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Abstract—An innovative weighted structurally
balanced realization of two-dimensional (2-D)
discrete systems is proposed. Two auxiliary
transfer-function matrices called the weighted-
input-to-state and the state-to-weighted-output
transfer-function matrices are first introduced.
Based on these matrices, the controllability and
observability grammians of the weighted system
are defined and the existence of the grammians is
Justified. The resulting 2-D weighted structurally
balanced realization method can be applied for
the reduction of the system order of 2-D discrete
systems.

I. INTRODUCTION

The balanced approximation is an effective and nu-
merically economical method for the reduction of the
system order in one-dimensional (1-D) and 2-D sys-
tems. It has, in addition, several desirable properties
such as a bounded error and preservation of stabil-
ity [1]-[4] of the original system. If the requirements
imposed on the approximation error are different for
different frequency ranges, improved reduced-order
systems can be obtained by applying a weighted bal-
anced approximation method. The continuous-time
1-D case is considered in [1] and the discrete-time
1-D case is considered in [2, 3].

The goal of this paper is to develop a weighted
balanced realization for 2-D discrete systems. To
this end, two auxiliary transfer-function matrices
called the weighted-input-to-state and the state-to-
weighted-output transfer-function matrices are first
introduced. It is shown that these matrices are
quadratically stable (Q-stable) provided that the in-
put and output weights and the system are Q-stable.
Here quadratic stability (Q-stability) is the stabil-
ity associated with the constant 2-D Lyapunov in-
equalities [4], which is known to be stronger than the
bounded-input-bounded-output (BIBO) stability [5].

On the basis of these auxiliary transfer-function
matrices, the structured controllability and observ-
ability grammians of the weighted system are defined
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Figure 1: A weighted 2-D discrete system

and the existence of the grammians is justified. The
grammians are the solutions of two 2-D Lyapunov in-
equalities, and solving them amounts to solving two
unconstrained optimization problems. The result-
ing weighted structurally balanced realization can be
used in the reduction of the system orders of 2-D dis-
crete systems.

I1. AUXILIARY TRANSFER-FUNCTION MATRICES

The system configuration to be considered here
is shown in Figure 1, where H(z, z2) € RPX¢
is the transfer-function matrix of the system, and
Wi(z1, 22) € R™" and W,(z1, z2) € R**P are the
transfer-function matrices of the input and output
weights, respectively.

If we use the Roesser state-space model [5] to de-
scribe the system, then

H(z1, 20) = C[I(z1, 22)—A]" ' B+D (1a)
Wi(zl, Zz) =C; [I(Zl, Z;)~AZ‘ J_lBZ—}—DZ (1b)
Wo(zl, Zz) = Co [I(Zl, 22)~A0}~1 B0+Do (].C)

The matrices involved can be partitioned as

_ Al Az . Bl -
A—[As A4]’B_[Bz]’c~[01 el
A Ap B
A; = B; =
‘ [Azs AiJ ’ ' [Biz} ’
A A B
Ao — ol 02 ; Bo — ’V ol
\:Aog Ao4:| _B02
Ci — [C” sz] s Co = [Col CGQ] 3

where A € ROFMx(nim) B e grtmixa C ¢
%Px(n%—m)’ A, € gﬁ(n.+m;)x(n,+mi)) B, € §R(n,+m,»)><t’
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Figure 2: Auxiliary Transfer-function matrices

C; € §Rq><(ni+m.')7 A, € g}e(no+mo)x(no+ma)’ B, €
§R(no+mn)xp, C, € g}%sx(no+ma), and

I(Zl, 2'2) =211 21

In this equation, the symbol & denotes the direct
sum, and I is the identity matrix. In the rest of
the paper, we assume that H(z:, 25), W;(21, 22),
and W, (21, 22) are 2-D Q-stable, namely, there exist
positive definite matrices S, S;, and S,, and positive
definite, block-diagonal matrices

G=G DGz, G; =GB G, G,=G, &Gy
such that

AGAT -G =-5§
AGAT - G; = -S;
A,G,AT -G, = -8,

(22)
(2b)
(2¢)
A. Definition of H;(z1, z3) and H,(z1, 23)

Definition 1 Based on the configuration in Figure 1,
the weighted-input-to-state transfer-function matrix,

H;(z1, 22), and the state-to-weighted-output transfer-
function matrix, H,(z1, 22), are defined as

Hi(z1, 22) = [I(z1, 22)~ A7 BWy(z1, 23) (3a)

Ho(Zl, 2’2) = WO(Zl, 22) C [I(Zl, Zz)—A]_l (3b)
These definitions are illustrated in Figure 2.

