Design of Perfect Reconstruction QMF Banks by
A Null-Space Projection Method

H. Xu, W.-S5. Lu, and A. Antoniou

Department of Electrical and Computer Engineering
University of Victoria
Victoria, B.C., Canada, VBW 3P6

Email: hxu@ece.uvic.ca, wslu@ece.uvic.ca, and andreas@ece.uvic.ca

ABSTRACT

A new method is proposed for the design of
two-channel linear-phase perfect reconstruction QMF
banks. The analysis lowpass filter is first designed by
a conventional method, and then the synthesis lowpass
filter is obtained by using a null-space projection ap-
proach. This method is then extended to the design
of two-channel perfect reconstruction QMF banks with
low reconstruction delay, which are desirable in some
applications. Two design examples are given to illus-
trate the proposed methods.

I. INTRODUCTION

The importance of quadrature-mirror-filter (QMF)
banks in subband coding has been widely recognized.
Since the quadrature mirror structure leads to complete
cancellation of interband aliasing due to the overlap-
ping filter responses, the design is reduced to satisfying
the perfect reconstruction condition while minimizing
the intra-band aliasing. Since the mid 70’s several ap-
proaches have been proposed for the design of QMF
banks [1]-[4]. Some of the design methods lead to near-
perfect reconstruction QMF banks [1][2] while others
lead to perfect-reconstruction QMF banks [3][4].

In this paper, a new method for the design of linear-
phase perfect reconstruction QMF banks is proposed
on the basis of a time-domain formulation. The anal-
ysis lowpass filter is first obtained by a conventional
method and the synthesis lowpass filter is obtained by
a null-space projection approach. The proposed method
is then extended to the design of low-delay perfect re-
construction QMF banks which are useful in applica-
tions where long reconstruction delays are undesirable.
Two design examples are presented to demonstrate the
performance of the QMF banks obtained.
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II. DESIGN METHOD

A. Design of Linear-Phase Perfect Reconstruction
QMF Banks

Consider the two-channel filter bank shown in Iig. 1.
The output and input relations of the system are given
by

X(2) = §[Ho(2)Go(2) + H1(2)G1(2)] - X(2)
+3[Ho(—2)Go(z) + Hi(—2)G1(2)] - X (=)

(1)
where the second term on the right side represents
the aliasing. By assuming that Gi(z) = —Ho(~2),

Hi(z) = Go(—=z), the aliasing term is cancelled and (1)
becomes

X(2) = §[Ho(2)Go(2) — Ho(=2)Go(=2)]X(2)  (2)
To reconstruct the output perfectly, it is required that
Ho(2)Go(2) = Ho(=2)Go(=z) = 27" (3)

where kg is the system delay. If we assume that the co-
efficients of Hy(z) and Gy(z) are symmetrical and their
lengths, N and M, are even, M > N, and N+ M is a
multiple of 4, then it can be readily shown that k4 in
(3) is equal to (M + N)/2 — 1.

In the time domain, (3) can be expressed as

Hg=m (4)
where

H:?[b1+bM by +bp-1 - b%4_+b_l;_!+1]

B=[b;by - by]
h(1) h(0) 0 e 0]
h(3) h(2) (1)  h(O) --- 0
= h(Nz—l) A(N=-2) .. 0
0 0 h(N—1)




g =[g(0)g(1) - gM/2-1 1"

m=[0- - Ol]TeRM{ﬂXl
h(n), for n = 0, ..., N — 1 is the impulse response
of filter Hy, and g(n), for n = 0, ---, M/2— 1 is the

first half of the impulse response of filter Gy. In our
approach, Hg is first designed by a conventional FIR
filter design method; then the entries of g are obtained
by solving the linear system of equations in (4), where
we have (M +N)/4 equations and M /2 unknowns. This
leads to the number of degrees of freedom

M M+N M-N 5)
2 4 4 (

fa=

As is well known, the general solution of (4) is given
by
g=Hm+ (I-H'H)¢ (6)

where H' is the Moore-Penrose pseudo-inverse of H,
and ¢ is an arbitrary column vector. Note that

