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low-order CQ fi lters, and to evaluate and compare the performance of 
the proposed algorithms with existing design algorithms for high-order 
CQ fi lters. This paper extends in a signifi cant way the work reported 
in [16].

II Notation and Background

II.A Two-channel orthogonal fi lter banks
A two-channel causal FIR CQ fi lter bank consists of a pair of analysis 
fi lters 0H , 1H  and a pair of synthesis fi lters 0G  and 1G  as shown in 
Fig. 1, where the four fi lters are related by [2]

                

( 1) 11 0

0 1

1 0

( ) = ( )
( ) = ( )
( ) = ( )

NH z z H z
G z H z
G z H z

− − −− −
−

− −
 (1)

where 
1

0
=0

( ) =
N

nn
n

H z h z
−

−∑    is a lowpass FIR transfer function of 

length N  with N  even. With (1), the aliasing is eliminated, and the 
PR is achieved if 0( )H z  satisfi es

           1 10 0 0 0( ) ( ) ( ) ( ) = 2H z H z H z H z− −+ − −  (2)

I Int roduction

The class of two-channel conjugate quadrature (CQ) fi lter banks, also 
known as power-symmetric fi lter banks [14], is one of the most well-
known building blocks for multirate systems and wavelet-based cod-
ing systems, as it offers perfect reconstruction (PR) and other desirable 
properties. Despite the fact that many algorithms for the design of CQ 
fi lters have been proposed since the 1980s, see example references [1], 
[2], [10]-[14] and the work cited therein, to date only locally optimal 
designs can be claimed. From a mathematical point of view, this is 
primarily because the design problems are inherently nonconvex, ad-
mitting many local solutions. In this regard, this paper is an attempt to 
develop feasible a strategy towards global designs of CQ fi lters.

The design method proposed in this paper is made possible by 
virtue of recent progress in global polynomial optimization [6], [9] 
and a direct design technique for the CQ fi lters [1] in conjunction 
with our observations on a common pattern shared among globally 
optimal impulse responses of low-order CQ fi lters and a progressive 
design procedure in terms of fi lter length. Two design scenarios are 
considered: equiripple (i.e. minimax) designs with vanishing moment 
(VM) requirement and least squares (LS) designs with VM require-
ment. Concerning the fi rst, in digital fi lters the magnitude of the largest 
amplitude-response error is usually required to be as small as possible, 
thus minimax solutions are generally preferred [15]. On the other hand, 
in several applications — especially telecommunications — digital fi l-
ters are required to have minimal stopband energy; hence LS solutions 
are of importance in these applications. Simulation results for both LS 
and minimax CQ fi lters are presented to verify our design concept for 
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 2)  Global Optimization of Problem: A recent breakthrough in the 
fi eld is made by Lasserre [6] in which it is proved that when the feas-
ible region in (10)–(12) is compact (not necessarily convex), the global 
solution of (10)–(12) can be approximated as closely as desired (and 
often can be obtained exactly) by solving a fi nite sequence of SDP 
problems. A technical diffi culty with the method of [6] is that the size 
of the SDP problems involved in a POP usually grows very quickly. 
This may cause numerical diffi culties even for POPs of moderate 
scales.

More recently, sparse SDP relaxation [7] is proposed for global 
solutions of POPs of relatively larger scales with improved effi ciency. 
The method is supported by MATLAB toolbox SparsePOP2000 [4]
[5]. Another MATLAB toolbox for POPs is GloptiPoly 3.4 [8], which 
is intended to solve the generalized problems of moments (GPM) that 
can be viewed as an extension of the classical problem of moments [9].

Because of the SDP relaxation approach taken by [6][7], to date 
the size of POP problems that GloptiPoly and SparsePOP can solve is 
quite limited. Nevertheless, the globally optimal solutions provided by 
these toolboxes for low-order CQ fi lter banks and wavelets form one 
of the key ingredients in the proposed design technique. In addition, 
the availability of the global designs for low-order fi lter banks helps 
demonstrate the validity of our method for designing globally optimal 
high-order fi lter banks and wavelets. We shall illustrate these points 
with details in the next two sections.

