DESIGN OF NONLINEAR-PHASE FIR DIGITAL FILTERS: A SEMIDEFINITE PROGRAMMING APPROACH

W.-S. Lu

Department of Electrical and Computer Engineering
University of Victoria
Victoria, BC, Canada V8W 3P6

ABSTRACT

The design of nonlinear-phase FIR digital filters is considered and it is shown that the design problem can be formulated as a *semidefinite programming* (SDP) problem. Specifically, we consider an equiripple design in which the phase response in the stopbands and transition bands are not required to be linear, and a design which approximates the desired frequency response in passband in equiripple sense and the desired frequency response in stopband in least-squares sense.

1. INTRODUCTION

We consider the problem of designing a nonlinear-phase, FIR digital filter that approximates a desired frequency response (both magnitude and phase responses) in the passbands in the Chebyshev sense, and approximates desired (zero) magnitude response in the stopbands in the least-squares sense. Consideration of such designs has been justified by many, see for example Adams [1]. Design of nonlinear-phase equiripple FIR filters is also considered in the paper. The term "nonlinear-phase design" is referred to a filter design in which the phase response in stopbands and transition bands are *not* required to be linear. As expected, the phase-response relaxation in the stopbands and transition bands from strict linearity has been found useful in enhancing the performance of the filter designed [2][3].

The design method proposed here is based on semidefinite programming (SDP), a relatively new optimization methodology which has been a topic of intensive research in the past several years [4]–[10]. There are several ways a SDP problem can be formulated, and the one which turns out to be convenient for filter design purposes is given as

minimize
$$c^T x$$
 (1a)

subject to
$$F(x) \succeq 0$$
 (1b)

$$F(x) = F_0 + \sum_{i=1}^n x_i F_i$$
 (1c)

In (1), $x \in R^{n \times 1}$ is the variable, $c \in R^{n \times 1}$, $F_i \in R^{n \times n}$ $(i = 0, 1, \ldots, n)$ are given constant matrices with F_i symmetric, and $F(x) \succeq 0$ denotes that F(x) is positive semidefinite. Note that the constraint matrix F(x) in (1) is *affine* with respect to x. SDP includes both linear and quadratic programming (QP) as special cases, and it represents a broad and important class of convex programming problems. More important, many interior-point methods which have proven efficient for linear programming, have recently been generalized to SDP [6][8].

Concerning filter design problems, we notice that although there exist efficient optimization methods such as Remez exchange algorithm for the design of equiripple linear-phase FIR filter [11] and quadratic programming based algorithms for the design of linear-phase FIR filters with equiripple passbands and peak-constrained least-squares stop-bands (EPPCLSS) [1], extensions of these techniques to the nonlinear-phase case seem not at all trivial [12][3]. The objective of this paper is to indicate that SDP may serve as a suitable framework for the design of nonlinear-phase equiripple as well as EPPCLSS FIR filters.

2. PROBLEM FORMULATION

Consider the transfer function of an N-tap FIR filter

$$H(z) = \sum_{k=0}^{N-1} h_k z^{-k}$$
 (2)

and denote its frequency response by

$$H(\omega) = \sum_{k=0}^{N-1} h_k e^{-jk\omega} = h^T [c(\omega) - js(\omega)]$$
 (3)

where $h = [h_0 \cdots h_{N-1}]^T$, $c(\omega) = [1 \cos \omega \cdots \cos(N-1)\omega]^T$, and $s(\omega) = [0 \sin \omega \cdots \sin(N-1)\omega]^T$. Here we do *not* assume any symmetry in h. Let $H_d(\omega)$ be the desired frequency response, which is usually complex-valued. In an equiripple design, one seeks to find coefficient vector h that

solves the optimization problem

$$\underset{h}{\text{minimize }} \underset{\omega \in \Omega}{\text{maximize }} W(\omega)|H(\omega) - H_d(\omega)| \qquad (4)$$

where Ω is a compact region on $[-\pi, \pi]$. The minimax problem in (4) can be reformulated as

minimize
$$\delta$$
 (5a)

subject to
$$W^2(\omega)|H(\omega) - H_d(\omega)|^2 \le \delta$$
 for $\omega \in \Omega$ (5b)

