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Reconstructing structures of deformable objects from monocular image sequences is important for ap-
plications like visual servoing and augmented reality. In this paper, we propose a method to recover 3D
shapes of deformable surfaces using sequential second order cone programming (SOCP). The key of our
approach is to represent the surface as a triangulated mesh and introduce two sets of constraints, one for
model-to-image keypoint correspondences which are SOCP constraints, another for retaining the original
lengths of the mesh edges which are non-convex constraints. In the process of tracking, the surface
structure is iteratively updated by solving sequential SOCP feasibility problems in which the non-convex
constraints are replaced by a set of convex constraints over a local convex region. The shape constraints
used in our approach is more generic than previous methods, that enables us to reliably recover surface
shapes with smooth, sharp and other complex deformations. The capability and efficiency of our approach
are evaluated quantitatively with synthetic image sequences and qualitatively with real image sequences.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recovery 3D shapes of objects from 2D monocular image
sequences is of central importance in computer vision. Many years
of work in the field have led to several reliable approaches for
reconstruction of rigid [7,11], multiple rigid [6,23] and articulated
rigid objects [5]. However, many objects in the real world vary their
shapes over time, such as faces, papers, clothes, etc. The problem
of reconstructing structures of these deformable objects remains
challenging and has been a subject of current research.

For rigid objects, 3D to 2D correspondences between keypoints
on objects and their image locations can be used for reliable recov-
ery of object structures [12]. For deformable surfaces, however, es-
timating time-varying 3D shapes from monocular 2D point tracks
is a severely under-constrained problem. To remove the ambigui-
ties, many approaches have been proposed. Structure-from-motion
based methods [24,22] formulate the object deformation as a lin-
ear combination of a set of shape bases. Machine learning based
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methods [4,14,18] learn a motion model from a set of training data.
Physics based methods [15,16] formulate the physical properties of
the surface as penalty functions. However, these approaches typ-
ically introduce constraints that prevent the surface from folding
sharply, which makes them not adapted for reconstructing surfaces
undergoing complex or sharp deformations such as those of Fig. 1.

Recent advances in solving geometric vision problems using con-
vex optimization inspire a method to formulate the deformable sur-
face reconstruction problem as a second order cone programming
(SOCP) problem with a unique minimum which can be efficiently
calculated using an SOCP solver [17]. This method models the sur-
face as a triangulated mesh and introduces a set of constraints to
stop the orientation of the mesh edges from changing irrationally be-
tween consecutive frames. These constraints are more generic than
smoothness constraints and makes this method applicable for vari-
ous kinds of deformations. Theoretically, however, the most generic
shape constraints for an inextensible surface should be designed to
prevent the mesh from expanding or shrinking which are typically
non-convex constraints. In some sense, the shape constraints in [17]
are only approximations of the generic non-convex constraints in
order for them to be incorporated into an SOCP framework.

In this paper, we describe a method that deals with the generic
non-convex constraints in a sequential manner that allows us to
use the efficient SOCP solver. More specifically, the central idea of
our approach is to iteratively update the 3D structure of the sur-
face by solving sequential SOCP feasibility problems in which the
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Fig. 1. Reconstructing the structure of a deformable surface from monocular image sequences using our approach. The top row are the original images. The middle row are
the images with reprojected meshes. The bottom row are the reconstructed triangulated meshes seen from a different view.

non-convex constraints are replaced by a set of convex constraints
over a local convex region. Therefore, our method on one hand uses
the most generic shape constraints which enables us to remove the
ambiguities without loss of generality, and on the other hand takes
full advantage of SOCP as a reliable and efficient convex program-
ming framework. Our experimental studies have demonstrated that
the proposed method can reliably recover 3D structures of surfaces
with smooth, sharp and other complex deformations such as those
of Fig. 1.

The rest of the paper is organized as follows. In Section 2 we
review previous work. In Section 3 we give the problem statement of
deformable surface 3D tracking. Then the surface tracking approach
using sequential SOCP is detailed in Section 4. Finally, the proposed
approach is evaluated with both synthetic and real image sequences
in Section 5, followed by conclusions in Section 6.

