal filter banks but the
optimal design of a biorthogonal filter banks involves some
sophisticated constrained optimization problem [4][6].

In [6], the design of M -channel signal-adapted biorthogo-
nal filters banks of finite length is formulated as a constrained
optimization problem and is solved by converting it into an
iterative line-search problem through a first-order parame-
terization of the perfect reconstruction condition. A problem
encountered in the algorithmic implementation of the method
in [6] is that numerical instability may occur due to lack of
a mechanism to control the magnitude of the parameter per-
turbation vector. Controlling the magnitude of the parameter
perturbations is of critical importance because it validates a
key first-order parameterization step in the design algorithm.
In this paper, we take a different approach to the problem
at hand using second-order cone programming (SOCP). By
viewing a bound condition on the Euclidean norm of the
parameter perturbation vector as a second-order cone con-
straint, the design problem is shown to well fit into an SOCP
setting. Simulation results are presented to illustrate the pro-
posed design method.

2 A Brief Review of SOCP

Second-order cone programming, which is sometimes called
the conic quadratic programming [7][8], is a subclass of
convex programming problems where a linear function is

minimized subject to a set of second-order cone constraints
[7][9]:

minimize fT x (1a)

subject to: ‖Aix + bi‖ ≤ cT
i x + hi, i = 1, . . . , N (1b)

where f ∈ Rn×1, Ai ∈ R(ni−1)×n, bi ∈ R(ni−1)×1, ci ∈
Rn×1, and hi ∈ R. The term “second-order cone” here
reflects the fact that each constraint in (1b) is equivalent to a
conic constraint [

cT
i

Ai

]
x +

[
hi

bi

]
∈ Ci

where Ci is the second-order cone in Rni , i.e.,

Ci =
{[

t
u

]
: u ∈ R(ni−1)×1, t ≥ 0, ‖u‖ ≤ t

}

From (1), it is evident that CQP includes linear programming
and convex quadratic programming as special cases. On the
other hand, since each constraint in (1b) can be expressed as

[
(cT

i x + hi)I Aix + bi

(Aix + bi)T cT
i x + hi

]
� 0 (2)

where M � 0 denotes that M is positive semidefinite,
SOCP is a subclass of semidefinite programming (SDP)
[9][10]. Commercial and public domain software based on
interior-point optimization algorithms for SOCP and SDP are
available [11]–[13]. It is important to stress, however, that in
general the problem in (1) can be solved more efficiently as
a SOCP problem than solving it in an equivalent SDP setting
[7].

3 The Design Problem

We are concerned with the design of M -channel, biorthogo-
nal filter banks illustrated in Fig. 1 that are adapted to input
statistics in terms of a certain coding gain criterion, where the
input signal x(n) is wide-sense stationary (WSS) with power
density Sxx(ω) and variance σ2

x, and each of the blocks la-
beled with Q represents a quantizer. The performance of the
subband system in Fig. 1 can be measured in terms of the
coding gain, GSBC(M), which is defined as the ratio of the



mean-square value of the roundoff quantization error to the
average variance of the reconstruction error, and can be ex-
pressed as [4] GSBC(M) = σ2

x/Φ1/M , where

Φ =
M−1∏
i=1

2π∫
0

Sxx(ω)|Hi(ω)|2 dω

2π

2π∫
0

|Fi(ω)|2 dω

2π
(3)
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Figure 1: M -channel maximally decimated uniform filter
bank.

It follows that for a given WSS input, maximizing the cod-
ing gain is equivalent to minimizing Φ subject to that the
filter bank holds the perfect reconstruction property (PR).
Therefore the design problem at hand can be formulated as
the constrained optimization problem

minimize Φ (4a)

subject to: the filter bank is PR (4b)

Assume for the sake of simplicity that all filters involved
in the subband system are of FIR and have the same length,
i.e.,

Hi(z) =
N−1∑
k=0

hi,kz−k for 0 ≤ i ≤ M − 1 (5a)

Fi(z) =
N−1∑
k=0

fi,kz−k for 0 ≤ i ≤ M − 1 (5b)

and define

hi = [hi,0 · · · hi,N−1]T (6a)

f i = [fi,0 · · · fi,N−1]T (6b)

x = [hT
0 · · · hT

M−1f
T
0 · · · fT

M−1]
T (6c)

Function Φ in (3) can then be expressed as

Φ(x) = Φ̂2(x) with Φ̂(x) =
M−1∏
i=0

(∥∥∥R1/2hi

∥∥∥ · ‖f i‖
)

(7)
where R is a symmetric, positive-definite Toeplitz matrix
whose first row is given by [r0 r1 · · · rN−1] with

ri =
1
2π

2π∫
0

Sxx(ω) cos(iω) dω (8)

Suppose we are in the kth iteration and seek to find an
increment vector δ such that Φ(xk + δ) < Φ(xk) and, at
xk + δ, the system is near PR.

