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ABSTRACT

The design of nonlinear-phase FIR digital filters is consid-
ered and it is shown that the design problem can be formu-
lated as a semidefinite programming (SDP) problem. Specif-
ically, we consider an equiripple design in which the phase
response in the stopbands and transition bands are not re-
quired to be linear, and a design which approximates the
desired frequency response in passband in equiripple sense
and the desired frequency response in stopband in least-
squares sense.

1. INTRODUCTION

We consider the problem of designing a nonlinear-phase,
FIR digital filter that approximates a desired frequency re-
sponse (both magnitude and phase responses) in the pass-
bands in the Chebyshev sense, and approximates desired
(zero) magnitude response in the stopbands in the least-
squares sense. Consideration of such designs has been jus-
tified by many, see for example Adams [1]. Design of non-
linear-phase equiripple FIR filters is also considered in the
paper. The term “nonlinear-phase design” is referred to a
filter design in which the phase response in stopbands and
transition bands are not required to be linear. As expected,
the phase-response relaxation in the stopbands and transi-
tion bands from strict linearity has been found useful in en-
hancing the performance of the filter designed [2]{3].

The design method proposed here is based on semidefi-
nite programming (SDP), a relatively new optimization meth-
odology which has been a topic of intensive research in the
past several years [4]-[10]. There are several ways a SDP
problem can be formulated, and the one which turns out to
be convenient for filter design purposes is given as

minimize ¢’z (la)

subjectto F(z) =0 (1b)

Fz) = F+Y =k (o)
i=1
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In (1), z € R™*! is the variable, c € R**!, F, ¢ R"*"
(¢ =0, 1, ..., n) are given constant matrices with F;
symmetric, and F(z) > 0 denotes that F(z) is positive
semidefinite. Note that the constraint matrix F'(x) in (1)
is affine with respect to z. SDP includes both linear and
quadratic programming (QP) as special cases, and it repre-
sents a broad and important class of convex programming
problems. More important, many interior-point methods
which have proven efficient for linear programming, have
recently been generalized to SDP [6](8].

Concerning filter design problems, we notice that al-
though there exist efficient optimization methods such as
Remez exchange algorithm for the design of equiripple line-
ar-phase FIR filter [11] and quadratic programming based
algorithms for the design of linear-phase FIR filters with
equiripple passbands and peak-constrained least-squares stop
-bands (EPPCLSS) [1], extensions of these techniques to
the nonlinear-phase case seem not at all trivial {12][3]. The
objective of this paper is to indicate that SDP may serve
as a suitable framework for the design of nonlinear-phase
equiripple as well as EPPCLSS FIR filters.

2. PROBLEM FORMULATION

Consider the transfer function of an /V-tap FIR filter

N-1
H(z) = Z hyz ¥ 2

k=0

and denote its frequency response by

N-1
H(w) =Y he ™ = hT[c(w) - js(w)]  3)
k=0

where h = [ho --- hy-1]T, c(w) = [1 cosw ---cos(N —
Dw]7T, and s(w) = [0 sinw --- sin(N — 1)w]T. Here we
do not assume any symmetry in h. Let Hy{(w) be the desired
frequency response, which is usually complex-valued. In an
equiripple design, one seeks to find coefficient vector h that

I11-263



solves the optimization problem
minimize maximize W (w)|H(w) — Hy(w)| 4)
h wenN
where 2 is a compact region on [—m, 7). The minimax
problem in (4) can be reformulated as
minihmize 1) (5a)
subject to W2(w)|H(w) — Hy(w)|? < d forw € Q (5b)

Now let
Hy(w) = Hy(w) — jH;(w)

with H,(w) and H;(w) real, and use (3) to write the left-
hand side of the constraint in (5b) as

W2(w)|H(w) — Hyw)* = o} () + a3(w)  (6)

where
a1(w) hT cy(w) — Hyppp(w)
ar(w) = hTsy(w) — Hiw(w)
cww) = Wwe(w)
sww) = W(w)sw)
Hry(Ww) = W(w)H(w)
Hyy(w) = W(w)Hi(w)

Constraint (5b) then becomes

§—ai(w)—ai(w) >0 we @)
It can be shown that (7) is equivalent to
) a1(w) az(w)
Alw) = | a1 (w) 1 0 =0 we ®
az(w) 0 1