By performing permutations for certain blocks of

the matrices in equations (3a) and (3b), H;(z;, z3)
and H,(z1, z2) can be written as

-1

Hi(z1, 23) = C;i [ I(z1, 2)— A, ]
HO(Z1, 22) - éo [ I(Zl, Zg)—AO ]Ml

B, (4a)
B, (4b)
respectively, where

A, = [Ail 1:%'2 ]

Az Ay

A; BiC;; | Ay B;iCjp
0 A, | o A,
=] - —-== | —= —-=-
Az ByC;; | A; B3Cjpy
4] A;s I 1] Ay
. . o 1T
B; = [B], B}]
T
=[DfBT B} | DBl B%]
\ o I 0] 00
Ci:[czl 012]:{0 0 ! I 0:|
< _ -Aol AOZ
Ao = | Ay A]
(A1 0 | Ay 0
BuC:i A,i | BuCy A,
= —_——— == | === -
As 0 | As 0©
| BoaC1i Agz | BpCy Ay
T
. N T I 0] 00O
B, = [BZI B:‘;Pz] :[0 0 | I 0]
Co = [éol 602]
- [Docl Col l DOC2 Co2]

As indicated in Figure 2, transfer-function matrix
H;(z1, 25) in (4a) relates a weighted input signal
to the state of H(zi, z2), which takes the input
weight W;(z1, 22) into account. Similarly, transfer-
function matrix H,(21, 27) in (4b) relates a state to
the weighted output, which takes the ouiput weight
W, (21, z2) into account.

B. Quadratic Stability of Hy(z1, 2z3) and H,o{(21, 22)

Lemma 1 If transfer-function matrices H(zy, z2)
and W;(z1, 22) and Wo(z1, z2) are all 2-D Q-
stable, then the weighted-input-to-state-output and
the state-input-to-weighted-output transfer-function
matrices H;(z1, z2) and Hy(z1, z2) defined by (3a)
and (3b) are also 2-D Q-stable.

Proof: If H(z1, 20) and W,(21, z2) are 2-D Q-stable
transfer-function matrices, then H(z1, z2) and out-
put weight W,(z1, z3) satisfy the 2-D Lyapunov
equations (2a) and (2b), respectively. By Lemma
4 of [4], (2a) and (2b) imply that there exist block-
diagonal matrices

Y=Y,9Yy>0 and Y; =Y 1Y, >0
such that

¥ = AYAT - Y +BBT <0 (5)
T = A, YA -Y; +BBT <0 (6)
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Define
Y, O | 0 0
R 0 Yy | 0 0 R R
Y=|— — 4+ — — | =Y10Y;
0 0 | Yz O
0 0 | 0 Y,

As ¥; is negative definite, ® can be block diagonal-
ized as
. , T __ RT
X(X, &XT)XT = [AYA 3(()+ BKB £]
2

where
I 00O 0}
I R _[1 -BKg;!
Xl*0100”“‘[0 I }
000 I
K = C;Y;A] + DB}
and

K = CY;Ccf +D,Df - K& KT (7)

Hence, matrix Xo(X; li'Xr{)Xg is negative definite
(and hence ¥ < 0) if and only if

AYAT - Y +BKBT < o (8)

With a fixed Y; that satisfies (6), matrix K in (7) is
a known matrix, and so ||K]| < 4 for some > 0.
From (5) it follows that for any scalar o > 1

A(aY)AT - oY + BKB” = o® + B(K — oI)B”
< a® + BKBT

Since ¥ < 0, if « is chosen such that

g1IBI
a > — 9
1pmax(w)| ( )
then we have
A(@Y)AT — oY + BKBT < 0 (10)

In other words, (8) holds if Y is scaled to (aY) as is
seen in (10). We conclude that

APAT - P4+ BB <0

where
Yy 0 | 0 0
0 Yy | 0 0
P I
0 0 | C!YQ 0
0 0 | 0 Y,y

with a satisfying (9) and, therefore, H;(z1, z2) is 2-D
Q-stable.