H(I-HH)$ =0

i.e., the second term on the right side of (6) represents
a vector in the null space of H. In other words, (I —
HH)¢ projects an arbitrary vector ¢ onto the null
space of H. Let
o1 0 - 0
H=U : vt

T M4N 0 O
4

be the SVD decomposition of H. It can be shown that
g in (6) can be written as

g=8.+V"¢* (8)
where
S, = H'm
N 01_1 W
Tiew
=V 1 UTm
0 0
L 0 0 -
V* = [VMi4N+1 V%]
& =167 - G I
v, fori=(M+N)/4+1, ..., M/2is the ith column

of matrix V, and ¢" contains f; free parameters. On
comparing (8) with (6), it is observed that the last f;

966

column vectors of V* constitute a basis of the null space
of H; hence the problem of designing Go amounts to
finding an optimal ¢* such that the combination of the
column vectors of V*, V*¢*  leads to the minimum of

E = / M} (w) dw
ws

= (Sc+ V') Q(Sc + V97 (9)
where w; is the stopband edge of Gy,

M,y(w) = 2 gTle(w)

c(w) = [ cos( — lw) e cos(—;—w) I

2
Q=1 / c(w)e(w)T dw

and the (7, j)th entry of Q is given by

T— Wws — E%sinalws
qij = 2

1o 1o .
— oo sinayw, — Sosinasws i FJ

1= ]

with¢ j= 1, ..., M/2,ay =i+ j— N -1, and
ay; = i — j. By imposing v¢~E = 0, the minimum
point can be obtained as

qr)zm — -—(V* TQV*)—lv* TQSc (10)
and the coefficients of Gy(z) can be obtained as
g" =8+ V¢, (11)

The design procedure can now be summarized as
follows:
Algorithm
Step 1 Use a conventional method to design a linear-
phase, lowpass, FIR filter Hy whose length 1s
N.

Step 2 Form matrices H and m as in (4).

Step 3 Obtain the SVD of H as in (7), and calculate
S. and Q in (8) and (9).

Step 4 Obtain ¢}, using (10) and g* using (11).

B. Design of Low-Delay Perfect Reconstruction QMF
Banks

The assumption of linear-phase responses for Hy and
Go leads to fixed system delay (M + N)/2 — 1, which is
sometimes undesirable in applications where the orders
of the filters are high. If the assumption on symmetry
of the coefficients in Ho(z) and Go(z) is removed, then
it is possible to design a filter bank with low reconstruc-
tion delay as demonstrated in [5]. We assume that the
desired reconstruction delay k4 is an odd integer. The
perfect reconstruction condition in (3) can be written
in the time-domain as

Hrgr =mg (12)



where

1
P(wp, ws, k) = z (sin kw, — sin kw;)

h(1) h(0) 0 0
h(3) h(2) h(1 h(0) 0 wp :
. M : d; = Re / cr(w)ed“Fa2 duw
: : 0
H;=2|h(N—1) h(N-2) 0 e sin kgawp
0 0 h(N—'].) _ E:_—TSin(kdz - 1)(.41,;
L 0 e . (N —1) h(N =2} m sin(kgo — N + 1w,
o = [ g(0) g(l) -« g(M —-1)]
8 Lo(0) o) o . ) ]M N1 w, and w; are the passband and stopband edges of Gg,
my =[0---010 - 0] €R™= respectively, and kg2 = kg — kq1 1s the group delay of

where the (kg + 1)/2th entry of my is unity. A low-
pass FIR filter Hq is first designed with group delay
kyn < (N —1)/2 and then gy is obtained by solving
(12). In (12) there are (M + N)/2 — 1 equations and M
unknowns. Hence the number of degrees of freedom in
the design is

M+ N M —-N

fa=M - +1  (13)

As in the design of linear-phase QMF banks de-
scribed in the preceding section, the general solution
of (12) is given by

gr = Him, +(I-HHL)¢,

=S..+ V5] (14)
where
Scr = HTLmL
V} = [VMi2N VM]
* * [ * T
ép = [¢7 - Py, ]

v;, fori = (M + N)/2, ..., M, s the ith column of
the right orthogonal matrix in the SVD decomposition
of matrix Hy,, and ¢7 is an arbitrary vector of dimen-
sion (M — N}/2+ 1.

