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ABSTRACT

An iterative procedure proposed by Chen and Lee for
the design of quadrature mirror filter (QMF) banks is
extended to the design of two types of filter banks, i.e,
1-D QMF banks with low reconstruction delay and 2-D
nonseparable hexagonal QMF banks. Our simulations
show that the extended methods are very efficient and
yield good designs.

INTRODUCTION

Filter banks have been widely used in one-dimensional
(1-D) and two-dimensional (2-D) signal processing (1]2].
In the design of filter banks, it is required that the perfect
reconstruction condition be satisfied while the intra-band
aliasing be eliminated or minimized. Design methods de-
veloped so far [3][4] involve minimizing an error function
directly in the frequency domain to achieve the design re-
quirements, which leads to a difficult optimization prob-
lem.

In [5], Chen and Lee introduced an iterative procedure to
replace the conventional direct minimization of the error
function in the design of quadrature mirror filter (QMF)
banks. The method is based on a linearization of the er-
ror function associated with the design. After linearizing
the least-square error function, which is a fourth-order
function of the filter coefficients, the resulting error func-
tion to be minimized becomes a quadratic function of
the filter coefficients. As a result, the optimal filter coeffi-
cients can be obtained by an analytic solution. Compared
with conventional QMF design techniques, this iterative
design method needs much less computation and leads to
fairly good results.

In this paper, the procedure in [5] is extended to the
design of two types of filter banks, namely, 1-D QMF
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banks with low reconstruction delay and 2-D nonsepara-
ble hexagonal QMF banks. Our simulations show that
the design methods yield good results while reducing the
computation load significantly. The paper is organized
as follows: In the second section, the proposed methods
are described and the design procedure is presented. In
the third section several design examples are supplied to
illustrate the methods.

DESCRIPTION OF THE EXTENDED
ITERATIVE METHODS

Design of FIR Filter Banks with Low Reconstruction De-
lay

A two-channel QMF bank is illustrated in Fig. 1, where
Hy(z) = Ho(-2),Go(2) = Ho(2),G1(2) = —Ho(=2) in
order to achieve aliasing cancellation. In (6], a method
has been proposed for the design of QMF banks with
low reconstruction delays. The design is accomplished
by minimizing an objective function of the form

FIGURE 1
DIAGRAM OF TWO BAND FIR FILTER BANK
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and « is a weighting constant in the range 0 < « < 1.
Term E; deals with the perfect reconstrucion condition
and k is the system delay. Term E3 deals with the intra-
band aliasing where w, is the stopband edge. In general,
the coefficients of Hy have no symmetry and k is not
fixed to N —1 as in conventional QMF designs, where N
is the filter length. By letting k¥ be an integer less than
N — 1 and minimizing the error function defined in (1),
the coefficients of Hy can be obtained. Then a filter bank
can be constructed which has a lower reconstruction de-
lay than a conventional QMF bank.

Instead of minimizing directly the above objective func-
tion with respect to the coefficients of Hy, an iterative
method, which is an extension of that in [5], is adopted.
The error components Fy and Ej in ( 1) are changed to

E = Ei +aEé (2)
Ei = 3 |Ho(¢*)Qo(e™) — Ho(e!“ )
0<wsr
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where

N-1
Qo(e™) = Y go()e™7+!

=0
is the transfer function of a lowpass filter Qy, whose co-
efficient vector is v = [go(0) qo(1) -+ go(N — D]T. It
is assumed that at the start of optimization the coeffi-
cient vector of Ho, u = [ho(0) ho(1) --- ho(N — 1)]7, is
known and so Ho(e/*) is known. Let 2 = {wi, wa, ...,
Ws, ..., Wm} be the set of sampling points and construct
the matrices

[1 e e—iwi(N=1) 7
Ug() = [ 1 e~iws e—iwd(N-1) 3)
! 1 e~iwm e~jw";(N~1) j
[1 e~Tw e—Jwi(N=1) 7
Us = ; )
| 1 eiwm e~ium(N=1) |
H(R?) = diag[Ho(eJ"“l)’ e Ho(ej“'), o Ho(ej“"")]
(5)
U=HQ)U(R) - H(Q + 1)Uy (2 +7) (6)

E’ in (2) can be expressed in the form
E' = (Uv-D"(Uv-T) + o(Usv)* (Usv) (7)

where I = [e~iwik g=jwak ... g=jwmk|T 5n4 superscript
H denotes complex conjugate transposition. £’ in (7)

[m]
= {1
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is a quadratic function of the coefficients in v. It can
be shown that this function has a global minimum point
given by the closed-form solution

v = (Re [U¥U + aUs# Ug))~! - Re ([UZT))  (8)

where Re [-] is the real part of []. After obtaining v, a
linear formula is adopted to update u as

u=(1-7rju+rv (9)

where 7, 0 < 7 < 1, is the smoothing parameter. The
above process is repeated until the distance between u
and v is smaller than a specified tolerance.

