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Two-dimensional digital filters with sparse coefficients
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Abstract Is sparsity an issue in 2-D digital filter design problems to explore and why is
it important? How a 2-D filter can be designed to retain a desired coefficient sparsity for
efficient implementation while achieving best possible performance subject to that sparsity
constraint? These are the focus of this paper in which we present a two-phase design method
for 2-D FIR digital filters in two most common design settings, namely, the least squares and
minimax designs. Simulation studies are presented to illustrate each phase of the proposed
design method and to evaluate the performance of the filters designed.

Keywords 2-D digital filters · Coefficient sparsity · Convex optimization

1 Introduction

Design and analysis of two-dimensional (2-D) digital filters have been a field of active re-
search since 1970’s. As a result, a good number of analysis techniques and design algorithms
for 2-D digital filters have been developed and they now form an important part of multidi-
mensional digital signal processing [1]–[4]. One of the design issues is coefficient (impulse
response) sparsity. The issue is evidently of importance as it is directly related to filter im-
plementation efficiency and cost. Several authors have investigated digital filters with sparse
coefficients, especially for filters with specific system structures or specific classes of filters.
These include the frequency-response masking (FRM) filters initiated by Lim [5] and ex-
tended to the 2-D case [6], narrowband 2-D fan filters and 3-D cone filters using shaped 2-D
window functions proposed by Khademi and Bruton [7][8], and sparse half-band like FIR
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filters by Gustafsson et al [9]. In a basic FRM filter [5], a prototype filter and its comple-
ment are upsampled, yielding sparse filter coefficients and a reduced transition width. They
are connected in cascade to a pair of frequency-response masking filters to approximiate
a desired sharp frequency response. On the other hand, by using a parabolically-bounded
shaped 2-D window and properly thresholding the magnitude of the windowed impulse re-
sponse, narrowband 2-D fan filters with sparse coefficients and satisfactory performance are
obtained [7][8]. In [9], a method for the design of filters close to half-band filter with slightly
relaxed specifications is developed. It is shown that one can obtain filters of this type with
sparse coefficients by allowing an increase in passband ripple.

Inspired by the recent development in compressive sensing [10][11][12], this paper ex-
amines the 2-D filter design problem from a sparsity-promoting perspective and addresses
several design issues for 2-D FIR filters with sparse coefficients. Our objective is to develop a
design methodology that applies to general 2-D FIR filters without assuming specific system
structures or limiting to specific filter classes. In order for the design method to accommo-
date a wide range of filtering scenarios, we in this paper consider two most common design
settings, namely, the frequency-weighted least squares and minimax designs. For each type
of designs, we present a two-phase design method that accommodates a sparsity-promoting
measure and yields globally optimal solutions subject to target coefficient sparsity. Illustra-
tions of the design concept, technical details of the design algorithms, and simulation studies
are presented in Sections 2–3, Sections 4–5, and Section 6, respectively. We remark that the
authors have also looked into the sparsity problem for one-dimensional (1-D) digital filters
and some preliminary results have recently appeared in [13]. However, the studies presented
in this paper differ from that of [13] in several ways as we have to deal with issues facing
the class of 2-D filters that do not exist for its 1-D counterpart.

Throughout, we use boldfaced upper-case letters to denote matrices and lower-case let-
ters to denote vectors. Two vector norms for x = [x1 x2 · · · xn]T , which are frequently
used in the paper, are the l1-norm and l2-norm that are defined as ‖x‖1 = n

i=1 |xi| and
‖x‖2 =

(
n
i=1 x

2
i

)1/2
, respectively. For a continuous function F( 1, 2) defined over region

, its L2 and L norms are defined as

‖F( 1, 2)‖2 =

⎡
⎣∫ ∫

|F( 1, 2)|2 d 1 d 2

⎤
⎦
1/2

and

‖F( 1, 2)‖ = max
( 1, 2)∈

|F( 1, 2)|

respectively.

