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Abstract

Improving accuracy in wireless localization and ranging is a challenging task
which often demands an increase in the signal-to-noise ratio (SNR). Impulsive
ultra-wideband (UWB) technology is a promising signaling alternative that is
capable of high-resolution ranging with minimal cost on SNR. Unfortunately,
typical UWB time-of-arrival (ToA) estimators are complicated and perform
poorly in the low SNR environment. In this correspondence, we propose a
regularized least squares (RLS) approach with wavelet denoising to improve
the estimator accuracy at low SNR. Our approach estimates the ToA as a
by-product of the RLS channel estimator based on a thresholding technique,
which is simple and can enable fast, on-the-fly, accurate ToA estimation
applicable to real-time application. In addition to the meticulous selection
of a threshold based on the Neyman-Pearson criterion, we demonstrate the
robustness of our algorithm first by computer simulation, then applying it to
a realistic situation of range estimation via the UWB impulse radio (UWB-
IR). In both cases, our algorithm is shown to supersede other high-resolution
algorithms in ToA estimation, energy capture and computational complexity
when the sampling rate is available.
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(ToA) estimation, regularized least squares (RLS), wavelet denoising (WD),
ranging, channel estimation, discrete wavelet transform (DWT)

1. Introduction

The U.S. Federal Communications Committee (FCC) spectrum mandate
for ultra-wideband (UWB) communications in 2002 has brought forth many
potential applications from industry. Particularly in ranging and localization,
UWB impulse radio (UWB-IR) has shown to be a promising candidate that
can enable centimeter accuracy with minimum cost on the signal-to-noise
ratio (SNR) [1].

Locating a node in a wireless sensor network (WSN) involves obtaining
the range information between a target node (TN) and a group of reference
nodes (RNs) [1]. When the positions of the RNs are known, the whereabouts
of the TN can be estimated by obtaining the ToA information from radio
signals traveling between the nodes. Then, combining these ToA estimates
to produce the position estimate of the TN within the network [1, 2]. For a
real-time application which demands the instantaneous tracking of the TN
position, the processing of information must be on the order of a fraction of a
second, so a good ToA estimator not only has to guarantee ranging accuracy
but also low in complexity to enable real-time signal processing.

The range information that is often embedded in the direct-path signal
can be retrieved by several techniques, e.g., with signal strength, or time-
of-arrival (ToA) estimation [2]. By operating with pulses containing a wide
spectral support, UWB-IR enables fine time resolution that complements
the time-based positioning technique as the viable solution for cost-effective,
high-resolution ranging and localization. However, the wide spectrum can
have a pronounced impact on estimation since the incurred multipath com-
ponents (MPCs) are often stronger than the direct path, especially in a non-
line-of-sight (NLOS) environment [3].

To circumvent that, Lee and Scholtz [4] first considered impulse-based
ranging technique in a dense multipath environment with the generalized
maximum likelihood (ML) estimator which detects the direct-path arrival
while treating other MPCs as nuisance parameters. However, it complicates
the matter with the statistical modeling of several parameters from measure-
ment, all of which are subject to change depending on the environment, and
apart from being an iterative algorithm it operates on Nyquist rate samples.
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To reduce the sampling rate requirement, [5] compared the symbol rate sam-
ples of an energy detector to a normalized threshold to estimate the ToA.
However, because of a square-law device its performance degrades at low
SNR and is subject to change unless a meaningful threshold can be found.
To improve the performance, [6] introduced a two-stage ToA algorithm which
combines the coarse estimate of an energy detector with the fine resolution
of a low-rate correlator. By combining the two schemes, it unnecessarily
increases the system complexity and defeats the purpose of sampling rate
reduction intended for a square-law device. An inverse problem approach to
ToA estimation was proposed by [7], where the authors estimate the ToA by
treating it as a by-product of the large scale linear least squares (LS) solu-
tion. Although this algorithm is simple, the problem is ill-posed and suffers
from output instability, attributable to both noise and a dense multipath,
inherent of an impulsive wideband channel. Moreover, its performance is
not well documented and the relationship to channel sampling rate is not
examined. In all of the above contributions except [4], the performance was
mostly evaluated via computer simulation with no results pertaining to the
realistic ranging application. In contrast, Low et al. [8] demonstrated a FCC-
compliant UWB ranging scheme in the line-of-sight (LOS) environment, and
Falsi et al. [9] illustrated a set of ToA estimators based on the indoor mea-
surement data from [3]. Both cases employ the peak-detection-based (PDB)
algorithms, with a simple threshold and detect of the former to the subopti-
mal, high-resolution, iterative ML channel estimators in the latter. In [9], the
PDB algorithms are shown to be good ToA estimators while being efficient
at energy capture for both LOS and NLOS environments.