I1I. WEIGHTED BALANCED REALIZATION

We now propose a weighted structurally balanced
realization for 2-D systems which is essentially an
extension of the (unweighted) structurally balanced
realization proposed in [4].

A. Definition of Weighted Balanced Realization

Following Lemma 1, H;(z1, z2) and H,(z1, 22)
are 2-D Q-stable. Consequently, there exist block-
diagonal, positive definite matrices

1:311 Pyl 0 0
L PI, Py | 0 0O
P=PioPy=|-—- — | — —
0 0 | Pip Py
0 o | P, Py
(?11 (?21 [ 0 0
. N N Qg} Qal | 0 0
Q=UdQ=| —— —— | —— —-
0 0 | Q2 Qo
0 0 | Q) Qs
that satisfy the 2-D Lyapunov inequalities
A PAT P+ B;BT < 0 (11a)
ATQA,-Q+CIC, < 0 (11b)

From (4a) and (4b), it is observed that the four
blocks of the system matrix of H(zi, z2), namely,
A, As, Az, and A4 of matrix A defined in (1a),
occur in both A; and A, as the (1, 1), (1, 3), (3, 1),
and (3, 3) blocks. Therefore, the structured conirol-
lability and observability grammians of the weighted
system, denoted as P and Q, respectively, can be
obtained from P and Q as

Pp=iPI", Q=1Q1"
where
f— I 0 0 O
10 0 I O
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that is,
P = [ 011 130 ] =P, 0P,
12 J(ngm)x(n+m)
’ 0
Q= [QOH A ] =Q1oQq
Q12 (n+m)x(n+m)

which are positive definite, block-diagonal matri-
ces. Hence a nonsingular, block-diagonal matrix
T =T, & T2 can be found [6] such that

TP 177 = TTQiT =

= diag (01, 02, -+, 0p)
T;'P,T;7 = TIQ,T, = %,
= dla‘g (/11, M2, oy /‘Lm)
where

01220, 20 and > > py >0

Having found balancing transformation matrix T,
a weighted balanced realization of a system in the
Roesser state-space model can be characterized by
the set {A;, B, Cp, D} with

A, =T 'AT, B,=T7'B, C,=CT
where A, B, C, and D are given in (1a).
B. Computation of Weighted Grammians

The Cholesky factorizations of the positive definite
matrices P and Q are given by

B_T 77 A_TF 77T

P=L,L,, Q=LL, (12)

where f;p and I:q are block-diagonal lower-triangular

matrices. Matrices P and Q that satisfy (11a) and

(11b) can be obtained by solving the unconstrained
convex minimization problems

minimize || f;l [Aif,p B;] |l

] (13a)
minimize || f;q_l [A{I?q CZ] I

(13b)

Obviously, local minimum points of (13a) and (13b),

L, and L,, are acceptable if and only if

L' [AL, Bi]ll<1
L [ATL, €7] <1

This is because only then matrices P and Q, formed
by (12), will satisfy the Lyapunov inequalities (11a)
and (11b).
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V. CONCLUSION

A weighted structurally balanced approximation
for 2-D discrete systems has been proposed, which
is based on two auxiliary transfer-function matri-
ces. The weighted structured controllability and ob-
servability grammians are the solutions of two 2-D
Lyapunov inequalities, and can be obtained by solv-
ing two unconstrained optimization problems. The
weighted structurally balanced approximation can be
used for the reduction of the system order of 2-D dis-
crete systems.
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