Semidefinite Programming: A Versatile Tool for Analysis and Design of Digital Filters

W.-S. Lu
Dept. of Electrical and Computer Engineering
University of Victoria, P.O. Box 3055
Victoria, BC, Canada V8W 3P6

Abstract

Semidefinite programming (SDP) is a relatively new methodology for constrained optimization of a linear matrix-variable function subject to linear equality and inequality constraints as well as linear positive-semidefinite constraints. The primary purpose of this paper is to demonstrate that many digital-filter analysis and design problems can be formulated as SDP problems and, therefore, they can be solved effectively using powerful SDP solvers.

1 Introduction

Semidefinite programming (SDP) is a relatively new methodology for constrained optimization of linear matrix-variable functions subject to linear equality and inequality constraints as well as linear positive-semidefinite constraints. SDP includes the important linear programming (LP) and convex quadratic programming (QP) problems as its special cases. More importantly, many interior-point optimization algorithms that have proven efficient for LP and QP problems have recently been extended to SDP [1]-[4].

The primary purpose of this paper is to demonstrate that many digital-filter analysis and design problems can be formulated as SDP problems and, therefore, they can be solved effectively using powerful SDP solvers [2][5]. The analysis and design problems to be discussed in this paper include minimum-norm realization of two-dimensional (2-D) digital filter, minimax design of one-dimensional (1-D) and 2-D digital filters, and equiripple-passbands and least-squares-stopbands design of 1-D digital filters.

There are several ways a SDP problem can be formulated, and the one which turns out to be convenient for filter design purposes is given as

\[
\text{minimize} \quad c^T x \\
\text{subject to} \quad F(x) \succeq 0
\]

(1a)

(1b)

\[F(x) = F_0 + \sum_{i=1}^{n} x_i F_i \quad (1c) \]

In (1), \(x \in R^{n \times 1} \) is the variable, \(c \in R^{n \times 1} \), \(F_i \in R^{n \times n} \) \((i = 0, 1, \ldots, n) \) are given constant matrices with \(F_i \) symmetric, and \(F(x) \succeq 0 \) denotes that \(F(x) \) is positive semidefinite. Note that the constraint matrix \(F(x) \) in (1) is affine with respect to \(x \). SDP includes both linear and quadratic programming (QP) as special cases, and it represents a broad and important class of convex programming problems. More important, many interior-point methods which have proven efficient for linear programming, have recently been generalized to SDP [2][3].

2 Design of Nonlinear Phase FIR Filters

We consider the problem of designing a nonlinear-phase, FIR digital filter that approximates a desired frequency response (both magnitude and phase responses) in the passbands in the Chebyshev sense, and approximates desired (zero) magnitude response in the stopbands in the least-squares sense. Consideration of such designs has been justified by many, see for example Adams [20]. Design of nonlinear-phase equiripple FIR filters is also considered in the paper. The term “nonlinear-phase design” is referred to a filter design in which the phase response in stopbands and transition bands are not required to be linear. As expected, the phase-response relaxation in the stopbands and transition bands from strict linearity has been found useful in enhancing the performance of the filter designed [21][22].

Consider the transfer function of an \(N \)-tap FIR filter

\[H(z) = \sum_{k=0}^{N-1} h_k z^{-k} \]

(2)
and denote its frequency response by

$$H(\omega) = \sum_{k=0}^{N-1} h_k e^{-j k \omega} = h^T [c(\omega) - j s(\omega)]$$ \hspace{1cm} (3)$$

where $h = [h_0, \ldots, h_{N-1}]^T$, $c(\omega) = [1 \cos \omega \cdots \cos(N-1)\omega]^T$, and $s(\omega) = [0 \sin \omega \cdots \sin(N-1)\omega]^T$. Here we do not assume any symmetry in h. Let $H_d(\omega)$ be the desired frequency response, which is usually complex-valued. In an equiripple design, one seeks to find coefficient vector h that solves the optimization problem

$$\text{minimize} \ h \ \text{maximize} \ W(\omega)|H(\omega) - H_d(\omega)|$$ \hspace{1cm} (4)$$

where Ω is a compact region on $[-\pi, \pi]$. The minimax problem in (4) can be reformulated as

$$\text{minimize} \ \delta$$ \hspace{1cm} (5a)$$

subject to $W^2(\omega)|H(\omega) - H_d(\omega)|^2 \leq \delta$ for $\omega \in \Omega$ \hspace{1cm} (5b)$$

