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Orthogonal frequency-division multiplexing (OFDM) modulation can be utilized to deal with severe channel conditions without complex equalization.
However, in a fast-fading channel, Doppler spread caused by user mobility destroys the orthogonality among subcarriers, prompting intercarrier
interference (ICI). In this paper, the OFDM ICI reduction problem is formulated as a combinatorial optimization problem. Two relaxation methods
are proposed to relax the maximum-likelihood detection problem into convex quadratic programming (QP) problems. To further reduce computational
complexity, the QP problems are solved by limiting the search to the two-dimensional subspace. A low-bit descent search can also be employed to improve
the system performance. The extension to higher-order quadrature amplitude modulation (QAM) OFDM systems is also addressed. Performance results
are given which demonstrate that the integer QP relaxation-based algorithms provide excellent performance with reasonable computational complexity.

La modulation à multiplexage de division orthogonale de fréquences (OFDM) peut être utilisée pour affronter de conditions sévères dans les canaux
sans égalisation complexe. Cependant, dans un canal à évanouissement rapide, la diffusion Doppler provoquée par la mobilité des utilisateurs détruit
l’orthogonalité parmi les sous porteuses, ce qui entraı̂ne l’interférence inter-porteuse (ICI). Dans cet article, le problème de réduction d’OFDM ICI est
formulé comme problème d’optimisation combinatoire. On propose deux méthodes de relaxation pour convertir le problème de détection à vraisemblance
maximale vers des problèmes quadratiques convexes de programmation (QP). Pour réduire encore plus la complexité opérationnelle, les problèmes QP
sont résolus en limitant la recherche au sous espace bidimensionnel. Une recherche à descente à peu de bits peut également être utilisée pour améliorer
la performance du système. L’extension vers les systèmes d’ordre supérieur de modulation à quadrature d’amplitude (QAM) OFDM est également
considérée. Les résultats de performances sont donnés, ce qui démontre que les algorithmes basés sur la relaxation à nombres entiers QP fournissent
d’excellentes performances avec une complexité opérationnelle raisonnable.

Keywords: convex optimization; intercarrier interference; orthogonal frequency-division multiplexing (OFDM); quadratic programming; time-varying
channels

I. Introduction

Orthogonal frequency-division multiplexing (OFDM) modulation is
widely used in communication systems to meet the demand for ever-
increasing data rates. The major advantage of OFDM over single-
carrier transmission is its ability to deal with severe channel condi-
tions without complex equalization. The standards employing OFDM
modulation include digital video broadcasting (DVB) [1], digital au-
dio broadcasting (DAB) [2], IEEE 802.11a and 802.11g [3] for wire-
less local area networks (WLAN), and IEEE 802.16 [4] for wireless
metropolitan area networks (WMAN).

In an OFDM system, the data stream is divided into N parallel
lower-rate data streams and is multiplexed onto a number of subcar-
riers using an inverse fast Fourier transform (IFFT). These subcarri-
ers are overlapped orthogonally to provide bandwidth-efficient trans-
mission. A cyclic prefix (CP) is inserted at the beginning of each
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OFDM symbol before transmission and is removed before demodu-
lation, where the length of the cyclic prefix is greater than or equal
to that of the channel impulse response to eliminate intersymbol in-
terference (ISI). Generally, one-tap equalizers can be utilized in the
frequency domain to cancel multipath distortion effectively over time-
invariant channels [5].