2. Previous work

Recovering 3D shapes of deformable objects from monocular
2D image sequences using keypoint correspondences is a severely
under-constrained problem. Various approaches have been proposed
to remove the ambiguities. Generally, these approaches can be di-
vided into four categories called structure-from-motion based meth-
ods, machine learning based methods, physics based methods and
volumetric methods. In this section we give a brief survey of these
approaches.

Structure-from-motion methods for rigid object are well under-
stood [7]. For deformable environment, some approaches have been
proposed to introduce a prior knowledge of deformations. Xiao et al.
[24] represent the deformable structure as a linear combination of
shape bases, and present a two-step factorization approach for per-
spective reconstruction. This method is useful for scenes that contain
independently moving rigid objects, but it is not suitable for general
deformable structures. Torresani et al. [22] model the time-varying
shape as a rigid transformation combined with a non-rigid defor-
mation. This model is a form of probabilistic principal components
analysis (PPCA) shape model whose parameters can be learned in
the process of reconstruction. This method, again, makes very strong
assumptions about the deformations which makes it not suitable for
objects undergoing large deformations.

Machine learning basedmethods try to learn a deformationmodel
from the training data, and apply the model for new data. Active
appearance models (AAMs) are typical generative models for non-
rigid objects and have been successfully applied for 3D face re-
construction [4,14]. AAM consists of a linear combination of shape
bases and a linear combination of appearance bases which can be
learned from training samples. Fitting an AAM to an image is ob-
tained by minimizing the error between the input image and the
closest model instance, which is a non-linear optimization problem.
However, the underlying linearity assumption makes AAMs only
suitable for smoothly deformed objects. In fact, training a model that
can be applied for general deformations requires complex non-linear
learning methods and a large number of training samples with all
possible deformations. Recent work shows that this kind of model
can be obtained by learning its local deformation models, and com-
bining them together to reconstruct global shapes [18]. However,
the training samples are still not easy to obtain even though local
patches have fewer degrees of freedom.

Physics based methods introduce a prior knowledge of deforma-
tions and formulate the problem as an optimization problem. These
approaches have been widely used for modeling and animation pur-
poses in computer graphics [19]. In computer vision, McInerney et al.
[15] present a physics based approach for recovering the 3D shape
and tracking the motion of non-rigid objects using a 3D elastically
deformable balloonmodel that is based on a thin-plate under tension
spline. Although this method is very effective, introducing a smooth-
ness constraint into the objective function limits its applicabilities.
Pilet et al. [16] present a real-time method for detecting deformable
surfaces using keypoint matches between the 2D triangulated mesh
and the image. This method is currently accepted as the most ef-
fective algorithm for 2D deformable surface detection, but it is hard
to be generalized to 3D. Salzmann et al. [17] represent surfaces as
triangulated meshes and disallow large changes of edge orientation
between two consecutive frames, and formulate the tracking prob-
lem as an SOCP feasibility problem. This method yields a convex for-
mulation with a unique minimum and enables us to handle highly
deformable surfaces without adding unwarranted smoothness con-
straints. However, as has already been pointed out in Section 1, the
shape constraints in [17] is only approximations to the most generic
shape constraints in order for them to be incorporated into an SOCP
framework.
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Fig. 2. 3D triangulated mesh. (a) A deformed rectangular mesh with 150 vertices. (b) A facet of the mesh with a keypoint.

Volumetric methods of space carving are popular approaches for
object 3D reconstruction, mainly for smooth objects [1,2]. These
methods are silhouette-based reconstruction methods: intersecting
the visual cones generated by the silhouettes and the projection cen-
ters of each image, a 3D model can be determined. This 3D model is
denominated as visual hull [10], a locally convex over-approximation
of the volume occupied by an object. Volumetric methods represent
the 3D space model by using voxels (volumetric pixels). The space
of interest is divided into discrete voxels which are then classified
into two categories: inside and outside. The union of all the inside
voxels is an approximation of the visual hull. Volumetric methods
are fully automatic approaches and suitable for many real applica-
tions. However, these methods are only applicable for static objects
and need the whole image sequence to compute the solution which
makes them not suited for tracking applications.

