Determination of the Transfer-Function Matrix from the Two-Dimensional Fornasini-Marchesini State-Space Model

H. Luo, W.-S. Lu, and A. Antoniou
Department of Electrical and Computer Engineering,
University of Victoria, P.O. Box 3035, MS 8610
Victoria, B.C., Canada V8W 3P6

Abstract—Two efficient algorithms for the determination of the transfer-function matrix of a two-dimensional (2-D) discrete system represented by the Fornasini-Marchesini state-space model are proposed. The development of the algorithms involves two distinct steps. First, the 2-D transfer-function matrix is reformulated in terms of the characteristic polynomials of the coefficient matrices involved. Second, the coefficient matrices are determined by using an efficient algorithm for the determination of 1-D polynomial coefficients. The simplicity and efficiency of the proposed algorithms are illustrated by examples.

I. Introduction

The representation of the transfer-function matrix of a two-dimensional (2-D) discrete system by a state-space model and vice versa are two basic problems of great importance in system analysis and design. One of the commonly used state-space models for 2-D discrete systems is the Roesser model [1]. Several algorithms for the derivation of the 2-D transfer-function matrix from the Roesser state-space model have been proposed [2]-[6]. Another popular state-space representation for 2-D discrete systems is the Fornasini-Marchesini model [7]. To date, no efficient algorithms for the determination of the 2-D transfer-function matrix from the Fornasini-Marchesini state-space representation have been reported.

This paper proposes new algorithms for the determination of the 2-D transfer-function matrix from the Fornasini-Marchesini state-space model. The algorithms are extensions of efficient algorithms for the determination of the 2-D transfer-function matrix from the Roesser state-space model [6]. First, the transfer-function matrix is reformulated in terms of the characteristic polynomials of several matrices that depend on one complex variable. Second, algorithms are proposed that identify the coefficients of a 1-D polynomial of order \(n \) when its values at \((n + 1) \) points on the unit circle are known. Our algorithms entail solving a system of linear equations whose coefficient matrix is an unitary Vandermonde matrix. Examples are given to illustrate the efficiency of the proposed algorithms.

II. Algorithms for SISO Systems

Consider a single-input, single-output (SISO), linear, shift-invariant, discrete 2-D system represented by the Fornasini-Marchesini state-space model given by

\[
\begin{align*}
\mathbf{x}(k+1, l+1) &= \mathbf{A}_1 \mathbf{x}(k, l+1) + \mathbf{A}_2 \mathbf{x}(k+1, l) + \mathbf{b}_1 \mathbf{u}(k, l+1) + \mathbf{b}_2 \mathbf{u}(k+1, l), \\
y(k, l) &= c \mathbf{x}(k, l) + d \mathbf{u}(k, l)
\end{align*}
\]

(1a)

(1b)

where \(\mathbf{x} \in \mathbb{R}^n \) is the state vector, and \(\mathbf{u} \) and \(\mathbf{y} \) are the input and output, respectively. The transfer function of the system is given by

\[
H(z_1, z_2) = \frac{c(z_1 z_2 I - z_2 \mathbf{A}_1 - z_1 \mathbf{A}_2)^{-1}(z_2 \mathbf{b}_1 + z_1 \mathbf{b}_2) + d}{z_1 z_2 I - \mathbf{A}_2}
\]

A. Reformulation of the Transfer Function

We first reformulate the transfer function \(H(z_1, z_2) \) in terms of the characteristic polynomials of the matrices involved. By using a well-known formula for the transfer function of a 1-D SISO state-space model (see Appendix A.13 of [8]), \(H(z_1, z_2) \) can be rewritten as

\[
H(z_1, z_2) = \frac{\det(z_2 I - \mathbf{A}_2 + b_2 c) \det(z_1 I - F(z_2))}{\det(z_2 I - \mathbf{A}_2) \det(z_1 I - E(z_2))} + d - 1
\]

(2)

\[
= \frac{P(z_2, A_2 - b_2 c) P(z_1, F(z_2))}{P(z_2, A_2) P(z_1, E(z_2))} + d - 1
\]

\[
= \frac{\sum_{k=0}^{n} q_k(z_2) z_2^k}{\sum_{k=0}^{n} p_k(z_2) z_2^k}
\]

(3)

where \(p_k(z_2) \) and \(q_k(z_2) \) are polynomials in \(z_2 \) of order not greater than \(n \), and

\[
E(z_2) = z_2 A_1 (z_2 I - A_2)^{-1}
\]

(4a)

\[
F(z_2) = z_2 (A_1 - b_1 c) (z_2 I - A_2 + b_2 c)^{-1}
\]