To improve the estimator accuracy at low SNR while retaining its simplic-
ity for the ease of real-time positioning, we propose a regularized LS (RLS)
approach with wavelet denoising (WD) to the problem of ToA estimation.
Pioneered by Donoho and Johnstone [10], WD has been successfully applied
to boost the low SNR performance of time-delay estimator [11] and several
direction-of-arrival algorithms, e.g., [12, 13]. Our technique utilizes the dis-
crete wavelet transform (DWT), and hyperbolic shrinkage of [14] with the
threshold developed by Donoho [15] to effectively enhance the SNR prior
to RLS channel estimation; thereafter, the final retrieval of accurate ToA
information via a thresholding technique. Our approach is simple and en-
ables fast, on-the-fly, high-resolution ToA estimation applicable to real-time
ranging system. In addition to devising a threshold selection strategy based
on the Neyman-Pearson (NP) criterion, we demonstrate the superior per-
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formance of our estimator first in computer simulation and then reaffirm
with an application in the realistic indoor ranging. In both cases, our algo-
rithm is shown to outperform the high-resolution, iterative PDB algorithms
of [9] in aspects such as ToA estimation, energy capture and computational
complexity when Nyquist sampling rate is available. To the best of authors’
knowledge, this approach has yet to be adopted for UWB-IR ToA estimation.
Note that higher range resolution can be achieved by interpolating from the
Nyquist rate samples.

The rest of this correspondence is organized as follows: Section 2 presents
the overall system model, including a description of both LS and RLS chan-
nel estimators. To examine the benefits of denoising, Section 3 describes the
critical components of WD and how they contribute to the SNR enhance-
ment. Then, we propose our ToA estimator in Section 4, outline the thresh-
old selection criterion in Section 5, and compare its performance against the
PDB algorithms with both computer simulation and realistic UWB-IR range
estimations in Section 6. Finally, concluding remarks are given in Section 7.

2. System Model

The position of a sensor node is directly related to the ToA of the first
multipath component. To estimate the ToA, a UWB ranging system pe-
riodically transmits sub-nanosecond pulses between the RNs and a TN of
unknown distance. For a single pulse transmitted through free-space, the
received signal at the TN under multipath can be modeled as

r(t) =
L−1
∑

l=0

αlw(t − τl) + n(t) , (1)

where w(t) is the received pulse template of duration Tp, αl and τl are the
amplitude and time delay of the l-th multipath, L is an unknown a priori

which presents the number of propagation paths, n(t) is the additive white
Gaussian noise (AWGN) with variance σ2 to account for thermal noise. The
purpose of ToA estimation is to accurately acquire the direct-path, i.e., τ0,
over an observation interval [0, T ).

Assuming the observation interval can be divided into K equally spaced
delays for k = 0, 1, . . . , K − 1, each associating with a sparse channel tap ak.
We can then simplify (1) by associating the sparse set {ak}K−1

k=0 of channel

4



coefficients with uniformly delayed received pulse template w(t − k∆) for
k = 0, 1, . . . , K − 1, as

r(t) =

K−1
∑

k=0

akw(t− k∆) + n(t) . (2)

Suppose the received signal is sampled at sampling time Ts. Given time
instant samples ti = (i − 1)Ts for i = 1, 2, . . . , M , (2) can be written as

r(ti) =

K−1
∑

k=0

akw(ti − k∆) + n(ti) , i = 1, 2, . . . , M , (3)

which in matrix notation is given by

r = Wa + n = s + n , (4)

where a = [a0, a1, . . . , aK−1]
T and n = [n(t1), n(t2), . . . , n(tM)]T are vectors

of sparse channel coefficients and the noise samples, respectively, s = Wa is
the signal portion of r, and

W =











w(t1) w(t1 − ∆) . . . w(t1 − (K − 1)∆)
w(t2) w(t2 − ∆) . . . w(t2 − (K − 1)∆)

...
...

. . .
...

w(tM) w(tM − ∆) . . . w(tM − (K − 1)∆)











, (5)

represents a M ×K matrix which comprises of delayed and sampled version
of w(t). In contrast to the matrix representations of [7] and [9], the step-size
in (5) can be varied for the sake of estimation accuracy.