III Least square designs

III.A Brief review of a direct method for local LS designs
A technique for direct design of LS CQ fi lter banks and wavelets is re-
ported in [1]. The design technique is simple and gives local solutions 
of good quality. Since it is one of the ingredients of our design method, 
below we sketch its main steps.

The design formulation in (5),(6) and (7),(8) can be expressed as

                      minimize Th Qh       (13)

           
1 2

2
=0

subject to: =
N m

n n m m
n

h h δ
− −

+⋅∑      (14)

                                   
1

=0

( 1) = 0
N

n l n
n

n h
−

− ⋅ ⋅∑  (15)

where = 0, 1, ..., ( 2) / 2m N − , = 0, 1, ..., 1l L − , 0 1 1= [   ... ]TNh h h −h  
and Q  is a constant symmetric positive defi nite Toeplitz matrix char-
acterized by its fi rst row [  sin  ... sin( 1) / ( 1)]a a aN Nπ ω ω ω− − − − −  . 
Suppose we are in the k th iteration to update the coeffi cient vector 
from ( )kh  to ( 1) ( )=k k+ +h h d , and we write (3) at ( 1)k+h  as

   ( ) ( ) ( )
22

k k k
n mn nn m

n n

h h h d ++ +∑ ∑

             

( )
22 =k

n n n m mn m
n n

d h d d δ+++ +∑ ∑  (16)

By assuming d is small in magnitude and neglecting the second-order 
term in (16), we obtain

      ( ) ( ) ( ) ( ) ( )
2 2 2

k k k k k
n m n mn n mn m n m

n n n

h d d h h h uδ+ + ++ ≈ − ≡∑ ∑ ∑
which can be put in the form of

                               ( ) ( )=k kC d u

Eq. (2) is equivalent to a set of / 2N  equality constraints as

  
1 2

2
=0

=   for = 0,1,...,( 2) / 2
N m

n n m m
n

h h m Nδ
− −

+ −⋅∑  (3)

where mδ  is the Dirac sequence with 0 = 1δ  and = 0mδ  for nonzero 
m. Eq. (3) is known as the double shift orthogonality in the wavelet 
literature. In addition to the PR conditions, CQ fi lters may be required 
to meet other constraints such as possessing a certain number of VMs 
for constructing wavelets [10]-[13]. It is known that the number of 
VMs of a CQ fi lter bank is equal to the number of zeros of 0( )H z  at 

=ω π . Because

          

a CQ fi lter has L  vanishing moments if

            (4)

Thus an LS design of CQ lowpass fi lter 0( )H z  having L  VMs can 
be cast as

              20minimize | ( ) |j

a
H e d

π
ω

ω
ω∫        (5)

            subject to: constraints (3) and (4)      (6)

where aω  is the normalized stopband edge of 0( )H z .

In this paper, we also consider the minimization of maximum instan-
taneous power of lowpass fi lter 0( )H z  over its stopband, subject to PR 
and VM constraints. Thus the minimax design can be formulated as

             0minimize | ( ) |max j

a
H e ω

ω ω π≤ ≤
       (7)

            subject to: constraints(3) and (4)      (8)

II.B Polynomial optimization problems

 1)  Polynomial Optimization Problems: A real-valued polynomial 
( )f x  in n -dimensional space nR  can be expressed as

           ( ) =
∈ℱ

( )  (9)

where  ( )c R∈α , 1 2= [   ... ]nx x xx , 1 2= [   ... ] nnα α α +∈ ⊂F Zα  — the 

set of all vectors in nR  whose components are nonnegative integers, 

and 1 2
1 2=   ... nnx x xαα ααx . The order (degree) of ( )f x  is defi ned as the 

largest i
i
α∑ .

A general polynomial optimization problem (POP) has the form

           0minimize  ( )f x       (10)

          subject to:  ( ) 0  for = 1,...,kf k L≥x       (11)

        ( ) = 0  for = 1,...,kf k L K+x  (12)

where ( )kf x  for = 0, 1, ..., k K  are real-valued polynomials. POPs in-
clude the following problems as its special cases: linear programming 
(LP), convex quadratic programming (QP), semidefi nite programming 
(SDP) and second-order cone programming (SOCP). More import-
antly, POPs stand for a substantially broader class that covers many 
nonconvex optimization problems [6].
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(6,2) (6,2)
LS LS = 0.173458