At x = xk + δ, we can write

Φ̂(x) ≈ Φ̂(xk) + gT
k δ (9)

provided that
‖δ‖ is small (10)

where gk = ∇Φ̂(xk). In this case we have

Φ(x) ≈ [Φ̂(xk) + gT
k δ]2 (11)

and the above δ can be determined by solving the constrained
problem

minimize η (12a)

subject to: (Φ̂(xk) + gT
k δ)2 ≤ η (12b)

‖δ‖2 ≤ β (12c)

xk + δ is near PR (12d)

where (12a) with (12b) and (12d) are aimed at reducing Φ(x)
while (12c) implements (10) so as to validate (9).

4 Gradient of Φ̂(x)

Let R̂ = R1/2 and write Φ̂(x) in (7) as

Φ̂(x) =
M−1∏
i=0

‖R̂hk‖ · ‖f i‖ (13)

We compute

∇Φ̂(x) =




∂Φ̂

∂h0

...
∂Φ̂

∂hM−1

∂Φ̂

∂f 0

...
∂Φ̂

∂fM−1




(14a)

with

∂Φ̂
∂hi

= Φ̂(x)

N∑
k=1

(R̂hk)krk

‖R̂hi‖2
(14b)

∂Φ̂
∂f i

= Φ̂(x)
f i

‖fk‖2
(14c)

where rk denotes the kth column of R̂.

5 Parameterization of the PR Condition

Let P and Q be the matrices that comprise the coefficients
of the analysis and synthesis filters, respectively, i.e.,

P =




hT
0
...

hT
M−1


 , Q =




fT
0
...

fT
M−1


 (15)



and assume N = ML for some integer L, and partition each
of P and Q into L blocks as

P = [P 0 · · · P L−1], Q = [Q0 · · · QL−1] (16)

with each P i and Qi an M × M matrix. It is known
[6] that the PR condition can then be expressed for k =
0, 1 . . . , 2L − 2 as

Sk =
{

J if k = L − 1
0 elsewhere

(17a)

where

Sk =
L−1∑
i=0

P T
i Qk−i (17b)

with the understanding that P i and Qi for i < 0 or i > L−1
are zero matrices, and

J =
Î

M
, Î =


 0 1

· ·
·

1 0


 (17c)

For the sake of notation simplicity, we introduce two
matrix sequences P = {P 0, P 1, . . . ,P L} and Q =
{Q0, Q1, . . . , QL} and define the matrix convolution of
P and Q as

S = conv(P,Q) = {S0, . . . , S2L−2} (18)

The PR condition in (17) can be expressed as

conv(P,Q) = J (19a)

where
J = {0, . . . , 0, J , 0, . . . , 0} (19b)

In the kth iteration, point xk is updated to xk+1 = xk + δ
where

δ = [∆hT
0 · · · ∆hT

M−1 ∆fT
0 · · ·∆fT

M−1]
T

such that, in addition to the requirement imposed Sec. III,
xk + δ is a better approximate solution of the equation in
(19a) subject to a normalization condition

M−1∑
i=0

N−1∑
k=0

hik = 1 (19c)

Now if we let (Pk,Qk) and (Pk+1,Qk+1) be the matrix se-
quences (P,Q) associated with xk and xk+1, respectively,
then we have

Pk+1 = Pk + ∆P
Qk+1 = Qk + ∆Q

where ∆P and ∆Q are two perturbation sequences that are
linearly dependent on δ. It can be readily verified that

conv(∆P,Qk) + conv(Pk,∆Q) = Ĵ (20)

where

Ĵ = J − conv(Pk,Qk) − conv(∆P,∆Q)

Under the constraint in (10), a reasonable linear approxima-
tion of the equation in (20) is given by

conv(∆P,Qk) + conv(Pk,∆Q) = Ĵ0 (21a)

with
Ĵ0 = J − conv(Pk,Qk) (21b)

In addition, the constraint in (19c) at xk + δ remains linear:

M−1∑
i=0

N−1∑
k=0

∆hik = 0

i.e.,
eT δ = 0 (22)

where e = [1 · · · 1 0 · · · 0]T is the 2MN -vector whose
first half of the components are unity and the remaining half
equal to zero. The linearized equation in (21a) is now com-
bined with (22) to form a linear equality constraint

Γδ = γk (23)

In the above formula, Γ ∈ R(2MN−M2+1)×2MN and γk ∈
R(2MN−M2+1)×1. Clearly, for M > 1, the linear system in
(23) is underdetermined, and its solutions can be parameter-
ized by an (M2 − 1)-dimensional free parameter vector:

δ = δ0 + V eξ (24)

where δ0 = Γ†γk with Γ† being the Moore-Penrose pseudo-
inverse of Γ, V e consists of the M2 − 1 basis vectors in the
null space of Γ, and ξ ∈ R(M2−1)×1 is a free parameter
vector. Note that matrix V e can be obtained, for example,
using the singular value decomposition of Γ = UΣV T and
taking V e as the submatrix of V consisting of its last M2−1
columns.