3. Problem statement

Modeling the surface as a 3D triangulated mesh is a popular way
to represent the behavior of general deformations. In this paper, we
follow the same way and model the surface as a N-vertex triangu-
lated mesh. Fig. 2(a) shows an example of a rectangular mesh with
150 vertices. The 3D coordinates of N vertices are v1,v2, . . . ,vN re-
spectively, and they can form a long vector as

v=

⎡
⎢⎢⎢⎢⎢⎢⎣

v1

v2

...

vN

⎤
⎥⎥⎥⎥⎥⎥⎦

Apparently, the overall shape of themesh is controlled by vwhich
should be calculated at each time instance in the process of tracking.

For tracking a deformable surface, we rely on establishing key-
point correspondences between the model and the image. Each key-
point on the model lies on a facet of the triangulated mesh, and it can
be expressed in terms of its barycentric coordinates of the facet, as

xi = aivp + bivq + civr (1)

where xi is the 3D coordinate of the i-th keypoint. vp, vq and vr are
the vertices of the facet that xi lies on, as shown in Fig. 2(b). ai, bi
and ci are the barycentric coordinates of xi. Obviously, xi is a linear
transformation of v, which can be written as

xi = Tiv (2)

where Ti is a 3× 3N matrix in the form:

Ti =

⎡
⎢⎣
· · · ai 0 0 · · · bi 0 0 · · · ci 0 0 · · ·
· · · 0 ai 0 · · · 0 bi 0 · · · 0 ci 0 · · ·
· · · 0 0 ai · · · 0 0 bi · · · 0 0 ci · · ·

⎤
⎥⎦

The triangulated mesh model can therefore be parameterized as
M={T1,T2, . . . ,TS}, where S is the number of keypoints on the model.

Suppose the model M for the surface and the projection matrix
P of the camera are known. The problem of deformable surface 3D
tracking is formulated as: given model M and camera P, how can we
reconstruct the structure v for each frame?

4. Deformable surface 3D tracking using sequential second
order cone programming

Recently, there has been interest in solving geometric vision prob-
lems such as triangulation and camera resectioning using L∞ mini-
mization [8,9]. The key advantage of using the L∞ is that the problem
can be formulated as an SOCP feasibility problem with a single min-
imum and can be effectively solved. In our approach, we follow the
same idea and introduce two sets of constraints. The first set of con-
straints are model-to-image keypoint correspondences which can be
formulated as SOCP constraints. The second set of constraints are
designed to stop the edges of the mesh from expanding or shrinking
which are typically non-convex constraints. In order to take advan-
tage of the efficient SOCP solver, we introduce an approach to deal
with these non-convex constraints in a sequential manner. In this
section, we first briefly describe the convex optimization and SOCP.
Then we formulate the deformable surface 3D tracking problem. Fi-
nally we introduce how to solve this problem using sequential SOCP.

4.1. Convex optimization

There are great advantages to recognizing or formulating a prob-
lem as a convex optimization problem. The most basic advantage is
that the problem can then be solved very reliably and efficiently [3].
A convex optimization problem is one of the form:

minimize f0(x)

subject to fi(x)�0, i= 1, . . . ,m

aTj x= bj, j= 1, . . . ,n (3)

Here x ∈ Rn is the optimization variable and both the objective
function f0 : Rn → R and the constraint functions fi : Rn → R are
convex functions.
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Fig. 3. Some tracking results of three synthetic image sequences including smooth, sharp and complex deformations. In (a), (b) and (c), results in the first row are obtained
by the method of [17], and results in the second row are obtained by the sequential SOCP. In all the results, the reconstructed mesh is shown in red, and the ground-truth
is shown in blue. (A video of the results is submitted as supplementary material.) (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

The convex optimization problem is called a second order cone
programming (SOCP) if the objective function is affine and the in-
equality constraints are second order cone constraints, as:

minimize fTx

subject to ‖Aix+ bi‖� cTi x+ di, i= 1, . . . ,m

Fx= g (4)

If there is no objective function to minimize in Eq. (4), it becomes
an SOCP feasibility problem, where one seeks for a point within a
feasible region, as

find x

subject to ‖Aix+ bi‖� cTi x+ di, i= 1, . . . ,m

Fx= g (5)

The SOCP includes linear programming as a special case, but it is
less general than SemiDefinite programming. SOCP problems can be
effectively solved using interior-point methods [3].