If we denote z = [§ hT]T, then the linear dependence of
a1(w) and ae(w) on h implies that matrix A(w) in (8) is
affine w.r.t. x. Therefore, if {w;, ¢ =1, ..., M} C Qs
a set of grid points that are sufficiently dense in €2, then a
discretized version of (5) can be described as

minimize Lz (9a)

subject to F(z) =0 (9b)

where ¢ = [1 0 --- 0]7, and F(x) = diag{A(w1), A(w2),
.-+, A(wp)}. Obviously, F(z) in (9b) is affine w.rt. z,
hence (9) is a SDP problem. Note that F'(x) is a tridiago-
nal matrix of size 3M x 3M, which becomes increasingly
sparse with M.

In an EPPCLSS type design, one seeks to find A which
minimizes the weighted Lo error function

o) = [WIHE) - Ha@)Pdo 00
Q .

subject to constraints

|H(w) — Ha(w)/?
[H ()l

b we, (10b)
b, weQ, (10c)

IAIA

where €, and 2, denote the unions of passbands and stop-
bands, respectively. Simple manipulations of the integral in
(10a) yields

e(h) = hTPh — 20T q + ¢ (11)

where

P= / W(w)ew) s@)] ew) s(@)] du
Q

is positive definite for a compact 2,

¢ / W () [ Hr (w)e(w) + Hy(w)s(w)) dow
Q

and

Co

/ |Hy(w)]? dw
Q

Let P'/2 be the symmetric square root of P, i.e., PT/2 =
PY2 and PY/2p1/2 = P. Then (11) can be written as

e(h) = [|[PY2h — P™Y/2q|]2 — (||P™"2q||” — o)

Hence
e(h)<é

is equivalent to

§+c —||[PYV2h - P22 >0 (12)
where ¢; = ||[P~'/2¢||? — co. It can be shown that (12)
holds if and only if

§+c KT PY/2 _ T p-1/2
Lo = {Pl/zh _ p-1/2g In =0
(13)

where Iy is the N x N identity matrix. Note that matrix
Ty in (13) is affine w.r.t. § and h, and does not depend on w.
Similar to the way we treat constraint (5b), it can be shown
that constraint in (10b) is equivalent to

[ 0 Pi(w) ﬁz(w)}
Nw) = | fi(w) 1 0 =0 wE
,32((4)) 0 1

14

where B1(w) = hTc(w) — H.(w) and B2 = hTs(w) —
H;(w), and that constraint in (10c) is equivalent to

ba T (w) 72(‘”)
1 (w) 1 0 t 0
Yo(w) O 1

B(w) = wE N,

(15)
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where v1(w) = hTc(w) and yo(w) = hTs(w). Now if
WP, i=1, ..., M} C QW i=1,..., M} C
Q, are the sets of grid points in the passbands and stop-
bands, respectively, on which the constraints (14) and (15)
are imposed, then a discretized version of minimizing (10a)
subject to (10b) and (10c) can be formulated as

minimize Tz (16a)
subject to F(z)=0 (16b)
where £ = [0 6, dq hT]T, ¢ = [1 wp we 0 -+ 0] with

scalar weights wy, and w,, and F(z) = diag {T, I‘(wgp)),
-, D), 8@i¥), -, ®(wip)}. Cleady, F(z) in
(16b) is affine w.r.t. z, therefore (16) is a SDP problem.
Presently, there is only a limited number of software
packages available that can be used to solve the SDP prob-
lem as formulated in (9). One of them is the LMI Con-
trol Toolbox from MathWorks Inc. [13]. The toolbox works
with MATLAB and is aimed primarily at solving design
problems arising from control engineering by using linear
matrix inequality (LMI) techniques [7]. The LMI toolbox
includes a command named mincx which implements the
projective method proposed in [6]][9] for solving SDP prob-
lems. For the sake of completeness, the next section of-
fers a brief review of several key elements of the projective
method.