T
h Qh . Also note that (6,2)

LSh  (as well as (6,2)
LS−h  )

possess minimum-phase as no zeros of their corresponding transfer 
functions are outside the unit circle. For a minimum-phase fi lter, both 
the system function and its inverse are causal and stable so that the fi l-
ter can be of practical use. Unfortunately, the software fails to work as 
long as the fi lter length N  is greater than or equal to 10. On the other 
hand, toolbox SparsePOP2000 was found to work for global design of 
fi lter banks up to = 16N . A technical problem with SparsePOP2000 
is that, unlike GloptiPoly 3.4’s ability to produce multiple global solu-
tions, it requires setting a lower bound and an upper bound for the 
impulse response, and only one global solution that falls within the 
bounds will be generated. Our design experiences suggest that the fol-
lowing bounds work well:

                     0.5 0.5− ≤ ≤ +d dh e h h e  (20)

where dh  is the impulse response of the length – N  Daubechies fi lter 
[14] and e  is an 1N ×  all-one vector.

III.C Potentially global LS design of high-order fi lter banks
In this section, we propose a method for potentially global LS design 
of CQ fi lters with length N  that is too high for the above mentioned 
software to handle.

1) Pattern of impulse responses of globally optimal fi lter banks: 
Although the current versions of the software examined earlier are 
of limited use, it turns out that observations made on the pattern of 
the impulse responses of low-order designs do provide useful clues 
for tackling the design of high-order CQ fi lters. Our observations are 
illustrated in Figs. 2 and 3. Shown in Fig. 2 are the impulse responses 
of globally optimal minimum-phase lowpass CQ fi lters of lengths 

= 6, 8N  and 10 (all with = 2L ) obtained using SparsePOP2000 
where the impulse responses are plotted over normalized interval 
[0, 1]  for better comparison. From the fi gure, it is clear that these im-
pulse responses are distinctly different from each other. Nevertheless, 
it is equally clear that they exhibit a similar pattern: it starts with a 
short uphill to a peak, then goes down to components of small values. 
In addition, viewing each impulse response as a curve (function), we 
see that the nearest neighbor to a given curve associated with fi lter 
length N  is the curve associated with length 2N + . Furthermore, for 
a fi xed fi lter length N , the impulse responses of globally optimal CQ 
fi lters with various VMs are clustered and exhibit a pattern similar 
to that in Fig. 2. As an example, Fig. 3 shows the impulse responses 
of lowpass CQ fi lters with = 8N  and = 0, 1, 2, 3, 4L  obtained using 
either GloptiPoly 3.4 or SparsePOP2000.

The constraints (4) on VMs at ( 1)k+h  can be expressed as

                                 ( )= kDd v

where ( ) ( )=k k−v Dh . The smallness of d  can be characterized as 
| |id β≤  for = 1, 2, ..., i N , which can be put together as

                                   ≤Ad b

with = T
N N−  A I I  and = 1 1 1 Tβ ⋅  b               . In this way, the LS 

problem can be formulated as

             ( )minimize 2T T k κ+ +d Qd d q       (17)

            subject to: ≤Ad b      (18)
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( )
=

k k

k
   
   
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C u
d

D v
 (19)

with ( ) ( )=k kq Qh  and κ  a constant. Since Q  is positive defi nite, 
(17)–(19) is a convex quadratic programming (QP) problem.

III.B Global LS design of low-order fi lter banks
Evidently, the problem in (13)–(15) is a POP with / 2N L+  con-
straints, and the maximum order of all the polynomials involved is two.

For low-order fi lter banks, toolbox GloptiPoly 3.4 was found to 
work well. For example, with = 6N , = 2L  and = 0.56aω π , the 
software produces four globally optimal impulse responses as

               (6,2)
LS

0.33268098788629
0.80689591454849
0.45986215652386

=
0.13501431772967
0.08543638600240
0.03522516035714

 
 
 
 
 
− 
 −
 
  

h

  
  
  

  

(6,2)
LS−h ,  fl ipud (6,2)