Now let

$$H_d(\omega) = H_r(\omega) - j H_i(\omega)$$

with $H_r(\omega)$ and $H_i(\omega)$ real, and use (3) to write the left-hand side of the constraint in (5b) as

$$W^2(\omega)|H(\omega) - H_d(\omega)|^2 = \alpha_1^2(\omega) + \alpha_2^2(\omega)$$ \hspace{1cm} (6)$$

where

$$\alpha_1(\omega) = h^T c_r(\omega) - H_r(\omega)$$

$$\alpha_2(\omega) = h^T s_r(\omega) - H_i(\omega)$$

$$c_r(\omega) = W(\omega)c(\omega)$$

$$s_r(\omega) = W(\omega)s(\omega)$$

$$H_r(\omega) = W(\omega)H_r(\omega)$$

$$H_i(\omega) = W(\omega)H_i(\omega)$$

Constraint (5b) then becomes

$$\delta - \alpha_1^2(\omega) - \alpha_2^2(\omega) \geq 0 \ \omega \in \Omega$$ \hspace{1cm} (7)$$

It can be shown that (7) is equivalent to

$$\Delta(\omega) = \begin{bmatrix} \delta & \alpha_1(\omega) & \alpha_2(\omega) \\ \alpha_1(\omega) & 1 & 0 \\ \alpha_2(\omega) & 0 & 1 \end{bmatrix} \succeq 0 \ \omega \in \Omega$$ \hspace{1cm} (8)$$

If we denote $x = [\delta \ h^T]^T$, then the linear dependence of $\alpha_1(\omega)$ and $\alpha_2(\omega)$ on h implies that matrix $\Delta(\omega)$ in (8) is affine w.r.t. x. Therefore, if $\{\omega_i, i = 1, \ldots, M\} \subseteq \Omega$ is a set of grid points that are sufficiently dense in Ω, then a discretized version of (5) can be described as

$$\text{minimize} \ c^T x$$ \hspace{1cm} (9a)$$

subject to $F(x) \succeq 0$ \hspace{1cm} (9b)$$

where $c = [1 \ 0 \ \cdots \ 0]^T$, and $F(x) = \text{diag}\{\Delta(\omega_1), \Delta(\omega_2), \ldots, \Delta(\omega_M)\}$. Obviously, $F(x)$ in (9b) is affine w.r.t. x, hence (9) is a SDP problem. Note that $F(x)$ is a tridiagonal matrix of size $3M \times 3M$, which becomes increasingly sparse with M.

In an EPPLCSS type design, one seeks to find h which minimizes the weighted L_2 error function

$$e(h) = \int_{\Omega} W(\omega)|H(\omega) - H_d(\omega)|^2 d\omega$$ \hspace{1cm} (10a)$$

subject to constraints

$$|H(\omega) - H_d(\omega)|^2 \leq \delta_\rho \ \omega \in \Omega_\rho$$ \hspace{1cm} (10b)$$

$$|H(\omega)|^2 \leq \delta_\alpha \ \omega \in \Omega_\alpha$$ \hspace{1cm} (10c)$$

where Ω_ρ and Ω_α denote the unions of passbands and stopbands, respectively. Simple manipulations of the integral in (10a) yields

$$e(h) = h^T Ph - 2h^T q + c_0$$ \hspace{1cm} (11)$$

where

$$P = \int_{\Omega} W(\omega)[c(\omega) \ s(\omega)] [c(\omega) \ s(\omega)]^T d\omega$$

