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Abstract

A reduced-order adaptive velocity observer is proposed
Sor manipulator conirol. The observer combined with an
adaptive controller yields locally asymptotically stable
observed velocity errors and locally asymptotically stable
position and velocity tracking errors. Implementation of
the observer-controller on the PUMA-560 yields high
quality tracking results.

1. Introduction

In order to eliminate the need for tachometers or
numerical differentiation in obtaining velocity estimates for
use in control, one may use a velocity observer. An observer
was first used to estimate manipulator joint velocities in [1]
and [2] where full state estimators yielded observers with
second order dynamics. In [3] a reduced-order velocity
observer was proposed which has first order dynamics. In
these papers an exact knowledge of the manipulator's
dynamic parameters is assumed. For cases where dynamic
parameters are only partly known or not known at all, an
adaptive mechanism is required. In [4] an adaptive observer-
controller was proposed that uses a variable structure
formulation which might excite unmodelled frequencies. In
this paper a reduced-order adaptive observer-controller is
proposed which has been implemented on a PUMA-560
manipulator. The experimental results demonstrate that
accurate tracking results can be achieved.

2. Notation and Preliminaries

The dynamic equation of an n degree-of-freedom
manipulator is given by

H(q)§+C(q,4)q+Fq+g(q)=Y(q.4,4)a=17 )

where Y(q,4,4§) € R™ is a regressor matrix of known
functions and a € R” is a vector of dynamic parameters.

In this paper joint position measurements ¢ are assumed
to be available but joint velocities ¢ are not. It is also
assumed that some or all parameters of H(q), C{q,4), F

and g(q) are not precisely known.

Several properties of the manipulator dynamic equation
are useful in the development of the proposed adaptive
observer-controller and these are summarized as
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Property 1: The manipulator inertia matrix is positive
definite symmetric and bounded m, <|H(q)]<m, where

m;,m, >0, VgeR".

Property 2: The 2-norm of C(g,x) is bounded by m_|x|
where m_ > 0 is a positive constant.

Property 3: The matrix of Christoffel symbols, C(g,x)

satisfies C(g,x)& = C(q,&)x for any q,x,& € R* as defined
in [5].

Property 4: 5’(1-'1(4)—2C(q,x))§ =0 forany £ e R".

Property 5: The manipulator dynamic equation is linear in
its parameters of interest, i.e. H(q)y +C(q,E)& + FE +g(q)
=Y(q.§,y)aforany g.&, y e R"and ae R”.

3. The Combined Adaptive Observer-
Controller

In the formulation of the adaptive manipulator velocity
observer it is useful to rearrange (1) to give

x=H"(q)[7- C(q.x)x - Fx-g(q)] )

where x =¢. This is a first order equation in x where ¢ is
assumed to be known, 7 is the input and X is the output. The
proposed observer has a similar structure given by

ko= 7 (q)| - Cla.2)3, - 5, - 4(g)] + K5, ©)

where %, is the observed velocity estimate, %, = x— %, is
the observer error, X > 0 is a diagonal gain matrix, and (;)

denotes the estimate of (*). Concerning the realization of
(3), we note that

5,0 = 5,00~ 8)+ [ {W(g.5,.7.8)- Kz, Jar
+K[q(1)-q(t- A)] (4)
v(a.5,.7.8)= 07 (g - C(a. %)% - F5. - (a)]  (5)



where %,(0) is a reasonable initial guess of ¢(0) and A is the
integration interval. By subtracting (3) from (2) and
applying properties 3 and 5 the observation error can be
written as

H(q)i, =-C(q.%,)%, - C(q. %)%, - F%, - H(q)KZ,
+Y(q, ia, V)ﬁ (6)

where A=H-H, €=C-C, F=F-F, §=§—-g,
d=a-aand Y(q,%,,v) is the regressor matrix.

The adaptive observer presented above can be combined
with an adaptive controller to give locally asymptotically
stable tracking and observation errors. The controller is
given by

T= ﬁ(q){i, -(z.- x,)] +C(q.%,)x, + Fx, +3(q)
- d§ - K’a 1¢h)

where §=23x, —x,. The reference velocity is defined by
x, = x, —§ where x,(1) is the desired velocity trajectory and
G=q-q, is the position tracking error with desired
position trajectory g,(f). The proportional and derivative
gain matrices are K, and K, respectively. The controller's
error dynamics is found by equating (1) and (7) and applying
properties 3 and 5. Thus we have

H(q)s =-C(q,x)s— (K, + f)s— K, G+ KX,

+H(q)%, - C(a,%,)%, +Y(q.3,.%,,%,)a ®

where s=x—x,. Presently a theorem regarding system
stability will be developed.