2.1. LS Solution

We treat the ToA estimation as a by-product of the LS channel estimator
by solving the solution to (4). For an overdetermined noiseless system there
exists a unique solution which solves the problem

min ||Wa− r||2 , (6)

which yields the LS solution given by

âLS = (WTW)−1WTr = W⊥r , (7)
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where || · ||2 is the Euclidean norm, (·)T denotes matrix transpose, (·)−1

is the matrix inverse, â denotes an estimate of a and W⊥ is the Moore-
Penrose inverse of W. Unlike [9], W⊥ can be pre-computed and stored when
a desired resolution ∆ is given. Unfortunately, (7) is often sensitive to noise
in the received signal and can be quite unstable when W is ill-posed. In
contrast, when W is well-posed, i.e., independent columns in W, (7) gives
the maximum likelihood estimate (MLE) of a.

2.2. Regularized LS Solution

To find a meaningful result when the solution to (6) becomes unstable,
we apply the technique of regularization. Regularization is a well-known
technique for dealing with instability in the inverse problem [16] by forcing
an ill-posed problem into a well-posed one with some a priori information.
The RLS solution solves the problem

min{||Wa− r||2 + λ||a||2} , (8)

where λ ≥ 0 is the regularization parameter which controls the solution’s
energy. Note that with λ = 0 the solution to (8) reduces to the LS one.
With λ > 0, it is straightforward to show that the unique global solution to
(8) is given by

âRLS = (WTW + λI)−1WTr = W⊥
λ r , (9)

where W⊥
λ is called the regularized pseudo-inverse, which can also be pre-

calculated and stored for fast, on-the-fly processing.

3. Wavelet Denoising

To realize a stable LS solution for accurate ToA estimation, we apply the
well-established technique of WD. Since its introduction in [10], denoising
with DWT has become a powerful tool to recover noise corrupted data. To
recover M samples of a known data sequence s from the noise-corrupted
observation r = s + n, where n denotes a M × 1 vector samples of AWGN
with variance σ2, the purpose of WD is to differentiate the wavelet coefficients
of s from those of n, assuming the coefficients of s resides mostly in the low
frequency region and can be compressed into a few large values in the wavelet
domain. The compression is carried out by multiplying r with a M × M
orthonormal wavelet matrix WW , as

rW = WWr = WW s + WWn

= sW + nW , (10)
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where the matrix WW can be pre-determined by knowing the wavelet filter
order F and decomposition level J . Multiplying r with WW is essentially
the DWT operation. Moreover, due to the orthonormal property of WW , the
noise is similarly mapped to nW with identical statistics. However, because
of its wideband nature, coefficients of noise are usually small and can be
discarded; whereas, the large coefficients of the desired signal are retained
[10, 15]. Differentiating amongst these coefficients is identical to the filtering
operation, where (10) is multiplied by a matrix H modeled as

H = diag[h(1), h(2), . . . , h(M)] . (11)

The elements of H are set according to the thresholding criterion, with
hard and soft thresholds from [15] being the most common, or the hyperbolic
shrinkage proposed by Vidakovic [14] defined as

h(i) =







√

(

1 − δ2

|rW (i)|2

)

, if |rW (i)| > δ

0 , otherwise
(12)

where rW (i) denotes the i-th element of rW , |·| is the absolute value operation,
and δ is the threshold from [10, 15], given by

δ =
√

2σ2 log(M) . (13)

The recovery of the desired signal s is now given by

ŝ = WT
W r̃W = WT

WHWWr , (14)

which is the inverse DWT operation to the denoised wavelet coefficients r̃W =
HrW , where ŝ represents an estimate of s, but with the noise significantly
reduced. The process of discarding and retaining the wavelet coefficients
results in the overall SNR enhancement.

4. RLS-WD ToA Estimation

The distinct advantage of UWB in ranging is its high precision with
minimal penalty on SNR. Many existing ToA estimators, however, do not
work well at the low SNR region, thus are limited to only short distance
ranging. To improve the estimator accuracy under low SNR, we adopt WD
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with RLS channel estimation as shown in Fig. 1 for a simple, yet accurate,
ToA estimation. We name this the RLS-WD ToA estimator.