is positive definite for a compact Ω, and

$$q = \int_{\Omega} W(\omega)[H_r(\omega)c(\omega) + H_i(\omega)s(\omega)] d\omega$$

and

$$c_0 = \int_{\Omega} |H_d(\omega)|^2 d\omega$$

Let $P^{1/2}$ be the symmetric square root of P, i.e., $P^{T/2} = P^{1/2}$ and $P^{1/2}P^{1/2} = P$. Then (11) can be written as

$$e(h) = \|P^{1/2}h - P^{-1/2}q\|^2 - (\|P^{-1/2}q\|^2 - c_0)$$

Hence

$$e(h) \leq \delta$$

is equivalent to

$$\delta + c_1 - \|P^{1/2}h - P^{-1/2}q\|^2 \geq 0$$ \hspace{1cm} (12)$$
where \(c_0 = \|P^{-1/2}q\|^2 - c_0 \). It can be shown that (12) holds if and only if

\[
\Gamma_0 = \begin{bmatrix}
\delta + c_1 & h^T P^{1/2} - q^T P^{-1/2} \\
\frac{I_N}{P^{1/2} h - P^{-1/2} q}
\end{bmatrix} \succeq 0
\]

(13)

where \(I_N \) is the \(N \times N \) identity matrix. Note that matrix \(\Gamma_0 \) in (13) is affine w.r.t. \(\delta \) and \(h \), and does not depend on \(\omega \). Similar to the way we treat constraint (5b), it can be shown that constraint in (10b) is equivalent to

\[
\Gamma(\omega) = \begin{bmatrix}
\beta_1(\omega) & \beta_2(\omega) \\
\beta_2(\omega) & 0 & 1
\end{bmatrix} \succeq 0 \quad \omega \in \Omega_p
\]

(14)

where \(\beta_1(\omega) = h^T c(\omega) - H_p(\omega) \) and \(\beta_2 = h^T s(\omega) - H_s(\omega) \), and that constraint in (10c) is equivalent to

\[
\Phi(\omega) = \begin{bmatrix}
\gamma_1(\omega) & \gamma_2(\omega) \\
\gamma_2(\omega) & 0 & 1
\end{bmatrix} \succeq 0 \quad \omega \in \Omega_a
\]

(15)

where \(\gamma_1(\omega) = h^T c(\omega) \) and \(\gamma_2(\omega) = h^T s(\omega) \). Now if \(\{\omega_i^{(p)}, i = 1, \ldots, M_p\} \subseteq \Omega_p \) and \(\{\omega_i^{(a)}, i = 1, \ldots, M_a\} \subseteq \Omega_a \) are the sets of grid points in the passbands and stopbands, respectively, on which the constraints (14) and (15) are imposed, then a discretized version of minimizing (10a) subject to (10b) and (10c) can be formulated as

\[
\text{minimize} \quad c^T x
\]

subject to \(F(x) \succeq 0 \)

(16a)

(16b)

where \(x = [\delta, \delta_p, \delta_a, h^T]^T \), \(c = [1, w_p, w_a, 0 \ldots 0]^T \) with scalar weights \(w_p \) and \(w_a \), and \(F(x) = \text{diag}\{\Gamma_0, \Gamma(\omega^{(p)}) \ldots, \Gamma(\omega^{(a)}), \Phi(\omega^{(a)}) \ldots, \Phi(\omega^{(a)})\} \).

Clearly, \(F(x) \) in (16b) is affine w.r.t. \(x \), therefore (16) is a SDP problem.

Presently, there is only a limited number of software packages available that can be used to solve the SDP problem as formulated in (9). One of them is the LMI Control Toolbox from MathWorks Inc. [5]. The toolbox works with MATLAB and is aimed primarily at solving design problems arising from control engineering by using linear matrix inequality (LMI) techniques [6]. The LMI toolbox includes a command named mincx which implements the projective method proposed in [2][7] for solving SDP problems. For the sake of completeness, the next section offers a brief review of several key elements of the projective method.