To formulate the tracking problem as an SOCP problem, two sets
of constraints are introduced. One set is used to represent model-to-
image keypoint correspondences and another set is used to prevent
the edges of the mesh from expanding or shrinking, which will be
detailed in next sections.

4.2. Constraints for keypoint correspondences

At each time instance in the process of tracking, the model to
the image keypoint correspondences are established. As has already
been pointed out in [17], these correspondences can be formulated
as SOCP constraints. We assume that a keypoint in the model is
xi, and its corresponding image point location is (ûi, v̂i)

T . Given the
camera projection matrix P, the projection of xi is

⎡
⎢⎣
ui

vi

1

⎤
⎥⎦= P

[
xi

1

]

The reprojection error with respect to image measurement (ûi, v̂i)
T is

∥∥∥∥∥
[
ui

vi

]
−
[
ûi

v̂i

]∥∥∥∥∥

=

∥∥∥∥∥
(
P1:2,1:3 −

[
ûi

v̂i

]
P3,1:3

)
xi +

(
P1:2,4 −

[
ûi

v̂i

]
P3,4

)∥∥∥∥∥
P3,1:3xi + P3,4

(6)

where P1:2,1:3 is a submatrix of P formed by rows 1,2 and columns
1,2,3. P3,1:3 is a submatrix of P formed by row 3 and columns 1,2,3.
P1:2,4 is a submatrix of P formed by rows 1,2 and column 4. And P3,4
is an element of P in row 3 and column 4.
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Fig. 4. Median distances between reconstructed mesh vertices and ground-truth of three synthetic image sequences when adding Gaussian noise with mean zero and
variance one and two. (a), (c) and (e) are the results of three sequences with variance one noise, �= 1. (b), (d) and (f) are the results of three sequences with variance two
noise, �= 2. In all the graphs, results obtained by the method of [17] are shown in blue, and results obtained by the sequential SOCP are shown in red. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Due to image noise, Eq. (6) cannot be zero, and a variable � is
used as its upper bound. If � is considered to be known, the tracking
problem can be formulated as

find v

subject to

∥∥∥∥∥
(
P1:2,1:3 −

[
ûi

v̂i

]
P3,1:3

)
xi +

(
P1:2,4 −

[
ûi

v̂i

]
P3,4

)∥∥∥∥∥
� �P3,1:3xi + �P3,4, i= 1, . . . ,m (7)

where m is the number of model-to-image keypoint correspon-
dences. Since xi is a linear transformation of v, xi = Tiv, as defined
in Eq. (2), we denote

Ai =
(
P1:2,1:3 −

[
ûi

v̂i

]
P3,1:3

)
Ti, bi = P1:2,4 −

[
ûi

v̂i

]
P3,4,

cTi = P3,1:3Ti, di = P3,4 (8)
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Table 1
Computational speed of different methods.

Image sequence Paper [17] (s) Sequential SOCP (s)

Sequence 1 237.2 244.8
Sequence 2 235.9 219.1
Sequence 3 255.1 250.8

Each value in this table is the computation time to process a whole 50 frames
sequence when adding mean zero and variance two Gaussian noise.

Then Eq. (7) can be expressed as

find v

subject to ‖Aiv+ bi‖� �cTi v+ �di, i= 1, . . . ,m (9)

where m is the number of model-to-image keypoint correspon-
dences. Eq. (9) defines an SOCP feasibility problem. Without other
constraints, the minimal � in Eq. (9) can be found using bisection al-
gorithm [8,17]. However, the results are always unacceptable due
to image noise and ambiguities of perspective projection. Therefore,
other constraints should be introduced to regularize the mesh shape.