2 Linear-Phase 2-D FIR Digital Filters

2.1 Transfer function and impulse response

We consider the transfer function of a representative linear-phase 2-D FIR filter

H(z1,z2) =
N1

i=0

N2

j=0
Hi jz

−i
1 z− j

2 = zT1 Ĥz2 (1)
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with N1 and N2 even integers, z1 = [1 z−1
1 · · · z−N1

1 ]T , z2 = [1 z−1
2 · · · z−N2

2 ]T . The phase-
response linearity of (1) implies that Ĥ is quadrantally symmetrical. Namely, if we denote

Ĥ =

⎡
⎣H11 h12 H13

hT21 h22 hT23
H31 h32 H33

⎤
⎦ (2)

n1 = N1/2 and n2 = N2/2, then H11, H13, H31, h12, and hT21 are related to the rest part of
Ĥ as

H11 = flipud(fliplr(H33))
H13 = flipud(H33), H31 = fliplr(H33)

h12 = flipud(h32) and hT21 = (fliplr(hT23))

where flipud and fliplr represent the operations of flipping a matrix upside down and
from left to right, respectively. As a result, the frequency response of the filter is given by
[14]

H( 1, 2) = e− j(n1 1+n2 2)cT1 ( 1)Hc2( 2) (3)

with ci( i) = [1 cos i · · · cosni i]T for i = 1, 2, and

H =
[
h22 2hT23
2h32 4H33

]
(4)

For the convenience of subsequent development, the zero-phase frequency response, i.e.

A( 1, 2) = cT1 ( 1)Hc2( 2) (5)

needs to be reformulated as an inner product of a frequency-dependent variable vector with
a design vector that collects the entries of H in (4). This can be done by using a property of
matrix trace: trace(AB) = trace(BA). It follows that

A( 1, 2) = cT1 ( 1)Hc2( 2) = trace[cT1 ( 1)Hc2( 2)]

= trace[c2( 2)cT1 ( 1)H] = trace[C( 1, 2)H] (6)

= cT ( 1, 2)h

where C( 1, 2) = c2( 2)cT1 ( 1), thus c( 1, 2) is a vector of length n = (n1 + 1)(n2 +
1) generated by stacking the rows of C( 1, 2) and then transposing it, and h is a vector
obtained by stacking the columns of H from left to right.

2.2 Is the impulse response of a typical 2-D FIR filter sparse?

A discrete sequence (vector) x of length n is said to be K-sparse if x contains K nonzero
entries with K � n. In the context of filter design, we are interested in developing design
methodologies for digital filters with satisfactory performance and sparse impulse responses
because filters such as these require considerably less number of multiplications and addi-
tions for implementation. Such development is especially significant for 2-D filters as the
number of coefficients involved in a 2-D filter of size N1×N2 is in the order of O(N1N2)
compared with O(N) coefficients for 1-D filters of length N.
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There are two questions immediately arising from this coefficient sparsity issue: Are the
impulse responses of typical 2-D FIR filters sparse? and, if not, are there simple techniques
to approximate a nonsparse impulse response by a sparse one without sacrificing much of
the performance?

To address the first question, we examined a variety of FIR filters in terms of types
and sizes, these include circularly symmetric lowpass, highpass, bandpass, and bandstop
filters, fan filters, and diamond-shaped filters with sizes varying from 5×5 to 45×45. For
each type of filters of a given size, designs with various passband and stopband edges were
examined. Among all tested, no impulse response having at least one zero coefficient was
found. The examination is therefore indicative that impulse responses of typical 2-D FIR
filters are generically nonsparse. On the other hand, however, a typical impulse response
contains considerable number (relative to the filter size) of coefficients whose magnitudes
are small. As an example, Fig. 1 depicts the impulse response of a diamond-shaped linear
phase FIR filter of size 15× 15 with normalized passband edge p = 0.5 and stopband
edge a = that was designed by minimizing a least-squares (LS) criterion, namely

e2 =
∫ ∫

|H( 1, 2)−Hd( 1, 2)|2d 1d 2 (7)

0

5

10

0
2

4
6

8
10

12
14

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 1 Impulse response of a diamond-shaped FIR filter of size 15×15.

where denotes the union of filter’s passband and stopband. Among its 225 coefficients,
there are 104 coefficients with magnitudes less than 10−3. Taking both sides of the above
analysis into account, we see that a typical 2-D impulse response is not sparse by defi-
nition, but is nearly sparse as many of its entries are fairly close to zero. Unfortunately,
implementing a 2-D filter with a nearly sparse impulse response does not lead to substantial
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complexity/cost reduction as the number of multipliers and adders practically remain the
same.