Figure 1 shows the amplitude response of a 91-tap equiripple FIR filters designed by the proposed method to approximate a lowpass frequency response with normalized \(\omega_p = 0.2375 \), \(\omega_a = 0.2625 \), and group delay = 40. The LMI Control Toolbox was used to perform the design with 36 iterations and 190 Kflops.

3 Minimum-Norm Realization of 2-D Recursive Filters

Minimum-norm realizations (MNR) of digital filters have been known to possess several desirable properties [8][9]. These include the freedom of overflow limit cycles, low parameter sensitivity, and low roundoff output noise power. For 1-D recursive digital filters, the (spectral) norm of the system matrix of a filter’s MNR is equal to the largest magnitude of the filter’s poles and obtaining a MNR of a stable recursive filter is a rather simple linear algebraic problem [8]. In the 2-D case, all feasible state-space models, which have been employed for finite-wordlength-effect (FWE) analysis to date, are local models. And the effort to establish an explicit relation of the minimum norm of the system matrix under local state-variable transformations to the system’s “poles” is considerably complicated by the fact that the “poles” of a recursive 2-D filter are no longer isolated points but composed of continuous and often unbounded algebraic curves [9][10].

In [11], the problem of obtaining a MNR of a given 2-D recursive filter was formulated as an unconstrained optimization problem, and was tackled using quasi-Newton algorithms [12][13]. A problem with the approach in [11] is its exceedingly high computational complexity even for 2-D filters of moderate sizes. In what follows, we describe an alternative optimization-based method to obtain MNRs for 2-D recursive filters.
The problem at hand is formulated as a \textit{quasiconvex programming} problem, which has recently been intensively studied in the context of convex and semidefinite programming \cite{2,6}.

For the 2-D case, let \(\Sigma = \{A, b, c, d\} \) be a Roesser’s state-space characterization of a given 2-D filter with \(\Sigma \in \mathbb{R}^{(n_1+n_2) \times (n_1+n_2)} \), \(b \in \mathbb{R}^{(n_1+n_2) \times 1} \), \(c \in \mathbb{R}^{n_1 \times (n_1+n_2)} \), and \(d \in \mathbb{R} \), then \(\tilde{\Sigma} = \{\tilde{A}, \tilde{b}, \tilde{c}, \tilde{d}\} = \{T^{-1}AT, T^{-1}b, cT, d\} \) with nonsingular \(T = T_1 \oplus T_2 \), \(T_1 \in \mathbb{R}^{n_1 \times n_1} \), \(T_2 \in \mathbb{R}^{n_2 \times n_2} \) describes the same 2-D filter. A state-space model \(\tilde{\Sigma} = \{\tilde{A}, \tilde{b}, \tilde{c}, \tilde{d}\} = \{T^{-1}AT, T^{-1}b, cT, d\} \) is said to be a MNR of the filter if

\[
\min T_{\in T_1 \oplus T_2} ||T^{-1}AT|| = ||\tilde{A}||
\]

where \(||\cdot|| \) denotes the spectral norm.

By definition, \(||T^{-1}AT||^2 \) is equal to the largest eigenvalue of \(T^{-1}AT \). Since the nonzero eigenvalues of \(YZ \) and \(ZY \) are identical, \(||T^{-1}AT||^2 \) is the largest eigenvalue of \(P^{-1}AP^T \) with \(P = TT^T = T_1T_1^T \oplus T_2T_2^T \). If \(\lambda \) is an eigenvalue of \(P^{-1}AP^T \), then there exists column vector \(x \neq 0 \) such that

\[
P^{-1}AP^Tx = \lambda x
\]

i.e.,

\[
AP^Tx = \lambda Px
\]