4.3. Constraints for the mesh shape

In [17], a set of constraints was introduced to prevent the ori-
entation of the mesh edges from changing irrationally between two
consecutive frames. Assume we know the vertices linking an edge
at time t are vt

p and vt
q, the constraints for vertices at time t+1, vt+1

p

and vt+1
q , are stated as

∥∥∥∥∥vt+1
p − vt+1

q − Lp,q
vt
p − vt

q

‖vt
p − vt

q‖

∥∥∥∥∥ �0.1Lp,q 〈p, q〉 ∈ C (10)

where Lp,q is the original length of the edge linking vertices vp and
vq, and C = {〈p, q〉|vp and vq are neighboring vertices of the mesh}.
Since vt+1

p and vt+1
q are all linear transformations of v, the constraints

of Eq. (10) are also SOCP constraints that can be involved in the SOCP
problem defined in Eq. (9).

In the process of tracking, [17] solves the SOCP feasibility problem
at each time instance, and the remaining scale ambiguity is handled
by rescaling the area of the mesh to its initial size. The advantage of
this method is that all the constraints can be perfectly incorporated
into the SOCP framework. However, the constraints introduced in Eq.
(10) cannot reflect the true behavior of the surface. Theoretically, for
an inextensible surface, the constraints should be designed to stop
the edges of the mesh from expanding or shrinking, as:

‖vp − vq‖ = Lp,q 〈p, q〉 ∈ C (11)

where Lp,q is the original length of the edge linking vertices vp and vq,
and C = {〈p, q〉|vpandvqare neighboring vertices of the mesh}. Since
vp − vq is a linear transformation of v, we denote

vp − vq = Ejv, lj = Lp,q (12)

where Ej is a 3× 3N matrix in the form:

Ej =

⎡
⎢⎣
· · · 1 0 0 · · · −1 0 0 · · ·
· · · 0 1 0 · · · 0 −1 0 · · ·
· · · 0 0 1 · · · 0 0 −1 · · ·

⎤
⎥⎦

Then the constraints in Eq. (11) can be expressed as

‖Ejv‖ = lj, j= 1, . . . ,n (13)

where n is the number of edges of the mesh. The constraints in
Eq. (13) are more generic than Eq. (10), but they are typically non-
convex terms and cannot be involved in the SOCP problem defined
in Eq. (9) directly. To this end, we introduce an approach to deal
with the non-convex terms in Eq. (13) using SOCP solver in next
section.

4.4. Solving the tracking problem using sequential SOCP

Now we have two sets of constraints, one for model-to-image
keypoint correspondences as defined in Eq. (9), another for retain-
ing the original lengths of mesh edges as defined in Eq. (13). The
deformable surface 3D tracking problem can be written as

find v

subject to ‖Aiv+ bi‖� �cTi v+ �di, i= 1, . . . ,m (14a)

‖Ejv‖ = lj, j= 1, . . . ,n (14b)

where m is the number of model-to-image keypoint correspon-
dences, and n is the number of edges of the mesh. Ai, bi, ci and di are
defined in Eq. (8), Ej and lj are defined in Eq. (12). Since constraints in
Eq. (14b) are non-convex constraints, this problem is a non-convex
feasibility problem. Obviously, the equality constraints in Eq. (14b)
can reasonably be replaced by two sets of inequality constraints,
as

‖Ejv‖� (1+ �)lj, j= 1, . . . ,n (15a)

‖Ejv‖� (1− �)lj, j= 1, . . . ,n (15b)

where � can be set to a very small value (throughout the paper we
set � = 0.001). Now the deformable surface 3D tracking problem
become

find v

subject to ‖Aiv+ bi‖� �cTi v+ �di, i= 1, . . . ,m (16a)

‖Ejv‖� (1+ �)lj, j= 1, . . . ,n (16b)

‖Ejv‖� (1− �)lj, j= 1, . . . ,n (16c)

In fact, replacing the equality constraints with these inequality
constraints will not change the nature of the problem. That is, the
problem after such modifications remains to be non-convex, because
the inequalities in Eq. (16c) are non-convex constraints.