OFDM is sensitive to Doppler spread caused by user mobility, and
to phase noise caused by the frequency difference between the trans-
mitter and the receiver [5]–[10], both of which result in the loss of
orthogonality among subcarriers. This in turn leads to intercarrier in-
terference (ICI) and degrades system performance. While it is straight-
forward to estimate and reduce the ICI induced by phase noise, the ICI
introduced by Doppler spread is a more challenging problem. Various
algorithms have been proposed to mitigate the ICI and improve sys-
tem performance over time-varying channels [7]–[10]. In [7], Li and
Cimini provide universal bounds on the ICI in an OFDM system over
time-varying fading channels which can be evaluated and compared
with the exact ICI. In [8], a block decision feedback equalizer (DFE)
algorithm is described which utilizes signals from several neighbour-
ing subcarriers to eliminate the ICI for a certain subcarrier. An ICI sup-
pression algorithm using parallel cancellation with frequency-domain
equalization techniques is presented in [9]. Two-stage prefilters and
ICI reduction filters are utilized to achieve minimum mean-square er-
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ror (MMSE) equalization. However, it is assumed that the channel
varies linearly during one symbol duration. Furthermore, Stamoulis et
al. [10] derived linear time-varying filters in multiple-input multiple-
output (MIMO) OFDM systems that maximize the ratio of signal en-
ergy to ICI-plus-noise energy.

Based on the maximum-likelihood (ML) criterion, the OFDM ICI
reduction problem can be formulated as a combinatorial optimization
problem with integer constraints. It has been shown that in the multi-
user detection of direct-sequence code-division multiple access (DS-
CDMA) systems [11], such a problem can be solved more efficiently
by using suboptimal detectors. In this paper, two relaxation methods
are utilized to convert the ICI reduction problem into convex quadratic
programming (QP) problems. To further reduce the computational
complexity, the QP problems can be solved by limiting the search
to the two-dimensional subspace spanned by its steepest-descent and
Newton directions. A low-bit descent search (LBDS) can also be em-
ployed to improve the system performance. Furthermore, the proposed
algorithms are extended to higher-order quadrature amplitude modula-
tion (QAM) OFDM systems, and an iterative detection process is uti-
lized. Performance results demonstrate that the integer QP relaxation-
based algorithms provide excellent performance with reasonable com-
putational complexity.

The rest of the paper is organized as follows. The OFDM system
model is presented in Section II. Section III describes the proposed
integer QP relaxation-based algorithms for ICI reduction in a 4-QAM
OFDM system. The extension of the proposed algorithms to higher-
order QAM OFDM systems is addressed in Section IV. Simulations
are carried out and the results are described in Section V. Finally, some
conclusions are given in Section VI.

II. System model

In an OFDM system, the system bandwidth is divided into N subchan-
nels, and the data stream is modulated on the subcarriers using QAM
or phase-shift keying (PSK). The transmitted signal is generated using
an IFFT,

xn =
1√
N

N−1X
k=0

Xk exp

„
j2πkn

N

«
for n = 0, . . . , N − 1, (1)

where xn is the time-domain signal at the n-th sampling instant and
Xk is the frequency-domain data symbol for the k-th subcarrier. Equa-
tion (1) can be written in vector form as

x = FX, (2)

where x = [x0 x1 · · · xN−1]
T and X = [X0 X1 · · · XN−1]

T

represent the time-domain and frequency-domain OFDM symbols,
respectively, and F is the IFFT matrix with elements fn,k =

(1/
√

N) exp(j2πkn/N). The OFDM symbol duration is denoted by
Ts, so the chip duration of each subchannel is Tc = Ts/N . The basic
structure of an OFDM transmitter is depicted in Fig. 1.

In this paper, we adopt a doubly frequency-selective fading channel
model [8]. Thus, we have a wide-sense stationary uncorrelated scat-
tering (WSSUS) channel with impulse response given by

h(t; τ) =

DX
d=1

h(t; τd)δ(τ − τd), (3)

where τd is the d-th path delay with τ1 < τ2 < · · · < τD . In a rich
scattering environment, the channel autocorrelation function is sepa-
rable in terms of time and delay, i.e., φh(4t; τ) = φt(4t)φτ (τ),
where φt(4t) is the time-correlation function based on Jakes’ model

Figure 1: The basic structure of an OFDM transmitter.

Figure 2: The basic structure of an OFDM receiver.

and φτ (τ) is the multipath intensity profile [12]. In (3), h(t; τd) is a
complex Gaussian process with zero mean and variance σ2

d , φτ (τd).