Thus \(\lambda \) is also a generalized eigenvalue of matrix pencil \((AP^T, P) \) \cite{14}. Therefore, one concludes that \(||T^{-1}AT||^2 \) is the largest generalized eigenvalue of \((AP^T, P) \) with \(P = TT^T \), and that the problem of finding a MNR of the 2-D filter amounts to solving the minimization problem

\[
\min \lambda_{\text{max}}(P, AP^T)
\]

where \(\lambda_{\text{max}}(Y, Z) \) denotes the largest generalized eigenvalue of the pencil \(\lambda Y - Z \). Note that matrix \(P \) in (17) is positive definite, and the two matrices involved there are affine functions of \(P \). Thus the problem in (17) can be reformulated as

\[
\min \lambda_{\text{max}}(P, AP^T) \quad \text{subject to} \quad P = P_1 \oplus P_2, \quad P_1 > 0, \quad P_2 > 0 \quad \text{(18a)}
\]

Obviously, the constraints in (18b) are convex with respect to parameter matrices \(P_1 \) and \(P_2 \). In addition, for \(P = P_1 \oplus P_2 > 0 \), \(P = P_1 \oplus P_2 > 0 \), and \(0 \leq \theta \leq 1 \), it can be shown that \(\lambda \)

\[
\lambda_{\text{max}}(\theta P + (1 - \theta) \tilde{P}, A(\theta P + (1 - \theta) \tilde{P})\tilde{P})
\]

\[
\leq \max(\lambda_{\text{max}}(P, AP^T), \lambda_{\text{max}}(\tilde{P}, \tilde{A}P^T))
\]

which means that the objective function in (18a) is \textit{quasiconvex} and the minimization problem (18) is a quasiconvex programming problem \cite{2,6}.

We now present a numerical example. Consider a stable 2-D system of order \((3, 3) \), characterized by \cite{16}

\[
A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \quad \text{and} \quad c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}
\]

where

\[
A_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

\[
0.38315 & -1.38605 & 1.90670 \\
0.38238 & -1.38178 & 1.90253
\]

\[
A_2 = \begin{bmatrix} -0.06280 & 0.06190 & 0.00654 \\ -0.02810 & 0.03956 & -0.02248 \end{bmatrix}
\]

\[
1.24452 & -0.57092 & 2.05865 \\
0.00003 & 0.00038 & -0.00053
\]

\[
A_3 = \begin{bmatrix} -0.00001 & 0.00018 & -0.00026 \\ -0.00008 & 0.00023 & -0.00017 \end{bmatrix}
\]

\[
0.01141 & -0.00540 & 0.01956 \\
0.01164 & -0.00545 & 0.01960
\]

\[
A_4 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

b_1 = b_2 = [0 0 1]^T

c_1 = [0.0141 -0.0054 0.01956]

c_2 = [0.0164 -0.0054 0.01960]

\[b_1 = b_2 = [0 0 1]^T, \quad c_1 = [0.01141 -0.00540 0.01956], \quad c_2 = [0.01164 -0.00545 0.01960].\]

It took the projective algorithm \cite{2} 4364 flops and 1.27 seconds of CPU time on a PentiumPro 200 to generate an MNR of the system as

\[
\tilde{A} = \begin{bmatrix} \tilde{A}_1 & \tilde{A}_2 \\ \tilde{A}_3 & \tilde{A}_4 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} \tilde{b}_1 \\ \tilde{b}_2 \end{bmatrix} \quad \text{and} \quad \tilde{c} = \begin{bmatrix} \tilde{c}_1 \\ \tilde{c}_2 \end{bmatrix}
\]

where

\[
\tilde{A}_1 = \begin{bmatrix} 0.6683 & 0.3025 & 0.0251 \\ 0.0850 & -0.3000 & 0.6603 \end{bmatrix}
\]

\[
-0.2674 & 0.5781 & 0.3265 \\
0.0088 & 0.0075 & 0.0065
\]