Because Eq. (16) is a non-convex feasibility problem, con-
vex programming methods are not directly applicable. Below
we will describe a solution method for the problem that allows
one to use efficient SOCP solver to solve Eq. (16) in a sequential
manner.

Suppose we start with an initial point v0 and seeks for a better
point v1 in the neighborhood of v0. Point v1 can be expressed as
v1=v0+�0. So the problem now is to identify an appropriate vector
�0. In general, consider a scenario where we are in the k-th iteration
and try to update point vk to point vk+1 = vk + �k. The three sets of
constraints in Eq. (16) in this case become

‖Ai(vk + �k)+ bi‖� �cTi (vk + �k)+ �di, i= 1, . . . ,m (17a)

‖Ej(vk + �k)‖� (1+ �)lj, j= 1, . . . ,n (17b)

‖Ej(vk + �k)‖� (1− �)lj, j= 1, . . . ,n (17c)

Constraints in Eq. (17c) can be expressed as

2vTkE
T
j Ej�k + �T

kE
T
j Ej�k � (1− �)2l2j − vTkE

T
j Ejvk, j= 1, . . . ,n (18)
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Since ET
j Ej is a positive definite matrix, �T

kE
T
j Ej�k >0. Now if

we remove the second term on the left-hand side of Eq. (18), we
have

2vTkE
T
j Ej�k � (1− �)2l2j − vTkE

T
j Ejvk, j= 1, . . . ,n (19)

Obviously, Eq. (18) remains valid as long as Eq. (19) holds. The n
linear inequality constraints in Eq. (19) can be put together as

Fk�k �gk (20)

where

Fk =

⎡
⎢⎢⎢⎢⎢⎢⎣

2vTkE
T
1E1

2vTkE
T
2E2

...

2vTkE
T
nEn

⎤
⎥⎥⎥⎥⎥⎥⎦
, gk =

⎡
⎢⎢⎢⎢⎢⎢⎣

(1− �)2l21 − vTkE
T
1E1vk

(1− �)2l22 − vTkE
T
2E2vk

...

(1− �)2l2n − vTkE
T
nEnvk

⎤
⎥⎥⎥⎥⎥⎥⎦

In summary, the above analysis suggests that, in the k-th iteration,
the point vk can be updated to point vk+1 = vk + �k where �k is the
solution of the following SOCP feasibility problem:

find �k

subject to ‖Ai(vk + �k)+ bi‖� �cTi (vk + �k)+ �di, i= 1, . . . ,m

‖Ej(vk + �k)‖� (1+ �)lj, j= 1, . . . ,n

Fk�k �gk (21)

Since Eq. (21) is an SOCP problem, now we can take advantage
of the efficient SOCP solver. How to identify a good initial point v0
is very important when we solving Eq. (21). In this paper, at each
time instance t, the tracking result for previous time instance vt−1 is
a good choice for the initial point v0, because the change between
two consecutive frames is always not violent.

Given the initial point v0 and an initial upper bound of repro-
jection errors �, we can solve Eq. (21). If it is feasible, a solution �0
can be calculated, otherwise, we continuously increase � until Eq.
(21) becomes feasible. Once a solution �0 of Eq. (21) is obtained,
we set v1 = v0 + �0, and then vk can be updated iteratively. In the
k-th iteration, once a solution �k of Eq. (21) is calculated, we set
vk+1 = vk + �k, let k : =k + 1, and then use the updated data to
obtain a new �k. Theoretically, vk will converge to a solution v∗ as
‖�k‖ → 0. In fact, {v1, v2, . . . , vk, . . . , v∗} are all solutions of the track-
ing problem defined in Eq. (16), because if �k is a solution of Eq.
(21), vk + �k must satisfies three sets of constraints in Eq. (17), i.e.
vk+1 is a solution of Eq. (16). In practice, we justtake v1 as the solu-
tion, that means we do not iteratively update vk until it converges,
but accept v1 once we get �0. The procedure can be summarized as
Algorithm 1.

Using Algorithm 1 we could find a solution of Eq. (16) with a
feasible upper bound �feasible. Now the last question is how can we
find the minimal �?