LS( )h  and − fl ipud (6,2)
LS( )h  where  fl ipud ( )h  de-

notes a vector generated by fl ipping vector h upside down. We remark 
that the above four impulse responses satisfy constraints (14) and
(15) and yield the same minimum objective function value as
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Figure 2: Pattern of LS impulse responses with different fi lter length N .
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Figure 3: Pattern of LS impulse responses with various number of VMs L.
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III.D Design examples and performance evaluation
1) Performance of the proposed method for low-order designs: 

The method just described was applied to design LS lowpass CQ 
filters of length = 6, 8, . . . , 16N . For all designs, the normalized 
stopband edge was set to = 0.56aω π  and the number of VMs was 
set to = 1L . In each design, toolbox GloptiPoly 3.4 was applied 
only once to (13)–15) to generate a globally optimal minimum-
phase impulse response with = 4N  and = 1L , denoted by (4,1)

LSh .
In the case of = 6N , (4,1)

LSh  was linearly interpolated to length 6 
and then used as the initial point to run the LS design algorithm 
in [1], and the impulse response obtained is denoted by (6,1)

LSĥ . In the 
case of = 8N , we fi rst obtain impulse response (6,1)

LSĥ  as above; 
then linearly interpolate (6,1)

LSĥ  to length 8 and use it as the initial 
point to run the LS algorithm in [1] to generate impulse response 

(8,1)
LSĥ . The designs for = 10, . . . , 16N  were carried out in a simi-

lar manner to produce impulse responses ( ,1)
LS

ˆ Nh . For comparison
purposes, globally optimal impulse responses ( ,1)

LS
Nh  for 

= 6, 8, . . . , 16N  were obtained by using GloptiPoly 3.4 or Sparse-
POP2000. It was found that ( ,1)

LS
ˆ Nh  and ( ,1)

LS
Nh  are practically identical 

for all even N  from 6 to 16. We also remark that with the starting 
impulse response (4,1)

LSh  having minimum-phase, the CQ fi lters so de-
signed all have minimum-phase, a desirable property for digital fi lters 
to be of practical use.

2) Performance of the proposed method for high-order designs: 
Supported by the verifi cation of our design concept as just illustrated, 
we now proceed to apply the proposed method to design high-order 
lowpass CQ fi lters with length N  up to 96. As an example, Fig. 4 shows 
the magnitude response of the CQ lowpass fi lter designed by the pro-
posed method with = 96N , = 3L , and = 0.56aω π . The energy of 
the fi lter over stopband, i.e., the value of the objective function Th Qh  
in (13), was found to be (96,3) 9

LS = 1.185993 10E −× . For comparison, 
a CQ fi lter with the same design specifi cations, i.e., = 96N , = 3L , 
and = 0.56aω π  was designed using the LS algorithm of [1]. The ini-
tial point used in the design was a linear-phase lowpass fi lter obtained 
by the conventional window-based technique. The stopband energy of 
the CQ fi lter obtained was found to be  (96,3) 9

LS = 1.309040 10E −× , 
which represents a 10%  increase compared with (96,3)

LSE . Like the 
low-order designs, it was found that all high-order CQ fi lters pos-
sess minimum-phase. As an example, Fig. 5 shows the zero-pole 
plot of the LS lowpass CQ fi lter of length 96 obtained by the pro-
posed method. We observe that no zeros are outside the unit circle 
of the complex plane.

2) A design strategy: Both the LS and minimax designs of CQ 
fi lters as formulated in (5),(6) and (7),(8) are nonconvex problems that 
possess multiple local solutions, and several (local) design techniques 
for CQ fi lters are available in the literature [2], [10]-[14]. A recent 
addition to this rich fi eld of research is a direct design method [1] that 
deals with problems (5),(6) and (7),(8) by local convex approxima-
tions in a sequential manner, and the method is shown to produce 
satisfactory results. Brief reviews of the method for local LS and local 
minimax designs are sketched in III.A and IV.A.

Taking the above analysis into account, the situation facing the de-
signer may be summarized as follows: (i) global designs of CQ fi lters 
are possible by using the methods of [6][7], but only for short fi lter 
lengths; (ii) a common pattern exists among the impulse responses of 
globally optimal lowpass minimum-phase CQ fi lters of short lengths 
and, the optimal impulse response of length 2N +  falls within a small 
vicinity of the optimal impulse response of length N ; and, (iii) a se-
quential design method that requires a reasonable initial design for 
producing a locally optimal design is within reach.