6 An SDP/SOCP Formulation

The analysis of our design problem now leads to the con-
strained optimization problem

minimize η (25a)

subject to: [Φ̂(xk) + gT
k (δ0 + V eξ)]2 ≤ η (25b)

‖δ0 + V eξ‖2 ≤ β (25c)

It is straightforward to verify that the constraint in (25b) is
equivalent to [

η ĝT
k ξ + bk

ĝT
k ξ + bk 1

]
� 0 (26)

where ĝk = V T
e gk and bk = Φ̂(xk) + gT

k δ0, and the con-
straint in (25c) is equivalent to[

β − c0 (ξ − d)T

ξ − d I

]
� 0 (27)



where c0 = δT
0 (I −V eV

T
e )δ0 and d = V T

e δ0. By defining

ξ̂ =
[

η
ξ

]
and ĉ =




1
0
...
0




The problem in (25) can be written as

minimize ĉT ξ̂ (28a)

subject to: (26) and (27) (28b)

Since (26) and (27) are linear matrix inequalities with respect
to ξ̂, (28) is an SDP problem.

We note that (25b) and (25c) can also be expressed as

|ĝT
k ξ + bk| ≤ η̂ (29)

and
‖V eξ + δ0‖ ≤ β̂

respectively, where η̂ = η1/2 and β̂ = β1/2. If we re-define
vector ξ̂ as

ξ̂ =
[

η̂
ξ

]
(30)

then the problem in (25) can be converted into

minimize ĉT ξ̂ (31a)

subject to: ‖[0 ĝT
k ]ξ̂ + bk‖ ≤ ĉT ξ̂ (31b)

‖[0 V e]ξ̂ + δ0‖ ≤ β̂ (31c)

where (31b) is the same as (29) because we are dealing with
a scalar quantity. Obviously, (31) is an SOCP problem.

7 Summary of the Algorithm

We may start the algorithm by designing an M -channel max-
imally decimated filter bank of length N , which is not nec-
essarily biorthogonal. The parameter vector associated with
this filter bank is denoted by x0. Without loss of generality,
suppose we are in the kth iteration with a known xk which is
to be updated to xk+1 = xk + δk. The increment vector δk

is determined in to steps:

• Solve the SOCP problem (31) or the equivalent SDP
problem in (28); Delete the first component of the solu-
tion and denote the remaining part of the vector as ξ∗

• Use (24) to compute

δk = δ0 + V eξ
∗ (32)

Repeat the above steps until ‖xk+1 − xk‖ is less than a pre-
scribed tolerance, and then claim the converging x∗ = xk+1

as the solution vector.
As expected, however, the filter bank associated with x∗ is

only nearPR, and a “final touch” is needed to slightly adjust
x∗ so as to generate a practically PR filter bank. The needed

adjustment can be carried out by applying the proposed algo-
rithm with x∗ as the starting point and a reduced value of β
in (25c). An immediate effect of using a reduced β is that the
term conv(∆P,∆Q) in (20) gets reduced accordingly, yield-
ing a better approximate linear system (21). Consequently,
the solution so obtained shall generate a filter bank not only
with further improved coding gain but also a further near PR
property. If necessary, the above adjustment can be repeated
several times, each time using a further reduced β. In this
way, the filter bank eventually becomes practically PR.

8 Design Examples

We now present two examples to illustrate the proposed de-
sign method. Each example involves a 4-channel FIR filter
bank of length 8. Thus M = 4, N = 8, and L = 2. The
input signal was an autoregressive process (AR) with poles at
0.975e±jθ where the values of θ are specified below. The al-
gorithm starts with a 4-channel cosine modulated filter bank
[14].

Example 1 With θ = π/2.8 in the AR(2) process and
β = 0.1, it took the proposed algorithm 100 iterations to
generate a filter bank with coding gain increased from an ini-
tial value 2.2171 to 4.8261. Then with β being an half of its
preceding value, the algorithm was applied repeatedly until
the improvement in terms of coding gain as well as the PR
condition became insignificant. The coding gain achieved
was 6.8172 and the PR constraint was satisfied to within the
Frobenius norm

eF =

‖P T
0 Q0‖F + ‖1

4
J − P T

0 Q1 − P T
1 Q0‖F + ‖P T

1 Q0‖F

= 3.8153 × 10−14

The frequency responses of the various filters and power
spectral density of the input signal are shown in Fig. 2. It is
noted that the filter bank obtained improves both the coding
gain (6.6411) and the PR condition (eF = 2.3405 × 10−9)
for a similar system reported in [6].

Example 2 With θ = π/1.75 in the AR(2) process and
β = 0.1, it took the algorithm 50 iterations to obtain a filter
bank with coding gain 3.8697 and eF = 0.0077. Then with
β being an half of its preceding value, the algorithm was ap-
plied repeatedly until the improvement in coding gain and eF

became insignificant. The coding gain achieved was 4.9617
and the associated eF = 1.3824 × 10−15. The frequency re-
sponses of the various filters and the power spectral density
of the input signal are shown in Fig. 3. We note that the filter
bank obtained offers improvement over a similar system re-
ported in [6] in terms of the coding gain (4.9174) as well as
PR condition (eF = 6.3876 × 10−10).
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