Design of 2-D Nonseparable Hexagonal QMF Filter
Banks

In [7], a four-channel 2-D nonseparable hexagonal QMF
bank system, as illustrated in Fig. 2, was proposed. By
forcing the analysis and synthesis filters to satisfy certain
relationships, the aliasing terms in the system output are
cancelled and the design is accomplished by minimizing
an error function of the form

FIGURE 2
DIAGRAM OF A NONSEPARABLE HEXAGONAL QMF BANK
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where @, 0 < a < 1, is a weighting constant. E;! is to
approximate the perfect reconstruction condition where
H(w) is the transfer function of a hexagonal lowpass fil-
ter, @ = {w;, ws, -+, w,, ..., wn}are sampling points
and vectors k;, i = 0, ..., 3 are the four modulation
vectors defined in [7]. Intra-band aliasing is reduced by
minimizing E'3 where Q, = {w,, ..., wm} are the sam-
pling points which correspond to the stopband.

!By differs from that in [7] by a constant multiplier of 4



With 12-fold symmetry in its impulse response, a hexag-
onal FIR filter will have zero-phase frequency response.
Then H(w) can be written as

H(w) = b(w)Tu

where u = [hq hy he --- ]7 is a column vector con-
taining N independent filter coefficients and b(w) =
[To(w) Th(w) --- Tyn_1(w)]T is a column vector with
entries being real functions of w.

As in the design of 1-D filter banks, an iterative method
is adopted, which modifies the error function in (10) into

E = E’l + aE& (11)
3 2
Ei =Y |3 Hw+k)G(w+k) -1
0 1=0
Ey =) Gw)’
Q,

Like H(w), G(w) is the transfer function of a lowpass
hexagonal filter of the same length with 12-fold symmetry
in its impusle response and

G(w) = b(w) v

where v = [gq gb ge --- |¥ is a column coefficient vector.
It is assumed that at the start of the optimization, the
coefficients in u are known and so H({w) is known. By
defining

[ To(wi) Ti(wr) Ty-1(w1) ]
U®) = | Tow,) Ti(w) - Twoi(ws)
| To(wm) Tilwm) - Twoi(wm) |
(12)
[ To(ws) Ti(ws) Tn-1(ws) ]
Us = : :
| To(wm) Ti(wm) Tn-1(wm) |
(13)
H(Q) = diag[H(w1),..., H{(w,),...,Hwm)] (14)
3
U =) H(Q+k,)Ug(Q +k) (15)
i=0
E’ in (11) can be expressed as
E' = (Uv -D)T(Uv —I) + a(Ugv)T(Usv)  (16)

where I is a column vector with each entry being a 1.
E' in (16) is a quadratic function of the coefficients in v
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and its minimum point can be obtained by an analytic
solution as

v = (UTU + aUsTUg) "t - (UTT) (17)
As in the design of 1-D filter banks, u is updated and the
procedure is repeated.

Design Procedure

A step-by-step procedure based on the above methods is
as follows:

1. Set the weigthing constant «, the smoothing pa-
rameter 7, and the stopping criterion e.

. Initialize the coefficients of vector u.

. Calculate the matrices expressed in (3), (4), (5),
and (6) or (12}, (13), (14), and (15).

. Obtain coefficient vector v using (8) or (17).

. If Ju~ v| < ¢, terminate the process; otherwise,
update coeflicient vector u using (9) and go to step
3.

DESIGN EXAMPLES

The proposed iterative methods have been used to de-
sign two-band filter banks with low recontruction delay
as well as 2-D nonseparable hexagonal QMF filter banks.
Four examples are illustrated.

In examples 1 and 2, filter banks with filter length
N = 32 were designed with system delays of ¥k = 9
and k = 15, respectively. The design results are sum-
marized in Table I in terms of function evaluations in
the design (FE), peak reconstruction error (PRE) defined
as PRE = mwax[20 log;o[|H3(e*) — HZ(e/“+™)]]|, pass-
band ripple §,, stopband edge attenuation (AS), defined
as AS = 20log,q |Ho(e?“*)]. The amplitude response of
Hy in example 2 is plotted in Fig. 3. Compared with the
design method proposed in [8], the iterative method de-
scribed here reduces the computation by a considerable
amount.

TABLE 1
SIMULATION RESULTS FOR EXAMPLES 1 AND 2

k. wp w, FE PRE(dB) 6,(dB) AS(dB)
9 035t 064r 15 00025 0.0067 —15.56
15 0.35x 0.65« 7 0.0073 0.0025 =37.07

Examples 3 and 4 demonstrate the design of 2-D nonsep-
arable hexagonal QMF banks with N = 9 and N = 12



coefficients, respectively. The simulation results are sum-
marized in Table II in terms of functiog evaluations in

the design (FE), PRE = max|20 logyol) _ H(w +ki)?|,

1=0
passband ripple 8, and stopband ripple §,. Fig. 4 shows
the 3-D plot of the amplitude response of the lowpass
hexagonal filter with 9 coefficients. The designs by the
iterative method are superior relative to those in 7] in
terms of having better frequency responses and needing
less computational effort.

TABLE 11
SIMULATION RESULTS FOR EXAMPLES 3 AND 4

N _FE PRE(dB) 6,(dB) 6,(dB)

9 6 0.0285 00039 —30.65

12 9 00178  0.0068 —30.42
CONCLUSION

The iterative method in [5] has been extended to the
design of FIR filter banks with low reconstruction delays
as well as the design of 2-D nonseparable hexagonal QMF
banks. These methods are quite efficient in producing
good designs while reducing the amount of computation.
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FIGURE 3
AMPLITUDE RESPONSE OF Ho WITH k = 15

FIGURE 4
AMPLITUDE RESPONSE OF HEXAGONAL FILTER WITH 9 COEFS.