A strategy for the design of minimum-phase CQ fi lters of a long 
(even) length N  is developed based on the above observations, and 
can be described in steps as follows:

a. Set an initial working fi lter length wN , say, to 4, and design a global-
ly optimal, minimum-phase, CQ fi lter of length wN  using, for ex-
ample, GloptiPoly 3.4. Denote the impulse response obtained by wh .

 b. Generate a length ( 2wN + ) interpolated version of wh  by, for ex-
ample, linear interpolation. Denote the interpolated vector by wih .

 c. Apply the method of [1] with wih  as its initial point (impulse re-
sponse) to design an optimal CQ fi lter of length 2wN + . Denote 
the impulse response obtained by wh .

 d. If = 2wN N + , output wh  as the optimal design and terminate; 
otherwise, set = 2w wN N +  and repeat from Step b.

Although no theoretical claim about the global optimality of the 
above design methodology can be made for large N , we speculate that 
the designs obtained by this approach are quite likely to be globally 
optimal. This is because in each round of iteration the initial point is 
suffi ciently close to the global minimizer and the algorithm in [1] is 
known to converge to a nearby minimizer. In the next section, we pro-
vide experimental evidence that supports our speculation.
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−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

4 95

Real Part

Im
a

g
in

a
ry

 P
a

rt

Figure 5: Zero-pole plot of LS 0( )H z  with = 96N , = 3L  and = 0.56 .aω π



YAN / LU: TOWARDS GLOBAL DESIGN OF ORTHOGONAL FILTER BANKS AND WAVELETS 19

design. On the other hand, with the same bounds set for h  as in (20) 
and 0 2η≤ ≤ , SparsePOP2000 was able to produce global minimax 
designs for = 4N  and 6.

IV.C Potentially global minimax design of high-order fi lter 
banks

Like the observations made on the LS designs (see III.C.1), globally 
optimal (in minimax sense) impulse responses obtained in IV.B appear 
to exhibit a pattern similar to that in the LS case, as can be seen in Fig. 
6. It is therefore natural to follow the strategy described in III.C.2 for 
minimax design of high-order fi lter banks.

IV. D Design examples and performance evaluation

1) Performance of proposed method for a low-order design: The 
design strategy in III.C.2 for potentially global minimax design was 
applied to design minimax lowpass CQ fi lters. We set = 0.56aω π  ,

= 1L , and Ω  contains = 110K  frequency grids. GloptiPoly 3.4 
was applied to (21)–(24) to generate a globally optimal minimum-
phase impulse response with = 4N  and = 1L , denoted by (4,1)

minimaxh  .
Impulse response (4,1)

minimaxh  was then linearly interpolated to length 
6 and used as the initial point to run the minimax algorithm of [1]. 
The impulse response obtained is denoted by (6,1)

minimaxĥ . For compari-
son, SparsePOP2000 was applied to problem (21)–(24) to generate 
globally optimal impulse response (6,1)

minimaxh . The two impulse re-
sponses, (6,1)

minimaxĥ  and (6,1)
minimaxh  were found to be practically iden-

tical, giving support to our design concept for the minimax designs. 
We also note that with the starting impulse response (4,1)

minimaxh  hav-
ing minimum-phase, the CQ fi lter (6,1)

minimaxĥ  obtained possesses
minimum-phase as well.

2) Performance of proposed method for high-order designs: 
Following the design approach outlined above, (6,1)

minimaxĥ  was inter-
polated to length 8 and used as the initial point for the minimax al-
gorithm of [1] to generate (8,1)

minimaxĥ . This process was repeated and 
high-order lowpass minimax CQ fi lters with length N  up to 96 were 
designed. The fi lters obtained tend to be equiripple. As an example, 
Fig. 7 shows the magnitude response of the minimax lowpass CQ fi lter 
designed by the proposed method with = 96N , = 3L , = 0.56aω π  
and Ω  containing = 110K  uniformly distributed frequency grids. 
The maximum instantaneous energy 2η  over stopband was found 
to be (96,3) 9

minimax = 6.362729 10E −× . For comparison, a minimax CQ 
fi lter with the same specifi cations was designed using the minimax 
algorithm of [1]. The initial point used in the design was a linear-phase 
lowpass fi lter obtained by the conventional window-based technique. 
The maximum instantaneous energy over stopband of the CQ fi lter 
was found to be (96,3) 9

minimax = 7.265100 10E −× , which represents a 
14%  increase compared with (96,3)

minimaxE . As in the low-order designs, 

IV Minimax designs

IV.A Brief review of a direct method for local minimax designs
This section sketches the method for direct design of minimax CQ 
fi lters. The technique is addressed in [1] and turns out to be of critical 
importance towards global minimax designs.