Theorem. %,, G, §—0 as t >0 as long as the initial

conditions for the state vector e’ =[s" % §' a

satisfy B = {e(O):Ie(())ﬂ <min(B, , Bz)} where

B=3 e ©

1 ﬂ{(l—e’)knm,—ﬂx-e’(mu+mcm,)
2\ p.

2

1
_ 2 [n g+m,—ﬂz—m(kd+m,+m,md)
" 8e2+1\ p, m, (10)

and gains K and K, are designed such that k,>
(B, ~m, +&*(m,+mm,))/(1-€*) and g>B,~m, +
(ky+m, +mm,)f4€* for €€(0,1) where
(KH(q)+H(q)K)/2 and K, =k,].

g = a'min

329

Proof. Consider the candidate Lyapunov function
Lo
(1) = 5 e(e) Pla(0)e(t) an

where ¢’ =[s7 %I §' & ]and P(q)=diag(H(q),H(q).
K,,T™") with K, =K} >0,T >0. Then (11) satisfies

1 2 1
ok 5055 plef (12)

where p, = A, (P(q)) and p, = A, (P(q)). Since G=éand
§=s- g, the derivative of (11) can be expressed as

H(q)

v=1s" (H(q)& +K,G+ s] -7'K,G

+i [H(q)i, +Ha) i,)+ T
(13)

Substituting observer and controller error dynamics (6) and
(8) into (13) and using property 4 gives us

v=—sT(K, +F)s-3"K,§ -3 (H(q)K + F +C(q.2,))%,
+5" (K, + H(q)- C(q, %, )%, +57Y (4. %,.%,,%,)a
+%7Y(q,%,, v)a+a'T"a

If the parameter adaptation law is chosen as

(;i:—F[Yr(q,i‘,x,,.id)s+YT(q'£_,Vl)i,] 14

then
b= —s"(K, +F)s-§"K,§ - i (H(q)K + F +C(q,%,))%,
+57(K, + H(q)- C(q.x,))3,

Hence, since x, = x, — 4 and X, = x, +5— X, — § we obtain

v< —(kd +m, )||s||2 - (g+ m,—mm,—m, (|i,|+|s|+||6|))“i¢]r

kil + (ke + m+ m (g -+ Nl sl
(15)

where Jx,|<m,. K, =k, k, = ﬂ.m(Kp) and m, = A, (F).
Using |sff € +|&.|° /4€ 2 |ls} J%.]. (15) becomes



< {(1- &k, +m, —&(m, +mm, +mJl)]Is

- 1
-k‘pﬂqu2 -lg+m, —4—62(kd +m, +mcmd)

- | -
m b b+ (14 25 Yl

(16)

If at time ¢ =0 we have

B —my +€(m, +m.m, +m,[a(0})
k> (1-2) an
1
o>pB,-m, +Zx~:—’(k‘ +m,+m.m,)
) 1Y}
o [ O O+ (145 Jaol

(18)

for £e€(0,1), then ¥(0)<0. Furthermore, since

2Je(0) 2 [|s(0)] + %, () + Ja(0)]| + Ja(0)] we see that (17)
and (18) hold if

B —-m, + ez[m, +m.my+2m, %‘—“e(O)"J
]

&) (19)

k, >

1
o> [32—m,+—4 (ks +m, +mm,)
€

P, 1 J
+m,| 2 [“*fle(0 +(l+—)2 =% fle(0
2B+ (1+ 2 Bt
(20)
are satisfied. So, if (19) and (20) hold, then 3 ¢t < § for which
¥(t)<0. This implies that v(t)<v(0) for t<8. As a

consequence (12) tells us that [le(r)] <+/p,/p, |e(0)|. Then

||S(‘)||+| %, (1 < %’:“e(o)“ <2 f}—‘l‘||e(0)|| (21)
Ja(o= \[f)::km)n <2 %“‘"e(O)n )

So, as ¢ goes on, (16) implies v(¢) <0 as long as

Bi—m, +&*(m,+mm,+m|a())
(l—ez) (23)

ky >
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o>f, -m, +4—lz(k‘,+mn+mcmd)

oI Oh O (147 Jaol

(24)

for £€(0,1) and B,,5, > 0. But (23) is satisfied by virtue of
(22) and (19). Likewise, (24) is satisfied by virtue of (22),
(21) and (20). Therefore, it follows that

W) <-B I -Bl=S -k dl* . vizo0 (25)

where B, , B, , k, > 0. The region of stability, the minimum
of (9) and (10), is obtained by rewriting equations (19) and
(20) explicitly for [Je(0)].