3. PROJECTIVE METHOD FOR SDP

In this section, we give a brief review of the projective meth-
od proposed in [6][9] which has proven effective for SDP
problems. To this end we define the set of all positive semidef-
inite matrices of size n x n by K and define the set of all
positive definite matrices of size n x n by S. A set C is said
to be a cone if x € C implies ax € C forall & > 0. A set C
is said to be a convex cone if C is a cone and is convex. Evi-
dently, both K and S are convex cones and S can be viewed
as the interior of K. Given a positive definite matrix P, an
inner product can be introduced in S as

<X, Y >p=tr(PXPY) a7

which induces the norm
1X||p = [ir (PXPX)]'/?

Note that if P is the identity matrix, then the above norm is
reduced to the Frobenius norm

1X1lr = (r X*)'? = || X || pro

An important concept involved in the development of
the projective method is the Dikin ellipsoid [9] which is de-
fined, for a fixed positive definite X, as the set

D(X) ={Y :||Y — X||x-1 <1} (18)

It can be shown that the Dikin ellipsoid can be characterized
as
DX)={Y : | X 3YX "% — I||pro < 1}

and that for a positive definite X, the Dikin ellipsoid D(X)
is always contained in cone S. Therefore, D(X) provides a
region around X in which a search for a better point can be
carried but without losing positive definiteness.

With the inner product defined in (17), one can consider
the orthogonal projection of a positive definite X in S onto
a subspace £. In the context of SDP, £ is the range of the
linear map JF associated with the LMI constraint in 1(c),

i.e.,
n
Fx = Z I@Fi (19)
i=1
and subset £ is characterized by
E={Y:Y =Fz,x € R"*} (20)

The orthogonal projection of a given positive definite X
onto subspace £ with respect to the matric <,>p can be
defined as the unique solution of the least-squares problem

minimize [[Y — X||p = minimize || Fz — X|]|
Ye& TER™

If we denote this orthogonal projection by X+, then X+
can be characterized by the optimality condition

<Xt —-X,Y>p=0 forY e £ @1

which is equivalent to

<P(XT—X)P,Y >pro=0 forY e& (22

Like any interior-point optimization method, the projec-
tive method starts at a strictly feasible initial point zq in the
sense that matrix F'(zp) in (1) is positive definite. For the
sake of simplicity, we assume that the SDP problem at hand
does have a strictly feasible initial point and that the linear
objective function in (1a) has a finite lower bound.

As a preliminary step of the projective method, the prob-

lemin (1) is reformulated as the homogeneous problem

minimize f(x) = ET—E:- (23a)
dTx

subjectto: Fz >0 (23b)

ATz #0 (23¢)

where

- x| 2o |Fx+Fy 0] . |c| 5_|O
o[ e [ 2o [ )
The projective method can now be described in terms of the
following algorithm.
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Projective Algorithm for the SDP Problem in (23)

Step 1 Input a strictly feasible initial point Zo and
tolerance € and compute Xy = FZo.

Set 2§y = %o, and evaluate the objective func-
tion at zjj as f§.

Compute the orthogonal projection X,‘c* =
Fir of X, onto € w.r.t. metric < -, - >x;1
and check its positive definiteness.

If X;f = 0, go to Step 3; otherwise, set f; =
fi 1, Yie = X;F — Xy, and go to Step 4.
Reduce f(z) in (23a) until || X -—
heatall x;t 2 0.99 subject to XHH
> 0. where X;(f) denotes the orthog-
onal projection of X; onto subspace
E(f)y = {X = Fz : (- fd)Tz = 0}.
Denote the resulting point by =z; and
fi = f(zf), and set Yy, = X; (7)) — Xi.

If fi_, — fi < e, then stop and output x;}, as
the solution; otherwise generate X1 using

Step 2

Step 3

Step 4

Xk =X — X e X
where -y, is selected such that X', >~ 0
and det(X ;) > B det(X, ) for some fixed
B > 1. Repeat from Step 2.

4. AN ILLUSTRATIVE EXAMPLE

Figure 1 shows the amplitude response of a 91-tap equirip-
ple FIR filters designed by the proposed method to approx-
imate a lowpass frequency response with normalized w, =
0.2375, w, = 0.2625, and group delay = 40. The LMI
Control Toolbox was used to perform the design with 36
iterations and 190 Kflops.

Amplitude response
T T T

i I i 3 L i H i L
o 0.05 0.1 0.15 02 0.25 03 0.35 04 0.45 0.5

Frequency-response error in passband

Figure 1
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