Once we get v1 and �feasible, the minimal � could be found by
iteratively solving the SOCP feasibility problem of Eq. (21) and de-
creasing � simultaneously, i.e. set � = � − �step at each iteration. In
practice, at each iteration, we always set �step = �/2 and solve Eq.
(21). If the problem is infeasible, we bisect �step and resolve Eq. (21).
The iteration continues until �step is less than a prescribed thresh-
old � (throughout the paper we set �= 0.05). We should note that,
this procedure is different from the famous bisection algorithm be-
cause the SOCP problem in Eq. (21) depends not only on � but also
on vk. The procedure of finding the minimal � can be summarized
as Algorithm 2.

Algorithm 1.

A. (Input)
I. The initial point v0 which is the tracking result for previous

time instance;
II. The initial upper bound �initial (throughout the paper we set

�initial = 2 pixels);

B. (Solve the SOCP feasibility problem)
1: �← �initial;
2: Solve the SOCP feasibility problem in Eq. (21) to obtain �0;
3: if feasible then
4: Set v1 = v0 + �0, and set �feasible = �;
5: Go to step 10;
6: else
7: �← �× 2;
8: Go to step 2;
9: end if
10: Output the solution v1 and the upper bound �feasible.

Algorithm 2.

A. (Input)
A solution v1 and an upper bound �feasible obtained by
Algorithm 1;

B. (Solve the sequential SOCP feasibility problem)
1: k← 1;
2: �k ← �feasible, �step ← �k/2;
3: Set �= �k − �step;
4: Solve the SOCP feasibility problem in Eq. (21) to obtain �k;
5: if feasible then
6: Set vk+1 = vk + �k, and set �k+1 = �, �step = �k+1/2;
7: k← k+ 1;
8: Go to step 3;
9: else
10: set �step = �step/2;
11: If �step<�, go to step 14;
12: Go to step 3;
13: end if
14: Output the solution vk and the minimal upper bound of

reprojection errors �.

One drawback of using SOCP is that it is not robust to outliers,
and wrong correspondences happen occasionally. It has been proved
that the set of keypoint correspondences whose reprojection error
equals the minimal � contain at least one outlier [20]. Thus, if keep
throwing out these keypoint correspondences, we will eventually
remove all outliers in the data. In our implementation, we keep
removing outliers and redoing Algorithms 1 and 2 until the minimal
� is less than 2 pixels.

5. Performance evaluation

The performance of our approach was evaluated with both syn-
thetic and real image sequences. All the experiments are imple-
mented under the Matlab environment using SeDuMi which is a
toolbox for optimizing over convex cones [21].

5.1. Quantitative evaluation on synthetic image sequences

Our approach was quantitatively evaluated on synthetic image
sequences. We synthetically deformed a 8×11 vertex mesh and gen-
erate three synthetic image sequences with smooth, sharp and com-
plex deformations respectively. The size of the mesh is 8 cm×11 cm.
We apply forces to certain vertices of the mesh and keep mesh edges
to be their original lengths. Each sequence contains 50 frames. We
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Fig. 5. Tracking a piece of paper with cartoon texture in three real image sequences. In (a), (b) and (c), the top row are original images, the middle row are images with
reprojected meshes and the bottom row are reconstructed triangulated meshes seen from a different view. (A video of the results is submitted as supplementary material.)
(a) smooth deformation; (b) sharp folds and (c) complex deformation.

randomly chose four 3D points in each facet and projected these
points to the image plane using a perspective projection matrix,
which gave us a set of point correspondences. To evaluate the ro-
bustness of our approach, we add Gaussian noise with mean zero
and variance one and two to the image point locations.

We compared our approach with the method in paper [17] for
these three synthetic image sequences. Fig. 3 shows some track-
ing results of these image sequences when adding variance two

Gaussian noise. The results show that although the method in [17]
generated very good results in which the differences between the
reconstructed mesh and the ground-truth are very small, our ap-
proach obtained more accurate results in which the differences are
almost indistinguishable.