One drawback of denoising with DWT is the requirement of noise infor-
mation, where its ability to remove noise depends entirely on how accurate
the noise variance can be estimated. For narrowband signals and images,
which map to a few large, low-frequency coefficients in the wavelet domain,
noise variance can be estimated from the finest scale wavelet coefficients [15].
However, due to the wideband characteristic of UWB, estimating variance
from the first level decomposition is often incorrect. For that, assuming a
large distance between nodes and a large sample size M , the variance can be
estimated from the first few hundred noise samples as

σ̂2 =
1

N − 1

N
∑

i=1

(r(ti) − µ̂)2 , (15)

where µ̂ is the sample mean and N a subset of M . Now, the RLS-WD ToA
estimator can be summarized as

1. Receive M samples of observation r at sampling rate Ts over the interval
[0, T ).

2. Estimate the noise variance σ̂2 according to (15).
3. Select the wavelet filter order F and WD decomposition level J , ap-

ply Daubechies DWT and Vidakovic hyperbolic shrinkage to r, and
estimate the desired signal according to (14).

4. Choose the channel estimator resolution ∆, and K = T/∆, construct
W according to (5).

5. Estimate the channel â using either LS solution in (7), or RLS algorithm
in (9), with a pre-determined λ.

6. Estimate the ToA as

τ̂0 = arg min
tk

|â| > ξ , (16)

where ξ = ηâmax is the threshold, η ∈ (0, 1) is the normalized threshold
relating to a percentage of âmax = max{|â|}, the maximum estimated
amplitude.

5. Threshold Selection for RLS-WD Estimator

The threshold selection plays a crucial role in the overall estimator per-
formance. Especially in a dense multipath channel, a threshold too low can
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increase the chance that the noise samples prior to the true ToA being falsely
identified as the ToA [4], also known as the early false alarm probability PFA.
Conversely, it is easy to miss the true ToA and detect the later arriving MPCs
as the ToA when a threshold is set too high, thus increasing the probability
of a missed detection PM . In this section, we illustrate the threshold selection
according to the NP criterion [17] and its variant, one which aims at mini-
mizing both PFA and PM [4]. For simplicity, we do not consider the effect of
WD1, and we assume the columns of W in (5) to be orthogonal basis func-
tions, i.e., wT

i′wj′ = 0, i′ 6= j′, and wT
i′wi′ = 1, ∀i′ = 0, 1, . . . , K − 1, where

wi′ denotes the i′-th column of W, implying non-overlapping multipaths and
unit energy pulse w(t). Then the i′-th sample output âi′ of the LS channel
estimator2 can be written as

âi′ = wT
i′wi′ai′ + wT

i′n = ai′ +

M
∑

i=1

w(ti − i′∆′)n(ti)

= ai′ + ni′ , (17)

where âi′ is the MLE of ai′ , ∆′ = ⌊Tp/Ts⌋ is the number of delay samples in
between pulses to achieve orthogonality, and ⌊·⌋ denotes the floor function.
Clearly, âi′ ∼ N (ai′, σ

2), ∀i′ = 0, 1, . . . , K − 1, is a set of non-identical but
independently distributed (non-i.i.d.) Gaussian random variables3 (r.v.’s).
When the sample âi′ undergoes the absolute value operation in (16), the
probability density function (p.d.f.) can be written as the function of a
single r.v. [18] as

fY
i′
(yi′) =

{

0 , if yi′ < 0
1√

2πσ2

[

exp
(

− (y
i′
−a

i′
)2

2σ2

)

+ exp
(

− (−y
i′
−a

i′
)2

2σ2

)]

, if yi′ ≥ 0

(18)
where yi′ = |âi′ | is the i′-th output sample and fY

i′
(yi′) is the p.d.f. of

yi′. Therefore, following (18), the threshold of (16) with ymax := âmax =

1Denoising with DWT can be formulated as a special case of the treatment herein.
2The RLS channel estimator output can be treated as a special case of LS channel

estimator, where λ 6= 0 in (9). The use of RLS is only necessary when the columns of W

are not orthogonal.
3In the case when columns of W are not necessary orthogonal, i.e., w

T
i′wj′ 6= 0, i′ 6= j′,

we can stack the K elements of âi′ into vector â = [â0, â1, . . . , âK−1]
T . The elements of

â is then correlated and non-identically distributed Gaussian random variable with mean
E{â} = (WT

W)−1
W

T
Wa and covariance Cov(â) = σ2(WT

W)−1
W

T
W((WT

W)−1)T .
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max{yi′}, for i′ = 0, 1, . . . , K − 1, can be formulated as the order statistics
[18] with its p.d.f. given as

fYmax
(ymax) =

K−1
∑

i′′=0

fY
i′′

(ymax)
K−1
∏

j′′ 6=i′′, j′′=0

FY
i′′

(ymax)

=

K−1
∑

i′′=0

1√
2πσ2

×
[

exp

(

−(ymax − ai′′)
2

2σ2

)

+ exp

(

−(−ymax − ai′′)
2

2σ2

)]