The problem in (7),(8) can be formulated as

      minimize η       (21)

     2 20subject to: | ( ) | 0  forjH e ωη ω− ≥ ∈Ω      (22)
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,where (24)

,  and 
is a set of K uniformly distributed frequency grids over stop-
band [ , ]aω π . Defi ne ( ) = [1 cos  ... cos( 1) ]TNω ω ω−c  and 

( ) = [0 sin  ... sin( 1) ]TNω ω ω−s , we can write 20| ( ) |jH e ω  in (22) as
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With an analysis similar to that outlined in III.A, the problem in (21)–
(24) can be converted into

               minimize η       (25)

    ( )subject to: ( )( )   forkω η ω+ ≤ ∈ΩT h d� �       (26)

                         ≤Ad b  (27)
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k
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which can be solved as a second-order cone programming (SOCP) 
problem.

IV.B Global minimax design of low-order fi lter banks
Obviously the objective function as well as the constraint functions 
in (21)–(24) are all polynomials. Therefore, (21)–(24) is a POP with 

/ 2K N L+ +  constraints and the maximum order of all the polynom-
ials involved is two.

Toolbox GloptiPoly 3.4 was found to work for CQ fi l-
ter of order 4. With = 4N , = 1L , = 0.56aω π , and 

= { , 0.025 , 0.05 , ..., }a a aω ω π ω π πΩ + +  (which gives = 18K ), the 
toolbox was able to produce four globally optimal impulse responses 
as

            (4,1)
minimax

0.48296282173531
0.83651623138234

=
0.22414405492402
0.12940935473280

 
 
 
 
 
−  

h

  
  
  

(4,1)
minimax−h , fl ipud (4,1)

minimax( )h  and − fl ipud (4,1)
minimax( )h . The maximum 

instantaneous energy over stopband for the above four impulse 
responses was found to be the same value 2 = 0.722218η . It was also 
observed that (4,1)

minimaxh  (as well as (4,1)
minimax−h ) possess minimum-

phase. However, GloptiPoly 3.4 failed to work for N  as small as 6 
because of the relatively large number of constraints in the minimax 
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Figure 6: Pattern of minimax impulse responses with different length N .
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we also found that all high-order minimax CQ fi lters produced by the 
proposed method possess minimum-phase. As an example, Fig. 8 de-
picts the zero-pole plot of the minimax lowpass CQ fi lter of length 96 
designed from the proposed method

3) Comparisons with other existing methods: In this section, we 
compare the global minimax design of fi lter banks with two existing 
methods that are well established in the literature.

 a) Comparison with a half-band fi lter based method in [14]: A 
simple and effective method for two-channel CQ fi lter banks is de-
scribed in Sec. 5.3.6 of [14]. The method fi rst designs a zero-phase 
lowpass FIR half-band fi lter ( )W z  of order 2( 1)N −  by, for example, 
the Parks-McClellan algorithm. One then defi nes ( ) = ( )Y z W z δ+  
with δ  the peak stopband ripple of ( )W z  to ensure ( ) 0jY e ω ≥  for 
all ω . The following design specifi cations were chosen for the com-
parison: length = 20N , stopband edge = 0.6aω π  and number of 
VMs = 0L  (example 5.3.2 of [14]). The resulting coeffi cients of the 
CQ fi lter [14] and optimized lowpass CQ fi lter (algorithm proposed 
in IV, number of frequency grids K  set to 30) are listed in Table 1, 
columns 1 and 2 respectively. The maximum instantaneous energy 2η  
in stopband and the largest magnitude error among all / 2N  equa-
tions in (23) for the two designs are given in Table 2. The magnitude 
responses of the two fi lters are depicted in Fig. 9. It is apparent that the 
proposed design technique is able to produce CQ fi lters with reduced 
instantaneous stopband energy and more accurate satisfaction of the 
PR conditions.