(4b)
In (2), \(P(z_2, A_2) \), \(P(z_2, A_2 - b_2 c) \), \(P(z_1, E(z_2)) \), \(P[z_1, F(z_2)] \) are the characteristic polynomials of \(A_2 \), \(A_2 - b_2 c \), \(E(z_2) \), and \(F(z_2) \), respectively. From (2) and (3), it follows that

\[
\begin{align*}
\sum_{k=0}^{n} q_k(z_2) z_1^k &= P(z_2, A_2 - b_2 c) P[z_1, F(z_2)] \\
&\quad + (d-1)P(z_2, A_2) P[z_1, E(z_2)] \quad \text{(5a)} \\
\sum_{k=0}^{n} p_k(z_2) z_1^k &= P(z_2, A_2) P[z_1, E(z_2)] \quad \text{(5b)}
\end{align*}
\]

B. Determination of the Coefficients of a 1-D Polynomial

An efficient method for the determination of the coefficients of a 1-D polynomial will now be examined. Let

\[
p(z_2) = \alpha_0 z_2^n + \cdots + \alpha_1 z_2 + \alpha_0
\]

be a polynomial of order \(n \) with coefficients \(\alpha_0, \ldots, \alpha_1, \alpha_0 \). Also let \(\{z_2(l), 0 \leq l \leq n\} \) be \((n+1) \) points that are uniformly distributed on the unit circle of the complex \(z_2 \) plane, i.e.,

\[
z_2(l) = e^{2\pi i l/(n+1)}, \quad 0 \leq l \leq n \quad \text{(6)}
\]

If the values \(\{p_l = p[z_2(l)], 0 \leq l \leq n\} \) are known, then the coefficients \(\{\alpha_l, 0 \leq l \leq n\} \) can be determined as

\[
\alpha = V^{-1}(z_2) \mathbf{q} \quad \text{(7)}
\]

where

\[
\alpha = [\alpha_0 \cdots \alpha_1 \alpha_0]^T, \quad \mathbf{q} = [p_0 \, p_1 \cdots p_n]^T,
\]

and \(V(z_2) \) is the \((n+1) \times (n+1) \) Vandermonde matrix whose second to last column is

\[
z_2 = [z_2(0) \quad z_2(1) \cdots z_2(n)]^T
\]

that is,

\[
V(z_2) = \begin{bmatrix} z_2(0)^n & \cdots & z_2(0) & 1 \\
\vdots & \ddots & \vdots & \vdots \\
z_2(n)^n & \cdots & z_2(n) & 1 \end{bmatrix}
\]

Since \(z_2(l), 0 \leq l \leq n, \) are distinct, \(V(z_2) \) is always nonsingular. More important, it follows from (6) that

\[
V^H(z_2) V(z_2) = (n+1) I
\]

where \(V^H(z_2) \) denotes the complex-conjugate transpose of \(V(z_2) \). Therefore, (7) can be written as

\[
\alpha = \frac{1}{n+1} V^H(z_2) \mathbf{q} \quad \text{(8)}
\]

Equation (8) provides an efficient formula for the determination of 1-D polynomial \(p(z_2) \).

C. New Algorithms

The algorithms are based on (5a), (5b), and the efficient method for the determination of the coefficients of a 1-D polynomial. It is assumed that matrices \(A_2 \) and \(A_2 - b_2 c \) have no eigenvalues on the unit circle. The case where the matrices \(A_2 \) and/or \(A_2 - b_2 c \) have eigenvalues on the unit circle will be considered in subsection D.

Algorithm 1

Step 1: Use (4a) and (4b) to evaluate \(E(z_2) \) and \(F(z_2) \) over the set of points defined in (6).

Step 2: Compute the determinants of \(z_2 I - A_2 \) and \(z_2 I - A_2 - b_2 c \), and the characteristic equations of \(E(z_2) \) and \(F(z_2) \) for \(z_2 = z_2(l), 0 \leq l \leq n \).

Step 3: Use (5a) and (5b) to obtain the values of \(p_k[z_2(l)] \) and \(q_k[z_2(l)] \) for \(0 \leq l \leq n, 0 \leq k \leq n \).

Step 4: For each \(k, 0 \leq k \leq n \), form vectors \(\mathbf{q} = [p_0 \cdots p_n]^T \) and \(\mathbf{q} = [q_0 \cdots q_n]^T \), and determine polynomials \(p_k(z_2) \) and \(q_k(z_2) \) by using (8).