To address the second question, we start with a seemingly reasonable approach to gen-
erating a sparse impulse response, that is to nullify the entries of a nonsparse impulse re-
sponse, whose magnitudes fall below a prescribed tolerance t . For illustration, the tech-
nique was applied to the diamond-shaped filter discussed above with t = 10−3 to generate
an impulse response with 104 zero entries. Denoting the frequency response of the non-

sparse diamond-shaped filter and its sparse counterpart by H15( 1, 2) and H(s)
15 ( 1, 2),

respectively, the e2 error defined in (7) was found to be e2[H15( 1, 2)] = 0.6640× 10−5

and e2[H
(s)
15 ( 1, 2)] = 0.1430× 10−3. We see that the performance of the sparse filter is

considerably degraded compared with its nonsparse counterpart.

Since there are only 121 nonzero coefficients in H(s)
15 (z1,z2), from an implementation

point of view a fair comparison should be made between H(s)
15 (z1,z2) and a nonsparse 2-D

filter with 121 coefficients. To this end, an LS-optimal diamond-shaped filter of size 11×11
with the same design specifications as that for H15(z1,z2) was designed and the transfer
function obtained is denoted as H11(z1,z2). The e2 error for H11(z1,z2) was found to be

e2[H11(z1,z2)] = 0.0708×10−3 . The amplitude responses of H(s)
15 (z1,z2) and H11(z1,z2) are

shown in Fig. 2. We note that the performance of the sparse H(s)
15 (z1,z2) is not as good as

that of the equivalent nonsparse H11(z1,z2). The above example is indicative that simply
nullifying small-magnitude coefficients will not produce a sparse 2-D filter with satisfactory
performance. A focus point of this paper is to develop algorithms for the design of 2-D FIR
filters with sparse coefficients that outperform their equivalent nonsparse counterparts.
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Fig. 2 Amplitude responses of (a) H(s)
15 (z1,z2) and (b) H11(z1,z2).

3 The Design Method at A Glance

The design of an optimal linear-phase 2-D filter with sparse coefficients involves two distinct
phases. We regard the impulse response of a 2-D FIR filter as matrix H (see (3)) and the
indices (i, j) of its entries hi j as locations. The aim of the first design phase is at identifying
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the locations where the filter coefficients will be set to zero to satisfy a sparsity requirement.
This is followed by a second design phase in that the remaining nonzero entries of the
impulse response are optimally determined by minimizing a certain error measure of how
close the filter being designed is to a desired frequency response.

3.1 Design Phase I

In brief terms, phase 1 of the design method is accomplished by optimizing a fidelity term
that measures the closeness between the frequency response of the filter and a given (desired)
one, in combination with a sparsity-promoting measure. In the context of filter design, the
fidelity term, in accordance with the two most common design settings, namely the least
squares and minimax designs, is the L2 or L -norm of approximation error H( 1, 2)−
Hd( 1, 2) over a region of interest in the frequency baseband − ≤ 1, 2 ≤ . A recent
discovery in the theory of compressive sensing [10][11][12] is that under certain conditions
the sparsest solution of a underdetermined linear systemAx= b can be found by minimizing
l1-norm ‖x‖1 subject to Ax= b. It is important to note that the l1-norm ‖x‖1 is a continuous
and globally convex function of x (it is not differentiable however). Summarizing, phase 1
of the design amounts to minimizing a weighted sum of these two terms with respect to
vectorized impulse response h:

minimize
h

[‖H( 1, 2)−Hd( 1, 2)‖2, + ‖h‖1] (8)

where > 0 is a scalar weight that balances filter’s sparsity with its fidelity. We remark
that the objective function in (8) may be modified to include a frequency-weighting function
W ( 1, 2) to help discriminate frequency region of interest over the baseband, details will
follow. Once the solution h of problem (8) is obtained, an index set of the most appropriate
locations for the impulse response to be set to zero to satisfy a given sparsity constraint can
be identified by hard-thresholding the entries of h with an appropriate threshold t . It is this
index set that is the essential outcome of design phase 1.