\[
-0.0323 & -0.0296 & -0.0230 \\
0.0344 & 0.0286 & 0.0243
\]

\[
0.0072 & 0.0101 & -0.0190 \\
0.0077 & -0.0311 & -0.0086
\]

\[
-0.0065 & 0.0316 & 0.0069 \\
-0.3424 & 0.2831 & 0.1457
\]

\[
\tilde{A}_4 = \begin{bmatrix} 0.6419 & 0.2831 & 0.1457 \\ -0.3424 & 0.2831 & 0.1457 \\
-0.3337 & -0.2898 & 0.6742 \end{bmatrix}
\]

\[
\tilde{b}_1 = [0.0051 -0.0181 0.0193]^T
\]
\[b_2 = [1.5886 \quad -4.4301 \quad 4.6081]^T \]
\[c_1 = [4.5415 \quad 3.5599 \quad 3.1759]^T \]
\[\hat{c}_2 = [0.0167 \quad 0.0139 \quad 0.0119]^T \]

The system norm was reduced from \(|A| = 3.9560 \times 10^9\) to \(|\hat{A}| = 0.7490\). The BGFS based minimization method proposed in [11] also works but requires 16.75 \times 10^6 \text{flops} and 13.51 \text{seconds of CPU time. As}
well, the unweighted mixed \(L_1/L_2\) sensitivity, \(L_2\) sensitivity and the output roundoff-noise power are reduced from 1.7344 \times 10^4, 2.8990 \times 10^3, and 72.8485 for the original system to 8.7248 \times 10^3, 8.7450 \times 10^3, and
10.8377 for the MNR system.

4 A Minimax Design of Nonrecursive 2-D Digital Filters

It is well-known that minimax designs of 2-D FIR filters can be accomplished with various methods as
shown, for example, in [16]-[19]. However, computer simulations have demonstrated that SDP can yield the required design with significantly improved computational efficiency.

Let the transfer function of a 2-D FIR digital filter be

\[
H(z_1, z_2) = \sum_{i=0}^{N_1-1} \sum_{j=0}^{N_2-1} h_{ij} z_1^{-i} z_2^{-j} = z_1^T \hat{H} z_2 \tag{20}
\]

where \(N_1\) and \(N_2\) are odd integers, \(z_1 = [1 \quad z_1^{-1} \quad \ldots \quad z_1^{-(N_1-1)}]^T\), \(z_2 = [1 \quad z_2^{-1} \quad \ldots \quad z_2^{-(N_2-1)}]^T\), and \(\hat{H} \in \mathbb{R}^{N_1 \times N_2}\). To derive a compact expression for the transfer function of a linear phase 2-D FIR filter, we partition \(\hat{H}\) as

\[
\hat{H} = \begin{bmatrix}
H_{11} & h_{12} & H_{13} \\
H_{21} & h_{22} & H_{23} \\
H_{31} & h_{32} & H_{33}
\end{bmatrix}
\]

where \(H_{11}, H_{13}, H_{31}, H_{33} \in \mathbb{R}^{n_1 \times n_2}\), \(h_{12}, h_{32} \in \mathbb{R}^{n_1 \times 1}\), \(h_{21}, h_{23} \in \mathbb{R}^{1 \times n_2}\), \(h_{22} \in \mathbb{R}\), \(n_1 = (N_1 - 1)/2\), and \(n_2 = (N_2 - 1)/2\). Now if

\[
H_{13} = \text{flipud} (H_{33}), \quad H_{31} = \text{fiplr} (H_{33}),
\]
\[
H_{11} = \text{flipud} (\text{fliplr} (H_{33})),
\]
\[
h_{12} = \text{flipud} (h_{32}), \quad h_{21} = \text{fiplr} (h_{23})
\]