D. Unstable and Special Cases

If \(A_2 \) has eigenvalues on the unit circle (the system is unstable) or the special case where \(A_2 - b_2 c \) has eigenvalues on the unit circle, the \(n+1 \) points defined by (6) need to be modified to

\[
z_2(l) = r e^{2\pi i l/(n+1)}, \quad 0 \leq l \leq n \quad \text{(9)}
\]

where \(r > 0 \) denotes the radius of a circle in the \(z_2 \) plane where \(A_2 \) and \(A_2 - b_2 c \) have no eigenvalues on the circle. Consequently, (8) is modified to

\[
\alpha = \frac{1}{n+1} \text{diag}\{r^{-n}, \ldots, r^{-1}, 1\} V^H(z_2) \mathbf{q} \quad \text{(10)}
\]

Note that (8) is a special case of (10) with \(r = 1 \), as may be expected.

III. Dual Algorithms

A dual algorithm to Algorithm 1 can be obtained if the roles of variables \(z_1 \) and \(z_2 \) are interchanged. By representing \(H(z_1, z_2) \) in (3) as

\[
H(z_1, z_2) = \frac{\sum_{l=0}^{n} \tilde{q}_l(z_1) z_2^l}{\sum_{l=0}^{n} \tilde{p}_l(z_1) z_2^l}
\]

where \(\tilde{p}_l(z_1) \) and \(\tilde{q}_l(z_1) \) are polynomials in \(z_1 \), it can be readily shown that

\[
\sum_{l=0}^{n} \tilde{q}_l(z_1) z_2^l = P(z_2, A_1 - b_1 c) P[z_2, F(z_1)]
\]
where
\[\tilde{E}(z_1) = z_1A_2(z_1I-A_1)^{-1} \]
\[\tilde{F}(z_1) = z_1(A_2-b_2c)(z_1I-A_1+b_1c)^{-1} \]

Further, (8) needs to be modified as
\[\alpha = \frac{1}{n+1} \bar{V}^H(z_1)q \]
where \(z_1 = \begin{bmatrix} z_1(0) & z_1(1) & \cdots & z_1(n) \end{bmatrix}^T \) with
\[z_1(k) = e^{j2\pi k/(n+1)}, \quad 0 \leq k \leq n \]

The dual algorithm is as follows:

Algorithm 2

Step 1: Use (12a) and (12b) to evaluate \(\tilde{E}(z_1) \) and \(\tilde{F}(z_1) \) over the set of points defined by (14).

Step 2: Compute the characteristic equations of \(A_1, A_1-b_1c, \tilde{E}(z_1), \) and \(\tilde{F}(z_1) \) for \(z_1 = z_1(k), 0 \leq k \leq n \).

Step 3: Use (11a) and (11b) to obtain the values of \(\hat{q}_l[z_1(k)] \) and \(\hat{p}_l[z_1(k)] \) for \(0 \leq l \leq n, 0 \leq k \leq n \).

Step 4: For each \(l, 0 \leq l \leq n \), form vectors \(q = [\hat{q}_0 \cdots \hat{q}_n]^T \) and \(q = [\hat{q}_0 \cdots \hat{q}_n]^T \), and determine polynomials \(\hat{p}_l(z_1) \) and \(\hat{q}_l(z_1) \) by using (13).

Obviously, Algorithm 2 can be used to evaluate \(H(z_1, z_2) \) only if matrices \(A_1 \) and \(A_1-b_1c \) have no eigenvalues on the unit circle. If matrix \(A_1 \) or \(A_1-b_1c \) has eigenvalues on the unit circle, then modifications similar to (9) and (10) should be made.

III. Algorithms for MIMO Systems

Consider a multi-input, multi-output (MIMO), linear, shift-invariant, 2-D discrete system represented by the Fornasini-Marchesini state-space model given by
\[x(k+1, l+1) = A_1x(k, l+1) + A_2x(k+1, l) + Bu(k, l+1) + B_2u(k, l+1) \]
\[y(k, l) = Cx(k, l) + Du(k, l) \]

where \(u \in \mathbb{R}^m \), \(y \in \mathbb{R}^t \), and \(D \in \mathbb{R}^{m \times t} \). The \(s \times t \) transfer-function matrix of the system can be expressed as
\[H(z_1, z_2) = C(z_1z_2I-z_2A_1-z_1A_2)^{-1}(z_1B_1+z_1B_2)+D \]

whose entry \((k, l)\) is a scalar rational function given by
\[H_{kl}(z_1, z_2) = C_k(z_1z_2I-z_2A_1-z_1A_2)^{-1}(z_2B_1l+z_1B_2)+D_{kl} \]

where \(C_k, B_1l, \) and \(B_2l \) are the \(k \)th row of \(C \) and the \(l \)th column of \(B_1 \) and \(B_2 \), respectively. Therefore, the transfer-function matrix \(H(z_1, z_2) \) given by (16) can be evaluated entry by entry and each entry can be treated as an SISO transfer function. Hence, (5a) associated with \(H_{kl}(z_1, z_2) \) in (17) becomes
\[\sum_{k=0}^n q_k(z_2) z_1^k = P(z_2, A_2-B_2lC_k)P[z_1, \tilde{F}(z_2)] \]
\[+ (D_{kl}-1)P(z_2, A_2)P[z_1, E(z_2)] \]

where
\[\tilde{F}(z_2) = z_2(A_1-B_1lC_k)(z_2I-A_2+B_2lC_k)^{-1} \]