A discrete version of the WSSUS channel in (3) can be modelled as
a tapped delay line (TDL) [13]:

h(n; l) =

DX
d=1

h(nTc; τd) sinc

„
τd

Tc
− l

«
, (4)

where h(n; l) denotes the channel coefficient for the l-th tap at the
n-th sampling instant; n = 0, . . . , N − 1; l = 0, . . . , L − 1, where
L = bτD/Tcc+ 1; and the delay between two taps is Tc.

Thus, the discrete received signal at the n-th sampling instant can
be expressed as

yn =

L−1X
l=0

h(n, l)x(n− l) + wn for n = −Np, . . . , N − 1, (5)

where Np is the length of the CP added to the OFDM symbol and wn

denotes additive white Gaussian noise (AWGN) at the n-th sampling
instant with zero mean and variance σ2. Since the CP is only a copy
of part of OFDM symbol x, after the removal of the CP, (5) can be
written as

y = Hx + w, (6)
where y and w denote the time-domain received signal and AWGN
noise, respectively, and H is the channel matrix given by

H =

2666666664

h(0, 0) 0 . . . h(0, 1)
h(1, 1) h(1, 0) . . . h(1, 2)

...
...

. . .
...

h(L− 1, L− 1) h(L− 1, L− 2) . . . 0
...

...
. . .

...
0 0 . . . h(N − 1, 0)

3777777775
.

By performing a fast Fourier transform (FFT), we obtain

Y = AX + W, (7)

where Y = [Y0 · · · YN−1]
T is the frequency-domain received sig-

nal, A = FHHF, and W = FHw. The basic structure of an OFDM
receiver is shown in Fig. 2.

If h(t; τd) in (3) remains constant within one OFDM symbol dura-
tion, then matrix A in (7) is a diagonal matrix, and no ICI will occur.
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Figure 3: The feasible set defined by (11.b) (points on the circle), the feasible region
defined by (12.b) (I), and the feasible region defined by (13.b) (I+II).

Conversely, if the channel varies within one OFDM symbol, the or-
thogonality of the subcarriers does not hold and the received signal at
a particular subcarrier depends not only on the transmitted signal at
that subcarrier, but also on the transmitted signals from other subcarri-
ers [14]. In this case, the received signal on the k-th subcarrier is

Yk = Ak,kXk +

N−1X
m=0,m6=k

Ak,mXm + Wk, (8)

where k = 0, . . . , N − 1; Ak,m denotes the (k, m)-th element
of A; and

PN−1
m=0,m6=k Ak,mXm represents the ICI caused by other

subcarriers.

III. Problem formulation and relaxation

Based on the ML detection criterion, the ICI reduction problem in
OFDM systems can be formulated as the optimization problem

minimize ‖Y −AX‖22 (9.a)
subject to Xk ∈M for k = 0, 1, . . . , N − 1, (9.b)

whereM contains the constellation points according to the modulation
being used.

The variables in (9) are complex-valued. If we define Y = Yr +
jYi, A = Ar+jAi, and X = Xr+jXi, then (9) can be reformulated
into an optimization problem with real-valued variables as

minimize ‖Ŷ − Âz‖22 (10.a)

subject to zk ∈ M̂ for k = 0, 1, . . . , N − 1, (10.b)

where

Ŷ =

»
Yr

Yi

–
, z =

»
Xr

Xi

–
, Â =

»
Ar −Ai

Ai Ar

–
.

In this section, the OFDM system is assumed to employ 4-QAM mod-
ulation, which corresponds to M̂ = {±1}. Clearly, (10) is a quadratic

optimization problem with discrete variables and can be expressed as

minimize zT Qz + qT z (11.a)
subject to zk = {−1, 1} for k = 0, . . . , 2N − 1, (11.b)

where Q = ÂT Â and q = −2ÂT Ŷ.

A. Convex relaxation
Since the vector z in (11) is a discrete set, we have a combina-
torial problem with exponential computational complexity that be-
comes prohibitive even for a moderate number of variables. It has been
shown [11] that this type of ML detection problem can be solved more
efficiently by expanding the discrete feasible set into a continuous and
convex feasible region. In this paper, two convex relaxation methods
are utilized that allow us to consider convex QP problems that admit
a fast solution which yields good performance. The first QP problem
minimizes a convex quadratic objective function, subject to the condi-
tion that the solution be contained within an n-dimensional box cen-
tred at the origin. The second QP problem minimizes the same objec-
tive function, subject to the condition that the solution be contained
within an n-dimensional ball.