For stability, we note from (12) and (25) that
§,X% ,4.del,_. In addition, from (25) we conclude
§,%,4 €L, To show §,%, eL_, express (8) and (6)
explicitly for § and fc,, .and note that all terms on the right
hand side are bounded since x=x,+s-gdelL_,
x,=x;—-qel_and x,=x,+s-%,~-GeL,_.

For the observer we have %,,%,el. and X, el,.
Proceeding with Barbalat's lemma we conclude %, =0 as
t — oo, Similarly, for the controller we have s,5€ L_ and
seL, which implies s—>0 as —oo. Finally, since
s=§+q is a stable filter s >0 implies that both §— 0
and G— 0 ast —> oo,

The implementation of the velocity observer (4) and

adaptation rule (14) will be considered presently. Let A be
the sampling interval, then discretization of (4) and (5) at

t =iA leads to

(i) = 2,(i-1)+Ay(i - 1)+ K[q(i) - (i - 1)]
~AKx, (i-1)

w(i-1) =7 - 1)1 - 1)~ EG- D3, - )]

7 (= 1)~ F3, (i-1)- §(i - 1)]
where i represents the time at ¢ = iA . O

Remark: A problem with continuity could arise in the

calculation of y if @ adapted in such a way that i
underwent rank reduction. However, using an adjustment

technique given in [6], positive definitness of # can be
maintained.

The controller can be implemented by calculating (7) at
each time instant t=iA. The implementation of the
parameter update law, however, is more involved and it is
accomplished by numerically integrating (14) using the
trapezoidal rule to yield



(0= a-)- T - 1] 2a() - ali-1)- 85,61
172 - 1) 3a()- 4= D)+ ali=1) - 3,6-D)]

where Y (i—1) is the value of Y7(q,%,y) at time
t=(i-1)A and Y] (i-1) is the value of ¥"(q,%,,x,,%,) at
time £=(i-1)A.

4. Experimental results

The second and third links of the PUMA-560 were used
for the implementation of the adaptive observer-controller.
To approximate continuous control more accurately the
Mark II controller was modified [7], making a 250Hz
sampling frequency possible. In this section, the second
PUMA link angle was considered joint angle one and the
third link angle was considered joint angle two. The fourth,
fifth and sixth links of PUMA have been combined to
represent the third link; the mass of this last link was
denoted by m,. In the experiment m, was assumed an
unknown quantity, even though it was accurately determined
in [8). The relevant model was defined as

H, H,
=[]
H, =a +2a5, +(Pl +2P2"2)a9
H,=H,= (”3 + azcz)"‘(Pa + chz)%
Hy =a, + pya,

C(g.4)=s5:(a, +p2”9)[

_[0
where g, =6.33, 4, =0.14, a, =0.11, a, =27.6, a, =31.9,
a,=3.30, a,=0.94, a, =4.54, a;=1.25 and p, =0.37,
p,=0.18, p; =0.18, p, =4.23, and p, =4.15. Also, note
the use of the short notation ¢, = cos(q, ), 5,, =sin(q, +¢,)-

In the regressor formulation of the model we have
Ya, +Y,a, = T where

4 4¢+@q
4 0

0 ac, +agc,, +(p.c, + psc
]and g(q)=[“ 6C12 (P41 512)a9:|

F
asCy + (Pscn )a,

Y = X HL oK 6 o 00

Lo oi+tsx k0 0 ¢ X X,

Yo, =2C,% +CyX, — 28, X,X; — S, X2

was the regressor associated with the known parameters

a=[a, ... g adp=[p, ... p] amd

Y, =[Yul Y-a]T
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Y, = (1’1 +2p,c, )4‘.:1 + (P3 + pac, )x, — 2P,y X, %; — stzx:
+p4Cy + pscyy
Yo = (Ps + PGy )ir, + ok, + P8, X0 + pscyy

was the regressor associated with the unknown parameter
ay=m,.

Presently, the implementation of the observer,
controller and adaptation law on PUMA for a fifth order
trajectory (see Fig. 1) and update rate of A =4 msec. will be
detailed.