Fig. 4 shows the median distances between reconstructed mesh
vertices and ground-truth when adding Gaussian noise with vari-
ances one and two. The results show that the median distances are
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Fig. 6. Tracking a piece of paper with Chinese calligraphy texture in three real image sequences. In (a), (b) and (c), the top row are original images, the middle row are
images with reprojected meshes and the bottom row are reconstructed triangulated meshes seen from a different view. (A video of the results is submitted as supplementary
material.) (a) smooth deformation; (b) sharp folds and (c) complex deformation.

of the order of 0.15 cm using the method in [17], and are of the or-
der of 0.01 cm using our sequential SOCP approach. The significant
improvement of the reconstruction accuracy demonstrates that the
shape constraints introduced in our approach truly reflect the phys-
ical properties of the surface.

The computational speed of different methods is presented in
Table 1. Compare with [17], our approach has n more linear inequal-
ity constraints as shown in Eq. (20), but still has a high computational
speed owing to the efficient SOCP solver. In sequences 2 and 3 our

method runs even a little faster than [17], that is because our ap-
proach needs fewer iterations to find the minimal � in some frames.

5.2. Qualitative evaluation on real image sequences

Finally we evaluated our approach qualitatively on real image se-
quences. Two pieces of paper, one with cartoon texture and another
with Chinese calligraphy texture, were used. We generated two sets
of image sequences for these two pieces of paper. Each set has three
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image sequences including the paper with smooth, sharp and com-
plex deformations, as shown in Figs. 5 and 6. These image sequences
were captured by a digital cameral with a resolution of 1024× 768.
The camera was calibrated beforehand and the camera projection
matrix, P, remained constant during the process. The size of the tri-
angulated mesh is set to 10× 15.

We use following steps to create the triangulated mesh model.
When the piece of paper is flat, it can be seen as a plane and we can
get 2D coordinates of four corner points of this piece of paper in this
plane. Then the 10×15 triangulated mesh can be formed from these
four corner points. Capture an image of this piece of paper without
deformations, we can get four image locations corresponding to four
corner points of this piece of paper. Then the 2D homography matrix
H between the paper plane and the image plane could be calculated
using these four 2D to 2D point correspondences. After that, we
use SIFT [13] to extract keypoints from the image, and transform
locations of these keypoints to the paper plane using H. Nowwe have
locations of both the mesh and the keypoints in the paper plane,
and we can calculate the barycentric coordinates of each keypoint
and obtain the model M = {T1, T2, . . . , TS}, where S is the number of
keypoints on the model.

Given the modelM, the camera projection matrix P and the struc-
ture of the surface in the first frame, sequential SOCP was used to
reconstruct the surface structures in successive frames. In the pro-
cess of tracking, keypoint correspondences between the model and
the image were established using SIFT at each time instance. Some
tracking results of the surface with cartoon texture are shown in
Fig. 5, and results of the surface with Chinese calligraphy texture are
shown in Fig. 6. The results show that our approach can correctly
recover shapes of the surface with smooth, sharp and other complex
deformations.

6. Conclusions

This paper proposes a method for tracking deformable surface in
3D from monocular image sequences. In our approach, two sets of
constraints are introduced. The first set of constraints are model-to-
image keypoint correspondences which can be formulated as SOCP
constraints. The second set of constraints are designed to stop the
edges of the mesh from expanding or shrinking which are typi-
cally non-convex constraints. In order to take advantage of the effi-
cient SOCP solver, the deformable surface tracking problem is solved
by solving sequential SOCP feasibility problems in which the non-
convex constraints are replaced by a set of convex constraints over
a local convex region. Since the shape constraints used in our ap-
proach is more generic than previous methods, the proposedmethod
enables us to handle highly deformable surfaces. Experiments on
synthetic and real image sequences demonstrate the capability and
efficiency of our approach.

Currently we take the tracking result of previous frame as the
initial structure of current frame which is the main limitation of our
approach, because it may fail to recover the shape correctly when
something goes wrong in previous frame. In future work, we will
investigate how to obtain an appropriate initial structure without
using information of previous frames. Besides, our future work also
includes investigating how to extend our method to handle exten-
sible deformable surfaces.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at doi:10.1016/j.patcog.2009.06.016.
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