Now let

$$H_d(\omega) = H_r(\omega) - jH_i(\omega)$$

with $H_r(\omega)$ and $H_i(\omega)$ real, and use (3) to write the left-hand side of the constraint in (5b) as

$$W^{2}(\omega)|H(\omega) - H_{d}(\omega)|^{2} = \alpha_{1}^{2}(\omega) + \alpha_{2}^{2}(\omega)$$
 (6)

where

$$\begin{array}{rcl} \alpha_1(\omega) & = & h^T c_w(\omega) - H_{rw}(\omega) \\ \alpha_2(\omega) & = & h^T s_w(\omega) - H_{iw}(\omega) \\ c_w(\omega) & = & W(\omega) c(\omega) \\ s_w(\omega) & = & W(\omega) s(\omega) \\ H_{rw}(\omega) & = & W(\omega) H_r(\omega) \\ H_{iw}(\omega) & = & W(\omega) H_i(\omega) \end{array}$$

Constraint (5b) then becomes

$$\delta - \alpha_1^2(\omega) - \alpha_2^2(\omega) \ge 0 \qquad \omega \in \Omega \tag{7}$$

It can be shown that (7) is equivalent to

$$\Delta(\omega) = \begin{bmatrix} \delta & \alpha_1(\omega) & \alpha_2(\omega) \\ \alpha_1(\omega) & 1 & 0 \\ \alpha_2(\omega) & 0 & 1 \end{bmatrix} \succeq 0 \qquad \omega \in \Omega \quad (8)$$

If we denote $x = \begin{bmatrix} \delta & h^T \end{bmatrix}^T$, then the linear dependence of $\alpha_1(\omega)$ and $\alpha_2(\omega)$ on h implies that matrix $\Delta(\omega)$ in (8) is affine w.r.t. x. Therefore, if $\{\omega_i, i = 1, \ldots, M\} \subseteq \Omega$ is a set of grid points that are sufficiently dense in Ω , then a discretized version of (5) can be described as

minimize
$$c^T x$$
 (9a)

subject to
$$F(x) \succ 0$$
 (9b)

where $c = [1 \ 0 \ \cdots \ 0]^T$, and $F(x) = \text{diag}\{\Delta(\omega_1), \ \Delta(\omega_2), \ \cdots, \ \Delta(\omega_M)\}$. Obviously, F(x) in (9b) is affine w.r.t. x, hence (9) is a SDP problem. Note that F(x) is a *tridiagonal matrix* of size $3M \times 3M$, which becomes increasingly sparse with M.

In an EPPCLSS type design, one seeks to find h which minimizes the weighted L_2 error function

$$e(h) = \int_{\Omega} W(\omega)|H(\omega) - H_d(\omega)|^2 d\omega$$
 (10a)

subject to constraints

$$|H(\omega) - H_d(\omega)|^2 \le \delta_p \qquad \omega \in \Omega_p$$
 (10b)
 $|H(\omega)|^2 \le \delta_a \qquad \omega \in \Omega_a$ (10c)

where Ω_p and Ω_a denote the unions of passbands and stopbands, respectively. Simple manipulations of the integral in (10a) yields

$$e(h) = h^T P h - 2h^T q + c_0 (11)$$

where

$$P = \int\limits_{\Omega} W(\omega) [c(\omega) \ s(\omega)] \ [c(\omega) \ s(\omega)]^T \ d\omega$$

is positive definite for a compact Ω ,

$$q = \int\limits_{\Omega} W(\omega) [H_r(\omega) c(\omega) + H_i(\omega) s(\omega)] d\omega$$

and

$$c_0 = \int\limits_{\Omega} |H_d(\omega)|^2 d\omega$$

Let $P^{1/2}$ be the symmetric square root of P, i.e., $P^{T/2}=P^{1/2}$ and $P^{1/2}P^{1/2}=P$. Then (11) can be written as