Table 2
Filter performance comparison

Table 1
Coeffi cients of )(0 zH  of [14] and from global design

0 ( ) of [14] 0 ( ) from global design
0.1605476 0.151132584528507
0.4156381 0.406751138104326
0.4591917 0.465073716955923
0.1487153 0.164100745264147

− 0.1642893 − 0.159230874305372
− 0.1245206 − 0.132446162371893
0.08252419 0.077632712518187
0.08875733 0.092962310257929

− 0.05080163 − 0.047219604152222
− 0.06084593 − 0.062990546331313
0.03518087 0.032739512761500
0.03989182 0.040781157734971

− 0.02561513 − 0.023979520144301
− 0.02440664 − 0.024517125714218
0.01860065 0.017475746917452
0.01354778 0.013173547986633

− 0.01308061 − 0.012191078582176
− 0.007449561 − 0.006651596447548

0.01293440 0.011254662805676
− 0.004995356 − 0.004181786154910
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Figure 8: Zero-pole plot of minimax 0( )H z  with = 96N , = 3L  and = 0.56aω π .
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Figure 9: Magnitude responses of minimax 0( )H z  with = 20N  of the global de-
sign (solid line) versus that of 0( )H z  in [14] (dashed line).
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 b) Comparison with the method of Smith-Barnwell: The tech-
nique is developed in [2] for tree-structured analysis/reconstruction 
systems and has since been a popular benchmark for performance 
evaluation and comparison as it also provides accurate numerical 
results of CQ fi lters of high quality. For comparison, we applied 
the algorithm proposed in IV to design minimax lowpass CQ fi l-
ters of length 8, 16 and 32 to meet the requirement of 40 dB min-
imum stopband attenuation; minimax designs of CQ fi lters with the 
same fi lter lengths and stopband attenuation are also reported in [2]. 
The numbers of frequency grids for = 8, 16N  and 32 were set to 

= 25, 28K  and 50 respectively, and the number of vanishing mo-
ments was set to zero in all three designs. The design results in terms 
of maximum instantaneous stopband energy 2η  and largest equa-
tion error in magnitude are shown in Tables 3, 4 and 5 for the CQ 
fi lters of length = 8, 16N  and 32, respectively. It is observed that 
in all three instances the proposed method produces designs with 
improved performance.

IV.E Remarks on complexity of the proposed algorithms
As made clear in III.C and IV.C, both the LS and minimax algo-

rithms are progressive in terms of filter order. As such, more com-
putations relative to conventional design algorithms are required 
especially for high order CQ filters because the number of itera-
tions is nearly / 2N . On the other hand, we note that because of 
the way the initial point is constructed, each iteration is done with 
high efficiency and, as a result, the total CPU time for designing a 
high-order LS CQ filter remains fairly reasonable. For example, it 
took 202 seconds on a PC laptop with a 1.66 GHz dual core proces-
sor to design an LS CQ filter of length = 96N . The time taken to 
design a minimax CQ filter of length = 96N  is relatively longer 
but still bearable (4857 seconds). Based on the evaluations of a 
large number of designs we carried out to date, the complexity of 
both the LS and minimax designs was found to have an approxi-
mately linear growth versus filter length. This means for example 
that a minimax design of a CQ filter of length 2N  will take twice 
as long as that for a minimax CQ filter of length N . Finally, we 
stress that designing filters and filter banks is typically an off-line 
(non real-time) task and to get a design done very quickly is of 
secondary importance when compared to the performance the CQ 
filter can achieve.

V Conclusion

A new method for the design of two-channel orthogonal fi lter banks 
and wavelets has been proposed. Attempting to develop a methodol-
ogy for global design of CQ fi lters, the proposed method is built on 
some recent progress in global polynomial optimization and a direct 
design technique for CQ fi lters, in conjunction with several critical ob-
servations on the globally optimal impulse responses and a progressive 
design procedure in terms of fi lter length. Several design examples 
have been presented to verify the design concept and demonstrate the 
performance of the proposed algorithms in comparison with several 
existing methods.
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Table 3
Filter length 8=N

Table 4
Filter length 116=N

Table 5
Filter length = 32N