The velocity estimate provided at the -th time instant
was calculated with

£,(k) =2, (k-1)+Ay(k-1)+K(q(k)-q(k-1))
-AK3, (k1)

w(k-1)=A"(q(k- 1))t~ C(alk-1), %, (k- 1))z, (k- 1)]
—H7(q(k=1))[F2,(k-1)- §(3,(k- 1))

The observer gain was made K = diag(100,100), the initial
velocity estimate was set at £,(0)=0 and the estimates

. 1w A
H(q)=|: u .‘ZJ
Hy Hy

ﬁu =a +2a,c, +(P1 +2p,¢,)d,

p=Hy = (aa +azcz)+(p3 +chz)ﬁ,
Hy, = a; + pyd,
C(a.2.) = 52(a, + prdy )[_f e (at x"’)]

xcl 0
N asc, +agCy, +(Pacy + pscy, )a
g(q)=[ sCy T GgCha (P4 1 fs lz)as
AsCiy +(P501;)09

were created by replacing the third link's mass a, = m, with
estimate d, = s,. The initial value for 4, was d,(0)=0.
The k-th torque signal was calculated as
(k) =Y, (q(k), 2,(k), x,(k), 14(k))a, (k)
+¥,(q(k), %, (k). x, (k). %, (k))ds (k)
—K $(k)~ K, (q(k)—g4(k))

where

Y, = |:5‘a ) ’.f.:z X .0 ,.0 ]

0 Yoo x5 0 O ¢, x4 X,
Yoo =260 + G0 — 5,300, — $:8, X — 385X,
Vi = Xy +5,3,%,

€ G



was the regressor associated with the known dynamic
parameters and

Yo=[Yu Y.|

Y, = (Px +2pyCy )ig + (P3 + D36 )k — P8 Ra%n
= P2SaXnZsy = PaSiReg Xy + PuCy + PsCry

Yoo =(Ps+ PsC2 )2 + Pidin + PoSifaXn + Psciy

was the regressor associated with the unknown dynamic
parameter. The position and derivative gains were chosen as

K,=diag(500,500) and K, =diag(2v500,2v500)
respectively.
The k-th parameter estimate d,(k) was calculated with

(k)= By (- )+ P (K- 1)
|85 6=1)3 (al8)- a(k - 2))- Ala()-atk 1)

#2188, (6=1)- 1) alk-2)|

where y=1.5 was selected as the adaptation gain, Y, is
defined above and

T
uo = [Yuol Yno2 ]
Yor = (Pl + szcz)WI + (P3 + chz)V’z —2p,85,% %,
— P8y 3% + pucy + pscyy
Yoo = (ps +paC, ) Vi + D, + 25,55 + pcyy

The results of the experiment are shown in Fig. 1 for
joint one of the model. A plot of the desired position versus
the actual position is shown in Fig. 1 (a) and the
corresponding position tracking error is shown in Fig. 1 (b).
Since the actual joint velocities could not be measured
directly, the observed velocity was used for comparison
against the desired velocity. This is shown in Fig. 1 (c). The
difference is plotted in Fig. 1 (d).

The estimate of the unknown value of the end-effector
mass was calculated at each sampling instant. The time
history of adaptation for this mass estimate is given in Fig.
2. The actual value of the end-effector mass was known from
[8] tobe m, =1.25 Kg. In order to obtain convergence to this
value, the parameter estimation gain had to be selected
properly.

With experimentation, it would not be possible to verify
the convergence of the observer error since the actual joint
velocities are not directly available. To make this
verification, a simulations was performed. The planar
manipulator described in the experimental section was used
with identical test parameters.

Figure 3 shows the observer simulation results for the
first joint of this model. In Fig. 3 (a) the observed velocity

%, versus the actual velocity x, is plotted and the related
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error ¥, = x, — %, is shown in Fig. 3 (b). The initial observer
error was set at —10 degrees.

5. Conclusions

A reduced-order adaptive observer-controller has been
proposed which has locally asymptotically stable
observation errors and locally asymptotically stable
position and velocity tracking errors. The proposed observer-
controller structure is adaptive towards unknown dynamic
parameters and does not require the switching modes such as
the variable structure methods to insure stability. This
results in an observer-controller which provides smooth
numerical performance. The combined observer-controller
was implemented on the PUMA-560 which yielded high
quality tracking. A simulation was also made to support the
theory and show that the observer error tends to zero
asymptotically.
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