where flipud and fiplr represent the operations of flipping a matrix upside down and from left to
right, respectively, then the filter characterized by \(H(z_1, z_2)\) has linear phase response with group delay
\((n_1 T_1, n_2 T_2)\), and the frequency response of the filter is given by

\[
H(e^{j\omega_1}, e^{j\omega_2}) = e^{-j(n_1 \omega_1 + n_2 \omega_2)} c_1^T (\omega_1) H c_2(\omega_2)
\]

where \(c_1(\omega) = [1 \quad \cos \omega_1 \quad \ldots \quad \cos n_1 \omega_1]^T\) for \(i = 1, 2\), and

\[
H = \begin{bmatrix}
h_{22} & 2h_{23}^T \\
2h_{32} & 4h_{33}
\end{bmatrix}
\]

Consequently, the minimax design of a linear-phase 2-D FIR filter is the solution of the optimization problem

\[
\min_{\hat{H}} \{ \max_{(\omega_1, \omega_2) \in \Omega} e(\omega_1, \omega_2, H) \} \tag{21}
\]

where

\[
e(\omega_1, \omega_2, H) = W(\omega_1, \omega_2) |c_1^T (\omega_1) H c_2(\omega_2) - D(\omega_1, \omega_2)| \]

\(\Omega\) denotes the frequency region of interest, \(W(\omega_1, \omega_2) \geq 0\) is a weighting function over region \(\Omega\), and \(D(\omega_1, \omega_2)\) is the desired amplitude response.

Evidently, the optimization problem in (21) is equivalent to

\[
\minimize \delta \tag{22a}
\]

subject to \(e(\omega_1, \omega_2, H) \leq \delta\) for \((\omega_1, \omega_2) \in \Omega\) \tag{22b}

Furthermore, the constraint in (22b) can be expressed as

\[
\delta - e(\omega_1, \omega_2, H) \geq 0 \tag{23}
\]

for \((\omega_1, \omega_2) \in \Omega\). The inequality in (23) implies that

\[
\delta \geq 0 \quad \text{for} \quad (\omega_1, \omega_2) \in \Omega \tag{24}
\]

It is known from linear algebra that the inequalities in (23) and (24) hold if and only if

\[
\Delta(\omega_1, \omega_2) \succeq 0 \quad \text{for} \quad (\omega_1, \omega_2) \in \Omega \tag{25a}
\]

where

\[
\Delta(\omega_1, \omega_2) = \begin{bmatrix}
\delta & e(\omega_1, \omega_2, H) \\
e(\omega_1, \omega_2, H) & 1
\end{bmatrix} \tag{25b}
\]

It is important to note that matrix \(\Delta(\omega_1, \omega_2)\) in (25b) is affine w.r.t. design matrix \(H\) and the scalar auxiliary variable \(\delta\). A discretized version of the positive semidefinite condition in (25) is given by

\[
D(x) = \text{diag} \{ \Delta(\omega_{i1}, \omega_{i2}), \ldots, \Delta(\omega_{i1}, \omega_{i2}) \} \succeq 0 \tag{26}
\]

where the set \(\{ (\omega_{i1}, \omega_{i2}) \}, 1 \leq i \leq M\) forms a sufficiently dense grid in region \(\Omega\), and \(x = [x_1, x_2 \ldots]^T\) is vector of dimension \((n_1 + 1)(n_2 + 1)\) where \(x_1 = \delta\).
and x_1, x_3, \ldots are the entries of H. Taking the above analysis into account, a discretized version of the optimization problem in (22) can be formulated as

$$\text{minimize} \quad c^T x \quad \text{(27a)}$$

subject to $D(x) \succeq 0 \quad \text{(27b)}$

where $c = [1 \quad 0 \quad \ldots \quad 0]^T$ and $D(x)$ is defined by (26) and (25b). Since matrix $D(x)$ in (27b) is affine w.r.t. x, (27) is an SDP problem.

Acknowledgement

The author is grateful to the Natural Sciences and Engineering Research Council of Canada for supporting this work.

References