×
K−1
∏

j′′ 6=i′′, j′′=0

(

Q

(

ai′′ − ymax

σ

)

− Q

(

ai′′ + ymax

σ

))

, (19)

where fY
i′′

(ymax) and FY
i′′

(ymax) are the p.d.f. and cumulative distribu-

tion function (c.d.f.) of yi′′ evaluated at ymax, respectively, and Q(x) ,
∫ +∞

x
1√
2π

e−t2/2 dt is the Q-function. Now, assuming the real ToA to arrive at

the j-th index4 for 0 ≤ j ≤ K − 1 and only the signal plus noise components
exist thereafter, the PFA can be written as

PFA = Pr{yi′ > ξ, for any i′ = 0, 1, . . . , j − 1}
= 1 − Pr{yi′ < ηymax, ∀i′ = 0, 1, . . . , j − 1}

= 1 −
j−1
∏

i′=0

(1 − Pr{yi′ > ηymax})

= 1 −
j−1
∏

i′=0

(

1 −
∫ +∞

0

∫ +∞

ηymax

fY
i′

,Ymax
(yi′, ymax) dyi′ dymax

)

= 1 −
j−1
∏

i′=0

×
(

1 −
∫ +∞

0

∫ +∞

ηymax

fY
i′
|Ymax

(yi′|ymax)fYmax
(ymax) dyi′ dymax

)

,(20)

4We treat the real ToA that arrives in between indexes as a special case of arriving at
the index.
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where fY
i′

,Ymax
(yi′, ymax) and fY

i′
|Ymax

(yi′|ymax) are the joint and conditional
p.d.f.’s, respectively, of the r.v.’s yi′ and ymax, and we have applied the Bayes’
Theorem in the last step of (20). Substituting (18) into (20) gives

PFA = 1 −
j−1
∏

i′=0

(

1 −
∫ +∞

0

g(ai′, ηymax)fYmax
(ymax) dymax

)

, (21)

where

g(a, b) =

(

1 − Q

(

a − b

σ

)

+ Q

(

a + b

σ

))

. (22)

For the ToA which arrives at the j-th index, we may assume there is no
signal present for 0 ≤ i′ < j, thus ai′ ≈ 0, then (21) simplifies to

PFA
∼= 1 −

(

1 − 2

∫ +∞

0

Q
(ηymax

σ

)

fYmax
(ymax) dymax

)j

. (23)

According to the NP criterion, we can set the left-hand side of (23) to
a constant then look for η by inverting the right-hand side. Unfortunately,
this is not pursued here due to the complexity of inverting (23) with the
evaluation of (19). Instead, we consider a simplified scenario where ξ is set
as a fixed threshold, then following the above formulation the PFA can be
derived as

PFA = 1 −
j−1
∏

i′=0

(1 − Pr{yi′ > ξ}) = 1 −
j−1
∏

i′=0

(1 − g(ai′, ξ))

= 1 −
j−1
∏

i′=0

(

Q

(

ai′ − ξ

σ

)

− Q

(

ai′ + ξ

σ

))

∼= 1 −
(

1 − 2Q

(

ξ

σ

))j

. (24)

Following the NP criterion, we can obtain ξ by inverting the right-hand
side of (24) according to a target PFA as

ξ = Q−1

(

1 − (1 − PFA)1/j

2

)

σ . (25)

Alternatively, we may set a specific PFA and find a threshold which min-
imizes the PM , or look for a threshold which simultaneously minimizes both
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PFA and PM as in [4]. For these cases of thresholding criterion, we define
PM as the probability that a threshold crossing is missed for the first j + 1
samples and a false detection on any of the later K − j − 2 signal plus noise
samples, the PM can be formulated as

PM = Pr{yi′ < ηymax, ∀i′ = 0, 1, . . . , j ∩
yi′ > ηymax, for any i′ = j + 1, j + 2, . . . , K − 1}

=

j
∏

i′=0

Pr{yi′ < ηymax} ×

(1 − Pr{yi′ < ηymax, ∀i′ = j + 1, j + 2, . . . , K − 1}) . (26)

And continuing in a manner similar to the derivations of (20), we get

PM =

j
∏

i′=0

(

1 −
∫ +∞

0

g(ai′, ηymax)fYmax
(ymax) dymax

)

×
[

1 −
K−1
∏

i′=j+1

(

1 −
∫ +∞

0

g(ai′, ηymax)fYmax
(ymax) dymax

)

]