1. Bounded constraint relaxation
The discrete constraints in (11.b) imply that −1 ≤ zk ≤ 1 for k =
0, . . . , 2N − 1. Thus the ICI reduction problem (11) can be relaxed
into the bounded constraint optimization problem

minimize zT Qz + qT z (12.a)
subject to − 1 ≤ zk ≤ 1 for k = 0, . . . , 2N − 1. (12.b)

The feasible region in (12.b) is an n-dimensional hypercube centred at
the origin with linear constraints. Thus, (12) is a convex QP problem
which can be solved efficiently to provide suboptimal performance to
that of (11).

2. Quadratic convex relaxation
The constraints in (11.b) imply that zT z = 2N , which is associated
with the feasible region of a 2N -dimensional ball centred at the origin
with radius

√
2N . If we expand such a feasible region within the ball,

the ICI reduction problem (11) is relaxed into the problem

minimize zT Qz + qT z (13.a)

subject to zT z ≤ 2N. (13.b)

Problem (13) seeks to minimize a quadratic objective function over a
convex feasible region. Thus, it is a convex QP minimization problem.
A unique global solution can be obtained using efficient interior-point
QP solvers with reduced computational complexity.

The feasible regions of (11), (12), and (13) are depicted in Fig. 3.
Efficient optimization algorithms are available in the literature [15] to
solve the minimization problems (12) and (13). Once the solution z∗

of (12) or (13) is obtained, the solution of (11) can be approximated as
sign(z∗).

B. Two-dimensional search method
To further reduce computational complexity, the solutions of (12) or
(13) can be obtained by limiting the search to the two-dimensional
subspace spanned by its steepest-descent direction (i.e., the negative
gradient of the objective function) and the Newton direction. To do so,
we set

z = η1v1 + η2v2, (14)

where v1 = q, v2 = Q−1q, and η1, η2 are two scalar variables. Then
(12) is converted into the two-dimensional problem

minimize ηT Sη + pT η (15.a)
subject to − 1 ≤ Vkη ≤ 1, (15.b)

where η = [η1η2]
T , S = VT QV, p = VT q, Vk is the k-th row of

the matrix V, and V = [v1v2].
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Similarly, (13) can be reformulated into the two-dimensional
problem

minimize ηT Sη + pT η (16.a)

subject to ηT Rη ≤ 2N, (16.b)

where R = VT V. If we denote the solution of (15) or (16) as η∗, then
the solution z∗ of (12) or (13) can be calculated using (14) accordingly,
and sign(z∗) is then taken as the solution of (11).

C. Performance enhancement by low-bit descent search
In LBDS, a given binary sequence is associated with an objective func-
tion to be minimized. The search process evaluates, compares, and de-
termines the optimal sign switches of a relatively small number of se-
quence components to yield maximum reduction in the objective func-
tion in (10). LBDS has been applied recently to various problems [16].
As will be demonstrated, the performance of the proposed algorithm
can be considerably enhanced using 1-bit, 2-bit, or a combined 1-bit-
and-2-bit LBDS, at the cost of an insignificant increase in computa-
tional complexity.

From [16], the one-bit descent search can be carried out by evalu-
ating z � ξ (here � denotes component-wise multiplication), where
ξ = Q̃z + q/2 and Q̃ is generated from Q with its diagonal com-
ponents set to zero. Index k∗ is then identified as the case where the
corresponding component ξk∗ has maximum value, and the sign of zk∗

is switched to obtain an improved solution. Similarly, a 2-bit LBDS is
performed by computing G = ξeT + eT ξ− 2Q� (zzT ), where e is
the all-one vector. The index (k∗, m∗) is identified as the case where
the component Pk∗,m∗ reaches its maximum value, and an improved
solution is then obtained by switching the signs of the k∗-th and m∗-th
components of z∗.