$$e(h) = ||P^{1/2}h - P^{-1/2}q||^2 - (||P^{-1/2}q||^2 - c_0)$$

Hence

$$e(h) < \delta$$

is equivalent to

$$\delta + c_1 - ||P^{1/2}h - P^{-1/2}q||^2 \ge 0 \tag{12}$$

where $c_1 = ||P^{-1/2}q||^2 - c_0$. It can be shown that (12) holds if and only if

$$\Gamma_0 = \begin{bmatrix} \delta + c_1 & h^T P^{1/2} - q^T P^{-1/2} \\ P^{1/2} h - P^{-1/2} q & I_N \end{bmatrix} \succeq 0$$
(13)

where I_N is the $N \times N$ identity matrix. Note that matrix Γ_0 in (13) is *affine* w.r.t. δ and h, and does not depend on ω . Similar to the way we treat constraint (5b), it can be shown that constraint in (10b) is equivalent to

$$\Gamma(\omega) = \begin{bmatrix} \delta_p & \beta_1(\omega) & \beta_2(\omega) \\ \beta_1(\omega) & 1 & 0 \\ \beta_2(\omega) & 0 & 1 \end{bmatrix} \succeq 0 \qquad \omega \in \Omega_p$$

where $\beta_1(\omega) = h^T c(\omega) - H_r(\omega)$ and $\beta_2 = h^T s(\omega) - H_i(\omega)$, and that constraint in (10c) is equivalent to

$$\Phi(\omega) = \begin{bmatrix}
\delta_a & \gamma_1(\omega) & \gamma_2(\omega) \\
\gamma_1(\omega) & 1 & 0 \\
\gamma_2(\omega) & 0 & 1
\end{bmatrix} \succeq 0 \qquad \omega \in \Omega_a$$
(15)

where $\gamma_1(\omega)=h^Tc(\omega)$ and $\gamma_2(\omega)=h^Ts(\omega)$. Now if $\{\omega_i^{(p)},\ i=1,\ \ldots,\ M_p\}\subseteq\Omega_p\ \{\omega_i^{(a)},\ i=1,\ \ldots,\ M_a\}\subseteq\Omega_a$ are the sets of grid points in the passbands and stopbands, respectively, on which the constraints (14) and (15) are imposed, then a discretized version of minimizing (10a) subject to (10b) and (10c) can be formulated as

minimize
$$c^T x$$
 (16a)

subject to
$$F(x) \succeq 0$$
 (16b)

where $x=[\delta \ \delta_p \ \delta_a \ h^T]^T$, $c=[1 \ w_p \ w_a \ 0 \ \cdots \ 0]^T$ with scalar weights w_p and w_a , and $F(x)=\operatorname{diag} \{\Gamma_0, \ \Gamma(\omega_{M_p}^{(p)}), \ \Phi(\omega_1^{(a)}), \ \cdots, \ \Phi(\omega_{M_a}^{(a)})\}$. Clearly, F(x) in (16b) is affine w.r.t. x, therefore (16) is a SDP problem.

Presently, there is only a limited number of software packages available that can be used to solve the SDP problem as formulated in (9). One of them is the LMI Control Toolbox from MathWorks Inc. [13]. The toolbox works with MATLAB and is aimed primarily at solving design problems arising from control engineering by using linear matrix inequality (LMI) techniques [7]. The LMI toolbox includes a command named mincx which implements the projective method proposed in [6][9] for solving SDP problems. For the sake of completeness, the next section offers a brief review of several key elements of the projective method.

3. PROJECTIVE METHOD FOR SDP

In this section, we give a brief review of the projective method proposed in [6][9] which has proven effective for SDP problems. To this end we define the set of all positive semidefinite matrices of size $n \times n$ by \mathcal{K} and define the set of all positive definite matrices of size $n \times n$ by \mathcal{S} . A set \mathcal{C} is said to be a *cone* if $x \in \mathcal{C}$ implies $\alpha x \in \mathcal{C}$ for all $\alpha > 0$. A set \mathcal{C} is said to be a *convex cone* if \mathcal{C} is a cone and is convex. Evidently, both \mathcal{K} and \mathcal{S} are convex cones and \mathcal{S} can be viewed as the interior of \mathcal{K} . Given a positive definite matrix P, an inner product can be introduced in \mathcal{S} as