The coeflicients of the transfer function constitute
vector g} given by (14) where parameter vector ¢j is
determined by minimizing the objective function

wr ) .
EL = / 'Go(ejw) - C—JWkd2l2 dw +/
0

Ws
= ¢1T(ViTQLV})é:+205 T (VT QLSer
~V;Tdp) + w, +87.QrSer

o

|Go(e’)? dw

(15)

where
T+wp —ws P(wp,ws, 1) Plwp,ws, N—1)
Y(wp,ws, 1) T+wp —ws
QL= :
Plwp,ws, N—1) THwp—ws

Gy. Obviously, the minimum point can be obtained as

$L o = (VL QLVL) ™ (VL TQuSer = Vi Tdy)
(16)
and the coefficients of Go(z) are given by

gz - SCL +V2¢2 opt (17)

11I. DESIGN EXAMPLES

We now present two design examples to illustrate
the proposed algorithms. The related computer pro-
grams were written in MATLAB and run on a Sun
SPARC station. The first example is to design a
linear-phase perfect reconstruction QMF bank with
design specifications N 20,M = 32, and w; =
0.61w. The analysis lowpass filter Hy was first de-
signed by the window method with passband and
stopband edges 0.447 and 0.617 rad/s, respectively.
The performance of the filter bank obtained is evalu-
ated in terms of the peak-reconstruction error (PRE)
defined by PRE = max|20 log; o[ | Ho(e?“)Go(ed*) —

Ho(e TGy, and the signal-to-noise ratio
{SNR) defined by

SNR

101og,, ( energy of input signal )

energy of the reconstruction error

. b)) .L'Z(n)
10og10 { S o) — E(n + kd)P}

The SNR was calculated with a random input signal
with a uniformly distributed amplitude. The results
obtained are listed in Table I, and the amplitude re-
sponses of the analysis lowpass and highpass filters are
depicted in Fig. 2.

The second example is a low-delay perfect recon-
struction QMF bank with N 260 M = 34,kq =
15,wp = 0.457,w, = 0.657. The analysis lowpass filter
Hy was first designed by a least-squares approach with
passband and stopband edges 0.57 and 0.657 rad/s, re-
spectively, and kg; = 7.5. The results obtained are
given in Table I, and the amplitude responses of the
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TaBLE I

[4] B-R. Horng, A. N. Willson, Jr,

PERFORMANCE EVALUATIONS OF OBTAINED QMF BANKS

” Example 1 i Example 2

PRE (dB) [[ 5.79x107* [ 3.66x107 "
SNR (dB) 302 292
TaBLE 11

THE OUTPUTS OF EXP.1 AND EXP.2 WITH A RAMP INPUT

Example 1
#(n + 25)

Example 2
&(n +15)

W0 ~1O U W - O3

1.6000000060000
2.0000000000000
3.0000060000000
4.0000000000000

5.0000000000000
6.0000000000000
7.0000000000000
8.0000000000000
9.0000000000000
10.0000000000000

1.0000000000000
2.0000000000000
3.0000000000000
4.0000000000000
5.0000000000000
6.0000000000000
7.0000000000000
8.0000000000000
9.0000000000000
10.00000006000000

1.0000000000000
2.0000000000000
3.0000000000000
4.0000000000000
5.00000000600000
6.0000000000000
7.0000000000000
8.0000000000000
9.0000000000000
10.0000000000000

x ()

analysis lowpass and highpass filters are depicted in
Fig. 3.

The performance of the obtained filter banks can
also be checked by observing the output when the input
is a ramp signal. As shown in Table II, for both exam-
ples the reconstructed signals were exactly the same as
the input signal to within 13 significant digits after the
decimal point.

IV. CONCLUSIONS

A new method for the design of linear-phase perfect
reconstruction QMF banks has been proposed and it
was then extended to the design of low-delay perfect
reconstruction QMF banks. From the design example
demonstrated it can be noted that the proposed method
leads to perfect reconstruction in both the linear-phase
and the low-delay cases.
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