IV. Extension to higher-order QAM OFDM systems

With minor modifications, the proposed algorithms can be readily ex-
tended to higher-order M -QAM OFDM systems. For example, for
a 16-QAM OFDM system, the complex-valued ICI reduction prob-
lem (9) can be reformulated as a real-valued problem, i.e.,

minimize X̂T Q̂X̂ + q̂
T
X̂ (17.a)

subject to X̂k = {±1,±3} for k = 0, . . . , 2N − 1, (17.b)

where Q̂ = ÂT Â, q̂ = −2ÂT Ŷ, and Â, Ŷ are as given in (10). The
variable set in (17) can be characterized as

X̂ = 2α + β, (18)

where α and β are 2N -dimensional vectors with components
αk and βk ∈ {−1, 1} for k = 0, . . . , 2N − 1. Problem (17) then
assumes the form

minimize zT Qz + qT z (19.a)
subject to zk = {−1, 1} for k = 0, . . . , 4N − 1, (19.b)

where

z =

»
α
β

–
, Q =

»
4Q̂ 2Q̂

2Q̂ Q̂

–
, q =

»
2q̂
q̂

–
.

Similarly, for the case of 64-QAM OFDM systems, the ICI reduc-
tion problem can be formulated as a real-valued optimization problem:

minimize X̂T Q̂X̂ + q̂
T
X̂ (20.a)

subject to X̂k = {±1,±3,±5,±7} (20.b)
for k = 0, . . . , 2N − 1,

where Q̂ = ÂT Â and q̂ = −2ÂT Ŷ. The variable set in (20) can be
characterized as

X̂ = 4α + 2β + γ, (21)
where α, β, and γ are 2N -dimensional vectors with components αk,
βk, and γk ∈ {−1, 1} for k = 0, . . . , 2N − 1. Problem (20) then
assumes the form

minimize zT Qz + qT z (22.a)
subject to zk = {−1, 1} for k = 0, . . . , 6N − 1, (22.b)

where

z =

24α
β
γ

35 , Q =

2416Q̂ 8Q̂ 4Q̂

8Q̂ 4Q̂ 2Q̂

4Q̂ 2Q̂ Q̂

35 , q =

244q̂
2q̂
q̂

35 .

Problems (19) and (22) can be solved in a recursive manner to im-
prove system performance, in which case only some binary compo-
nents of z in (19) or (22) are determined in each iteration by solving a
corresponding combinatorial problem of type (11). Algorithmic details
of a given, say the i-th, iteration are described as follows. Suppose that
prior to the i-th iteration, several binary components of vector z have
already been determined. Let zi be the reduced-size vector that collects
all undecided components of z, let Ωi be the index set corresponding
to zi, and let Ni be the size of zi. By substituting the known binary
components of z into (19) or (22), a reduced-size problem similar to
(19) or (22) is obtained as

minimize zT
i Qizi + qT

i zi (23.a)

subject to z
(i)
k = {−1, 1} for k = 0, . . . , Ni, (23.b)

where z
(i)
k denotes the k-th component in the reduced-size vector zi.

The relaxation and solution techniques described in Sections III.A to
III.C can then be applied with straightforward modifications.

Next, the magnitudes of the components of z∗i are examined. If
|z∗

(i)

k | exceeds a given threshold ρ, the corresponding variable is de-
tected as sign(z∗

(i)

k ); otherwise component z∗
(i)

k remains undeter-
mined and will be considered as a design variable in the next itera-
tion. The components just detected are then used in (23) to produce a
similar QP problem of reduced size, where the vector zi contains only
the undecided variables. This iterative process continues until all the
variables have been identified to produce an estimate of the transmit-
ted data.