∼=
(

1 − 2

∫ +∞

0

Q
(ηymax

σ

)

fYmax
(ymax) dymax

)j

×
(

1 −
∫ +∞

0

g(aj, ηymax)fYmax
(ymax) dymax

)

×
[

1 −
K−1
∏

i′=j+1

(

1 −
∫ +∞

0

g(ai′, ηymax)fYmax
(ymax) dymax

)

]

, (27)

where the last step stems from the assumption that there exists no signal for
0 ≤ i′ < j. Likewise to the evaluation of (21) or (23), looking for η which
minimizes (27) has no closed form solution due to the p.d.f. of ymax, and one
must resort to numerical integration, which can be trivially computed due to
the products of the single integrals, and recognizing that the integrands would
only consist of the Gaussian p.d.f.’s and Q-functions after substituting (19)
and (22) into (27). Without directly computing the numerical integration,
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we assume a fixed threshold ξ so that the PM can now be simplified as

PM =

j
∏

i′=0

Pr{yi′ < ξ} ×
(

1 −
K−1
∏

i′=j+1

(1 − Pr{yi′ > ξ})
)

=

j
∏

i′=0

(1 − g(ai′, ξ)) ×
(

1 −
K−1
∏

i′=j+1

(1 − g(ai′, ξ))

)

∼=
(

1 − 2Q

(

ξ

σ

))j

×
(

Q

(

aj − ξ

σ

)

− Q

(

aj + ξ

σ

))

×
(

1 −
K−1
∏

i′=j+1

(

Q

(

ai′ − ξ

σ

)

− Q

(

ai′ + ξ

σ

))

)

, (28)

which can be evaluated with ξ from (25) when a particular PFA is chosen,
or minimizing PFA and PM altogether for a specific ξ. We compare the
theoretical derivations of PFA and PM with simulation in Fig. 2 as a function
of SNR with two fixed threshold ξ of 0.05ymax and 0.1ymax, j = 41, and under
an academic context of a fixed, non-overlapping dense multipath channel [19]
that can have stronger MPCs arriving after the direct path. As shown, the
results match well with each other which further signifies the importance
of threshold setting according to the desired PFA and PM . Furthermore, a
higher ξ tends to decrease the PFA whilst increasing the PM , and vice versa
for a lower ξ, which is intuitively correct. However, due to the difficulty in
obtaining the exact ai′ from the noise-corrupted observation, the evaluation
of (28) in reality is still quite challenging, and for the simplest of all selection
criteria one would have to resort to the setting provided by (25). Note that
the noise variance that is required to determine the threshold in the above
formulations can be estimated according to (15).

6. Results

We compare the performance of the RLS-WD with the suboptimal ML
PDB estimators in [9], namely, single search (PDB-SS1), search and subtract
(PDB-SS2), search subtract and readjust (PDB-SSR). In general, these esti-
mators first compute the discrete match filter (MF) output between r and a
sampled pulse template; thereafter, the selection of the maximum MF peaks
and, depending on the algorithm, with or without iteratively computing the
MF output after removing the peaks from r. Performance is examined in
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Figure 1: The RLS-WD ToA estimator.
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three categories, i.e., via numerical simulation, with realistic indoor mea-
surement data, and via a complexity analysis.

6.1. Numerical Simulation

We evaluate the performance by computer simulation in MATLABTM

with the Uvi Wave software package [20] for Daubechies DWT. To accurately
examine the performance under multipath, we use the CM3 channel model
from IEEE 802.15.3a [19], which models a severe office NLOS environment.
The received template w(t) is assumed to be the typical Gaussian doublet
with pulse parameter τm = 0.6 ns, which has a zero-to-zero pulse width
of 2 ns. The pulse is sampled at Ts = 0.1 ns with the observation interval
T = 50 ns, representing a medium distance ranging application. To study the
performance of RLS-WD ToA estimator, we vary ∆ as a multiple of Ts when
constructing W. A thousand different channel realizations are simulated
prior to the final performance evaluation. For the PDB algorithms, the
number of peaks to detect Z is set to 100. Since the iterative PDB algorithms
have no known optimal threshold selection criterion [9], we employ a fixed
threshold when comparing the algorithms instead of adhering to the threshold
selection criterion of Section 5.

To determine the most suitable F for WD, we plot the output SNR as F
varies for a fixed input SNR5 of 0 dB in Fig. 3(a). As shown, by applying
WD to the received signal we can have close to 4 dB gain across all F . Since
increasing F has no effect on the output SNR, we may further reduce the
denoising complexity by selecting the smallest F before performance tapers
off. For F = 8, Fig. 3(b) illustrates the effectiveness of WD6 as the input
SNR varies. We see that WD results in substantial gain at low SNR before
diminishing return at high SNR. However, when considering long distance
ranging, the performance at low SNR is often of great interest. For the ease
of simulation, σ2 in (13) is assumed to be perfectly known, hence the results
shown act as a lower bound. However, in the next section we show that even
when the noise variance is estimated with (15), the gain of denoising at low
SNR is still substantial.