$$\langle X, Y \rangle_P = \operatorname{tr}(PXPY)$$
 (17)

which induces the norm

$$||X||_P = [\operatorname{tr}(PXPX)]^{1/2}$$

Note that if P is the identity matrix, then the above norm is reduced to the Frobenius norm

$$||X||_I = (\operatorname{tr} X^2)^{1/2} = ||X||_{F_{ro}}$$

An important concept involved in the development of the projective method is the Dikin ellipsoid [9] which is defined, for a fixed positive definite X, as the set

$$D(X) = \{Y : ||Y - X||_{X^{-1}} < 1\}$$
 (18)

It can be shown that the Dikin ellipsoid can be characterized as

$$D(X) = \{Y : ||X^{-\frac{1}{2}}YX^{-\frac{1}{2}} - I||_{Fro} < 1\}$$

and that for a positive definite X, the Dikin ellipsoid D(X) is always contained in cone \mathcal{S} . Therefore, D(X) provides a region around X in which a search for a better point can be carried but without losing positive definiteness.

With the inner product defined in (17), one can consider the orthogonal projection of a positive definite X in S onto a subspace E. In the context of SDP, E is the range of the linear map F associated with the LMI constraint in 1(c), i.e.,

$$\mathcal{F}x = \sum_{i=1}^{n} x_i F_i \tag{19}$$

and subset \mathcal{E} is characterized by

$$\mathcal{E} = \{Y : Y = \mathcal{F}x, \, x \in \mathbb{R}^n\} \tag{20}$$

The orthogonal projection of a given positive definite X onto subspace \mathcal{E} with respect to the matric $<,>_P$ can be defined as the unique solution of the least-squares problem

$$\underset{Y \in \mathcal{E}}{\operatorname{minimize}} \, ||Y - X||_P = \underset{x \in R^n}{\operatorname{minimize}} \, ||\mathcal{F}x - X||$$

If we denote this orthogonal projection by X^+ , then X^+ can be characterized by the optimality condition

$$\langle X^+ - X, Y \rangle_P = 0$$
 for $Y \in \mathcal{E}$ (21)

which is equivalent to

$$< P(X^{+} - X)P, Y>_{Fro} = 0$$
 for $Y \in \mathcal{E}$ (22)

Like any interior-point optimization method, the projective method starts at a *strictly feasible* initial point x_0 in the sense that matrix $F(x_0)$ in (1) is positive definite. For the sake of simplicity, we assume that the SDP problem at hand does have a strictly feasible initial point and that the linear objective function in (1a) has a finite lower bound.

As a preliminary step of the projective method, the problem in (1) is reformulated as the *homogeneous* problem

minimize
$$f(x) = \frac{\tilde{c}^T \tilde{x}}{\tilde{d}^T \tilde{x}}$$
 (23a)

subject to:
$$\tilde{\mathcal{F}}\tilde{x} \succeq 0$$
 (23b)

$$\tilde{d}^T \tilde{x} \neq 0 \tag{23c}$$

where

$$ilde{x} = \begin{bmatrix} x \\ m{ au} \end{bmatrix}, ilde{\mathcal{F}} ilde{x} = \begin{bmatrix} \mathcal{F}x + F_0 & 0 \\ 0 & m{ au} \end{bmatrix}, \ ilde{c} = \begin{bmatrix} c \\ 0 \end{bmatrix}, ilde{d} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The projective method can now be described in terms of the following algorithm.

Projective Algorithm for the SDP Problem in (23)

Step 1 Input a strictly feasible initial point \tilde{x}_0 and tolerance ε and compute $X_0 = \tilde{\mathcal{F}}\tilde{x}_0$. Set $x_0^* = \tilde{x}_0$, and evaluate the objective function at x_0^* as f_0^* .