Note that in the first iteration, Qi is the entire matrix Q, and Q
is merely positive semidefinite (see (19) and (22)). Thus problem (23)
cannot be solved directly using a two-dimensional search method. This
difficulty can be readily fixed by adding εI with a small ε greater than
0 to Q so that the slightly modified Q + εI becomes positive definite
and thus nonsingular. This modification does not affect the solution
because the modification amounts to changing the objective function
in (23.a) to zT

i (Qi +εI)zi +qT
i zi, which in conjunction with the con-

straint in (23.b) equals zT
i Qizi+qT

i zi+Niε, and adding a constant to
the objective function does not alter the solution. As the iterations con-
tinue, matrix Qi may or may not be singular; the technique outlined
above can be used in case Qi is singular.

V. Performance evaluation

The proposed algorithms were applied to an OFDM system with
N = 64 subcarriers and a system bandwidth of 200 kHz. The length
of the cyclic prefix was chosen to be Np = N/8. A two-ray WSSUS
fading channel was employed, where each path is an independent com-
plex Gaussian random process with Jakes’ Doppler spectrum [13].
The delay of the first path was set to zero, and the delay of the sec-
ond path was randomly generated with a uniform distribution from
{Tc, . . . , NpTc}. The normalized Doppler frequency of the channel
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Figure 4: BER performance of the bounded constraint relaxation method with fdTs =

0.1 in a 4-QAM OFDM system.

is fdTs. Simulations were carried out to evaluate the performance in
terms of bit error rate (BER) and computational complexity. The BER
performances of a conventional one-tap equalizer and a 25-tap DFE [8]
are provided for comparison purposes. Perfect channel information is
assumed, and combined 1-bit-and-2-bit LBDS was adopted to improve
system performance of the proposed algorithms. The algorithms were
implemented using the MATLAB SeDuMi toolbox [17].

A. Proposed algorithms in a 4-QAM OFDM system
First, we examine the performance of the proposed integer QP
relaxation-based ICI reduction algorithms in a 4-QAM–modulation
OFDM system.

The BER performance of an OFDM system with fdTs = 0.1 and
bounded constraint relaxation is shown in Fig. 4. The performance re-
sults with a one-tap equalizer and a 25-tap DFE [8] are also given
for comparison. It can be observed that the one-tap equalizer provides
unsatisfactory performance in time-varying channels, but the bounded
constraint relaxation methods considerably mitigate the intercarrier in-
terference. The performance can be further improved by employing
the LBDS method. Both the n-dimensional and two-dimensional algo-
rithms offer superior performance to that with the DFE, but with higher
computational complexity. Because the solution of (15) is an approx-
imation to that of (12), the n-dimensional algorithm outperforms the
two-dimensional algorithm. However, it is more complex. For exam-
ple, at an Eb/N0 of 25 dB, the DFE has a BER of 9× 10−5, while the
two-dimensional bounded constraint relaxation algorithm with LBDS
has a BER of 5 × 10−5 (with a 20% increase in CPU running time).
The n-dimensional algorithm has a BER of 2.5 × 10−5 with LBDS
(with a 40% increase in CPU running time).

The BER performance of the quadratic convex relaxation algo-
rithms is given in Fig. 5. It can be observed that the performance re-
sults are better than those for the one-tap equalizer and DFE. However,
the quadratic convex relaxation algorithms performed slightly worse
than the bounded constraint algorithms. This is because the optimiza-
tion problem in (13) can be obtained by relaxing (12), so one would
expect the bounded constraint relaxation algorithm to offer superior
performance, but with a slightly higher computational complexity. For
example, for Eb/N0 = 25 dB, the two-dimensional quadratic convex
relaxation algorithm with LBDS has a BER of 7×10−5 (with an 18%
increase in CPU running time compared to the DFE case), whereas the
n-dimensional algorithm with LBDS offers a BER of 4.5×10−5 (with
a 35% increase in CPU running time).

B. Proposed algorithms in higher-order QAM OFDM systems
The proposed algorithms with iterative detection were also employed

Figure 5: BER performance of the quadratic constraint relaxation method with fdTs =

0.1 in a 4-QAM OFDM system.