5The output and input SNR are defined as SNRout = 20 log10(||s||/||ŝ−s||) and SNRin =
20 log10(||s||/||n||), respectively, where || · || denotes the Frobenius matrix norm [12]. In
all of the later simulations, we set the SNR according to this SNRin definition.

6The effectiveness of WD can be measured from the gain in SNR, i.e., SNRout−SNRin.
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Fig. 4 shows the behavior of root mean-squared error (RMSE) versus
SNR when ξ is fixed at 0.05ymax, with the RLS-WD evaluated at λ = 2 in
(9), and ∆ = 2Ts and 4Ts. Clearly, the RLS-WD algorithm outperforms
others under all SNR. At low SNR, it performs better due to the input SNR
enhancement from WD; whereas, at high SNR, the contribution from WD
lessens. An interesting observation is the identical performance for ∆ =
2Ts and 4Ts, which depending on the system requirement we may choose
either one without sacrificing the overall performance. We observe a similar
improvement on the RMSE when ξ is fixed at 0.1ymax, as shown in Fig. 5.
Specifically, the RLS-WD outperforms PDB algorithms when SNR < 15 dB.
For SNR ≥ 15 dB, all algorithms exhibit an error floor, particularly a higher
floor for RLS-WD than PDB-SSR, which is due to a combination of the
threshold setting and the channel characteristic of stronger paths arriving
after the first path arrival, thus increasing the error floor. Once again, we
stress on the importance of performance gain at low SNR that is more crucial
in long distance ranging application.

Apart from the RMSE behavior, we are also interested in the energy
capture, as in [9]. For that, Fig. 6 illustrates the mean energy capture as
a function of SNR for all algorithms, and the RLS-WD is computed with
λ = 0.1. The energy capture is computed between the received signal and its
estimate. From Fig. 6 we note that the RLS-WD loses energy initially due to
denoising, but it quickly recovers at high SNR when the received signal is less
noisy. Also, a spacing of 2Ts on ∆ captures significantly more energy than
for ∆ = 4Ts since K decreases as we increase ∆ in the signal model. Note
that if all algorithms undergo denoising before ToA estimation, the energy
capture of RLS-WD would still outperform its counterparts.

Without the threshold selection criterion as described in Section 5, the
choice of a fixed ξ can have a pronounced effect on the estimator perfor-
mance. For that, we illustrate the effect of a varying η with a fixed ymax

has on the RMSE in Fig. 7 at ∆ = 2Ts for SNR = {0, 4, 8, 12, 16, 20} dB.
Generally, a small η does not produce the best result, especially in the low
SNR environment where noise can often be mistakenly identified as the direct
path. However, at high SNR, a low η often produces the best result since
the noise is either small or has been mostly removed by WD.

6.2. Propagation Measurements

We evaluate the four algorithms under the realistic application of indoor
ranging with the UWB measurements from [4]. A short description of the
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experiment is in order. The measurements were taken in a laboratory envi-
ronment where the interior walls are made of metal stud and dry wall with
either cinder blocks or wooden constructions. Fig. 8 shows the building floor
plan where measurements of up to 93 feet were taken. Except the clear LOS
reference at location 1, the remaining signals were recorded with a multitude
of obstructions in between the transmitter (TX) and the receiver (RX), re-
sembling NLOS operation. The setup consisted of a pulser that periodically
transmits a sub-nanosecond pulse to the RX side, which then amplifies the
received signal before being sampled by a digital sampling oscilloscope for
post-processing offline. A pair of vertically polarized diamond dipole anten-
nas were used to radiate the signal. We apply WD in Fig. 9 to the measured
signal at location 13. Clearly, even with σ̂2 computed7 according to (15), the
noise can be mostly removed from the contaminated signal without much
signal distortion.