Step 2 Compute the orthogonal projection $X_k^+ = \tilde{\mathcal{F}}\tilde{x}_k$ of X_k onto \mathcal{E} w.r.t. metric $<\cdot,\cdot>_{X_k^{-1}}$ and check its positive definiteness. If $X_k^+ \succ 0$, go to Step 3; otherwise, set $f_k^* = f_{k-1}^*, Y_k = X_k^+ - X_k$, and go to Step 4. Step 3 Reduce f(x) in (23a) until $||X_k| - |$

Step 3 Reduce f(x) in (23a) until $||X_k - X_k^+(f)||_{X_k^{-1}} \ge 0.99$ subject to $X_k^+(f)$ $\succ 0$. where $X_k^+(f)$ denotes the orthogonal projection of X_k onto subspace $\mathcal{E}(f) = \{X = \tilde{\mathcal{F}}x : (\tilde{c} - f\tilde{d})^Tx = 0\}$. Denote the resulting point by x_k^* and $f_k^* = f(x_k^*)$, and set $Y_k = X_k^+(f_k^*) - X_k$.

Step 4 If $f_{k-1}^* - f_k^* \le \varepsilon$, then stop and output x_k^* as the solution; otherwise generate X_{k+1} using

$$X_{k+1}^{-1} = X_k^{-1} - \gamma_k X_k^{-1} Y_k X_k^{-1}$$

where γ_k is selected such that $X_{k+1}^{-1} \succ 0$ and $\det(X_{k+1}^{-1}) \geq \beta \det(X_k^{-1})$ for some fixed $\beta > 1$. Repeat from Step 2.

4. AN ILLUSTRATIVE EXAMPLE

Figure 1 shows the amplitude response of a 91-tap equiripple FIR filters designed by the proposed method to approximate a lowpass frequency response with normalized $\omega_p=0.2375,\ \omega_a=0.2625,$ and group delay = 40. The LMI Control Toolbox was used to perform the design with 36 iterations and 190 Kflops.

Acknowledgement

The author is grateful to Micronet, Networks of Centres of Excellence Program, and the Natural Sciences and Engineering Research Council of Canada for supporting this work.

5. REFERENCES

- [1] J. W. Adams, "FIR digital filters with least-squares stopbands subject to peak-gain constraints," *IEEE Trans. Circuits Syst.*, vol. 39, pp. 376-388, April 1991.
- [2] M. Lang and J. Bamberger, "Nonlinear phase FIR filter design according to the L_2 norm with constraints for complex error," *Signal Processing*, vol. 36, pp. 31-40, March 1994.
- [3] M. C. Lang, "An iterative reweighted least squares algorithm for constrained design of nonlinear phase FIR filters," in *Proc. ISCAS '98*, May 1998.
- [4] F. Alizadeh, Combinatorial Optimization with Interior Point Methods and Semidefinite Matrices, Ph.D. thesis, Computer Science Department, University of Minnesota, Minneapolis, MN, 1991.
- [5] F. Alizadeh, "Interior point methods in semidefinite programming with applications to combinatorial optimization," SIAM J. Optimization, vol. 5, pp. 13-51, 1995.
- [6] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Programming, SIAM, Philadelphia, 1994.
- [7] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakvishnan, *Linear Matrix Inequalities in System and Control Theory*, SIAM, Philadelphia, 1994.
- [8] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, "Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability, and numerical results," SIAM J. Optimization, vol. 8, pp. 746-768, 1998.
- [9] A. Nemirovskii and P. Gahinet, "The projective method for solving linear matrix inequalities," *Proc. Amer. Contr. Conf.*, pp. 840-844, Baltimore, MD., 1994.
- [10] L. Vandenberghe and S. Boyd, "Semidefinite Programming," *SIAM Review*, vol. 38, pp. 49-95, March 1996.
- [11] A. Antoniou, Digital Filters: Analysis, Design, and Applications, 2nd ed., New York: McGraw Hill, 1993.
- [12] D. Burnside and T. W. Parks, "Optimal design of FIR filters with the complex Chebyshev error criteria," *IEEE Trans. Signal Processing*, vol. 43, pp. 605-616, March 1995.
- [13] P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali, Manual of LMI Control Toolbox, The MathWorks Inc., Natick, MA, 1995.