Therefore, Algorithm 1 can be extended to deal with the MIMO case by substituting (18) and (19) into (5a) and (4b), respectively.

Similarly, Algorithm 2 can be extended to deal with the MIMO case by modifying (11a) and (12b).

IV. Examples

Example 1 is a two-input two-output system of order \((2, 2)\), which was used to illustrate the algorithm in [3]. The system is represented by the Roesser model with
\[A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ - & - & + & - \\ 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & -2 \end{bmatrix} \]
\[B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}^T = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}^T \]
\[C = [C_1 \ C_2] = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 1 \end{bmatrix} \]

It can be represented by the Fornasini-Marchesini model [7] with
\[A_1 = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} B_1 \\ 0 \end{bmatrix} \]
\[A_2 = \begin{bmatrix} 0 & 0 \\ A_3 & A_4 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 \\ B_2 \end{bmatrix}, \quad C = C \]

The transfer-function matrix obtained by using Algorithms 1 and 2 is
\[H(z_1, z_2) = \begin{bmatrix} H_1(z_1, z_2) & H_2(z_1, z_2) \\ H_3(z_1, z_2) & H_4(z_1, z_2) \end{bmatrix} \]

679
Table 1: Performance of the Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Computational Complexity, Flops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example 1</td>
</tr>
<tr>
<td>1</td>
<td>6.195 × 10^4</td>
</tr>
<tr>
<td>2</td>
<td>6.044 × 10^4</td>
</tr>
</tbody>
</table>

where the denominator is given by the matrix

\[D_t = \begin{bmatrix}
1 & -2 & -1 \\
4 & -10 & -2 \\
4 & -12 & 1
\end{bmatrix} \]

and the numerators are specified by \(N_{11}, \ N_{12}, \ N_{13}, \) and \(N_{14} \) as follows:

\[N_t = \begin{bmatrix}
N_{11} & N_{12} \\
N_{13} & N_{14}
\end{bmatrix} = \begin{bmatrix}
0 & 2 & 0 & 1 & 1 \\
-1 & 6 & 7 & 0 & 5 & 3 \\
-2 & 13 & 0 & 0 & 6 & 0 \\
0 & -3 & 0 & -3 & -3 & -3 & -3 \\
3 & -3 & -14 & 1 & -1 & -5 \\
6 & -13 & -8 & 2 & -3 & -4
\end{bmatrix} \]

Example 2 is an SISO 2-D discrete system of order (16, 8), represented by the Fornasini-Marchesini state-space model given in (1a) and (1b), where each entry of \(\{A_1, A_2, b_1, b_2, c, d\} \) is a random number chosen from a normal distribution with zero mean and unit variance.

Example 3 is a four-input two-output 2-D discrete system of order (8, 16) represented by the Fornasini-Marchesini state-space model given in (15a) and (15b), where each entry of \(\{A_1, A_2, B_1, B_2, C, D\} \) is a random number chosen from a normal distribution with zero mean and unit variance.

The amounts of computation required by the algorithms for the three examples are listed in Table 1. It is evident that Algorithms 1 and 2 require different amounts of computation if the order of the system \(n_1 \neq n_2 \) \((n_1, n_2 \leq n)\). Extensive results with \(1 \leq n_1 \leq 30 \) and \(1 \leq n_2 \leq 30 \) have shown that Algorithm 1 requires less computation than Algorithm 2 when \(n_1 < n_2 \) (see Example 3), and Algorithm 2 requires less computation when \(n_1 > n_2 \) (see Example 2).

V. Conclusion

Two algorithms for the determination of the transfer-function matrices of 2-D discrete systems using the Fornasini-Marchesini state-space model have been proposed. These are based on a 1-D polynomial determination technique. The algorithms are efficient and reliable, and can be used for multi-input, multi-output two-dimensional discrete systems.

Acknowledgement

The authors are grateful to Micronet, Networks of Centres of Excellence Program, and to the Natural Science and Engineering Research Council of Canada for supporting this work.

Reference