Fig. 10 compares the range estimation errors at each location of Fig. 8
for a fixed ξ = 0.1ymax, between (a) the different PDB algorithms with an
optimized Z, and (b) the RLS-WD with different ∆. The error is computed
as the difference between the estimated and measured ToA, assuming there
exists a clear LOS path between the TX and RX for the direct-path signal
[4]. As shown, optimizing Z for the PDB algorithms significantly reduces the
range estimation error at short distances. Despite the optimization, PDB-
SS1 always produces the worst performance at long distances followed by
the PDB-SS2 and the PDB-SSR, as in agreement with the simulation results
of Section 6.2, which is due to the inaccuracy in delay estimation with the
picking of Z largest peaks after only one MF correlation; whereas, both PDB-
SS2 and PDB-SSR readjust their delays at each iteration for an improvement
in accuracy. Altogether, we see that the RLS-WD performs better for most
cases at long distances, and can perform better or equal to that of the PDB
algorithms at short distances. We would like to stress that whereas one may
need to switch between different PDB algorithms for the best performance
under all circumstances, we would only need to store W with different ∆ in
a memory bank for rapid signal processing. As noted in [4], the large errors
at long distances are mostly caused by a combination of the complex LOS

7In (15), the N samples of M are obtained from the first few nanoseconds of the
measurements until the direct-path ToA, which is calculated relative to the true measured
range assuming a clear LOS path between TX and RX. In reality, σ2 can be estimated
from the samples when there is no communication between the nodes.
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Figure 8: The building floor plan where the range measurements were taken by Lee in [4].
The circular and square marks indicate the location of the RX antenna and that of the
TX antenna, respectively.
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Figure 9: The measured signal taken at location 13 (top) and its denoised version (bottom).
The vertical line of each plot denotes the direct-path ToA, assuming a clear LOS path
between TX and RX in the true measured range.

21



blockage and a systematic error in distance measurement, the investigation
of which is beyond the scope of this paper.

Last but not least, we illustrate the effect of a varying T has on the
range estimation error in Fig. 11 for a fixed ξ = 0.1ymax and measurement
at location 15, depicting a severe NLOS environment. As we shall see in the
next section, the observation window T plays a crucial role in determining the
overall system complexity since it governs the number of samples to process in
both the MF calculation and WD. With Z = 100, the PDB algorithms tend
to produce significant errors when T is small such that the estimated channel
taps fall into the noise region. In contrast, due to the linear system model
assumption, the RLS-WD with a LS solution does not have this problem and
can better estimate the direct-path arrival even with a small T , e.g., T < 150
ns. This characteristic is similarly observed at all other locations. Therefore,
comparing to its counterparts, the processing time of the RLS-WD can be
dramatically reduced since we would only need to include the samples until
the direct-path arrival, but nothing after.

6.3. Complexity Analysis

The computational load of the RLS-WD is mostly constant since most
of the matrix operations in (5), (7), and (9) can all be done beforehand.
Specifically, the RLS is equivalent to LS over a sphere and its complexity is
about 4M2K +22K3 flops [21] with the remaining load in DWT, which is of
O(M) per WD process [22]. However, when recognizing the WD as a series of
matrix multiplications in (14) with pre-computed matrices further indicates a
constant processing time for our approach. In contrast, the complexity of the
PDB estimators depends entirely on the channel condition and the number
of iterations Z. Table 1 compares the flop count amongst the algorithms.
For the PDB algorithms, ignoring the peak finding operations after the MF
output, they require 4zM2 flops per MF computation, 5zM and 2z2M +
2z3/3 + 2zM flops to compute the channel gain per iteration for PDB-SS2
and PDB-SSR, respectively, where z denotes the iteration index. Hence, in
a dense multipath channel, the RLS-WD would require less processing time
than its counterparts.

7. Conclusion

In this correspondence, we have proposed the RLS-WD ToA estimator,
which estimates the ToA as a by-product of the RLS channel estimator based
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Figure 10: Comparison of the range estimation errors between the different algorithms
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Table 1: Comparison of computational complexity between different ToA algorithms

Flop Count
PDB-SS1 4M2

PDB-SS2 4ZM2 + 5ZM
PDB-SSR 4ZM2 + 4ZM + O(Z4)
RLS-WD (4M2K + 22K3) + 4FJM

24



on a thresholding technique. Our approach is simple and can provide fast,
on-the-fly, accurate ToA estimation applicable to real-time ranging system.
Unlike the majority of the previous works, we have illustrated the robust-
ness of our algorithm first by computer simulation and then reaffirmed with
the processing of realistic indoor UWB ranging data. In both cases when
sampling rate is available, our approach is shown to outperform other high-
resolution algorithms in ToA estimation, energy capture and computational
complexity. The low-complexity and high accuracy nature of the RLS-WD
ToA estimator will be an indispensable part of a real-time system when the
instantaneous position estimate of a TN in a WSN is in high demand.
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