Figure 6: BER performance of the bounded constraint relaxation method with ρ = 0.5

and fdTs = 0.1 in a 16-QAM OFDM system.

in a 16-QAM OFDM system to evaluate the performance. For the sake
of simplicity, only bounded constraint relaxation performance is pre-
sented, as quadratic convex relaxation provides similar performance,
as in the 4-QAM OFDM case. Fig. 6 shows that the bounded con-
straint relaxation method outperforms the 25-tap DEF and provides
significant improvement over the performance of the one-tap equalizer.
The n-dimensional method offers better performance than the two-
dimensional method at the price of higher computational complexity.

As iterative detection is utilized, a larger threshold ρ will provide
better performance at the cost of increased complexity, as shown in
Fig. 7. The proposed two-dimensional bounded constraint relaxation
method exhibits an error floor at high SNR, but this can be effec-
tively suppressed by performing LBDS with a slightly increased com-
putational complexity. For the 16-QAM OFDM system with Doppler
spread fdTs = 0.1, the algorithm with ρ = 0.8 requires 35% more
CPU time than that with ρ = 0.5 at 35 dB to achieve a BER of 9×10−4

before LBDS is employed. This result can be improved to 4 × 10−5

by performing LBDS with 26% more CPU time than is required with
ρ = 0.5.

A small constant was added to matrix Q to make it nonsingular.
The system performance for constants ε = 0.1 and ε = 10−6 is shown
in Fig. 8. Although the performance is quite close for both constants
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Figure 7: BER performance of the two-dimensional bounded constraint relaxation method
with various thresholds and fdTs = 0.1 in a 16-QAM OFDM system.

Figure 8: BER performance of the bounded constraint relaxation method with fdTs =

0.1 for various values of ε in a 16-QAM OFDM system.

before LBDS is employed, the smaller constant provides better perfor-
mance at high SNR with LBDS. For example, in a 16-QAM OFDM
system with fdTs = 0.1, the two-dimensional bounded constraint re-
laxation method with ε = 0.1 achieves a BER of 8 × 10−5 at 35 dB,
which can be improved to 5×10−5 with a smaller constant ε = 10−6.

C. The effect of Doppler spread
Simulations were also carried out to determine the impact of nor-
malized Doppler spread fdTs on performance. The BER of the two-
dimensional bounded constraint relaxation algorithm for fdTs = 0.05,
0.1, and 0.3 in OFDM systems with different modulation schemes is
plotted in Figs. 9–11. It can be observed that the performance of the
two-dimensional bounded constraint relaxation algorithm degrades as
the Doppler spread increases, while time diversity can be achieved
by adding the LBDS method. For example, in a 4-QAM OFDM sys-
tem, an Eb/N0 of 25 dB is required to achieve a BER of 10−4 for
fdTs = 0.05 with LBDS, whereas with fdTs = 0.1, an Eb/N0 of
24 dB is required to achieve the same BER. The Eb/N0 required to
obtain the same BER drops to 22.5 dB for fdTs = 0.3. This improve-
ment with increasing fdTs can be attributed to the increased temporal
diversity introduced by the larger Doppler spread [18]. Similar diver-
sity gain can also be realized by employing the quadratic convex re-
laxation algorithm.

Figure 9: BER performance of the two-dimensional bounded constraint relaxation method
with various Doppler spreads in a 4-QAM OFDM system.

VI. Conclusions

In this paper, the OFDM ICI reduction problem was first formulated
as a combinatorial optimization problem with integer constraints. Two
relaxation methods were then utilized to convert the discrete ML de-
tection problem into convex QP problems. To further reduce the com-
putational complexity, the QP problems were solved by limiting the
search to a two-dimensional subspace. An LBDS method was em-
ployed to improve the system performance with slightly increased
computational complexity. The proposed algorithms could also be em-
ployed in higher-order OFDM systems with minor modifications, and
iterative detection can be used to improve performance at the cost of
higher complexity. Simulations were carried out to examine the perfor-
mance of the proposed ICI reduction algorithms. The results demon-
strated that the integer QP relaxation-based algorithms provide excel-
lent performance with reasonable computational complexity and that
temporal diversity can be achieved with increased Doppler spread.
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