3.2 Design Phase II

As observed from the example in Sec. 2, sparsifying an impulse response inevitably degrades
the filter’s performance. This necessitates a second phase of the design in that the filter is
optimized against an L2 or L error measure subject to filter’s sparsity identified in phase
1. Let I be the index set produced in phase 1, that collects the locations of the impulse
response that are most adequate to be set to zero, phase 2 is essentially a design step that
solves the constrained problem

minimize
h

‖H( 1, 2)−Hd( 1, 2)‖2, (9a)

subject to: hi = 0 for i ∈ I (9b)

As a result, a 2-D FIR filter with desired coefficient sparsity and best possible performance
in accordance with a given error measure is obtained. A noteworthy feature of the design
method is that both the problems in (8) and (9) can be cast as low-order (linear or quadratic)
convex programming (CP) problems [15], hence the solutions are globally optimal, and can
be calculated using efficient and reliable CP solvers such as SeDuMi [16] and CVX [17]. In
the rest of the paper, we present algorithmic details addressing the problems in (8) and (9)
as well as several design results.
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4 An Algorithm for LS Designs

4.1 CP Formulation for Design Phase 1

There are two possible formulations for design phase 1: one takes the form of (8) with L2
norm in its first term, and the other formulates the problem as

minimize ‖h‖1 (10a)

subject to: ‖H( 1, 2)−Hd( 1, 2)‖2 ≤ (10b)

with a prescribed upper bound for the L2 approximation error. These two formulations
are equivalent because the objective function in (8) may be interpreted as the Lagrangian
of problem (10) up to a constant [15]. Therefore our attention in phase 1 will be focused
on problem (8) with a slight modification so that the objective function becomes frequency
weighted. To be specific, we consider designing a linear-phase FIR filter H(z1,z2) in (1)
with N1 and N2 even that approximates a desired frequency response

Hd( 1, 2) = e− j(n1 1+n2 2)Ad( 1, 2) (11)

in a weighted least squares sense subject to coefficient sparsity no greater than K. With (6),
(8) and (11), phase 1 of the design aims at solving the problem of minimizing function J2(h)
with

J2(h) =

⎧⎨
⎩

∫ ∫
W ( 1, 2)[hT c( 1, 2)−Ad( 1, 2)]2d 1d 2

⎫⎬
⎭

1/2

+ ‖h‖1 (12)

where the weighting functin assumes the form (in our simulation studies)

W ( 1, 2) =

⎧⎨
⎩

1 ( 1, 2) ∈ passbands
w ( 1, 2) ∈ stopbands
0 elsewhere

(13)

hence the region where the integration in the fidelity term of (12) is carried out is simply
the union of all passbands and stopbands within the baseband [− , ]× [− , ]. A straight-
forward numerical implementation of function J2(h) is given by

J2(h) ≈
{

M

i=1

W ( i)[hT c( i)−Ad( i)]2
}1/2

+ ‖h‖1 (14)

where d = { i = ( (i)
1 ,

(i)
2 ), 1 ≤ i ≤M} is a dense set of M frequency grids uniformly

placed over . Let

Â =

⎡
⎢⎢⎢⎣
W 1/2( 1)cT ( 1)
W 1/2( 2)cT ( 2)

...
W 1/2( M)cT ( M)

⎤
⎥⎥⎥⎦ , a =

⎡
⎢⎢⎢⎣
W 1/2( 1)Ad( 1)
W 1/2( 2)Ad( 2)

...
W 1/2( M)Ad( M)

⎤
⎥⎥⎥⎦

then (14) becomes
J2(h) ≈ ‖Âh−a‖2 + ‖h‖1 (15)
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To deal with the non-differentiability of ‖h‖1, we place an upper bound for each entry of h,
i.e.,

|hi| ≤ di for 1≤ i≤ n

with n = (n1 +1)(n2 +1). An upper bound is also introduced for the fidelity term in (15),
in this way a constrained problem equivalent to miniming J2(h) in (15) is obtained as

minimize +
n

i=1

di (16a)

subject to: ‖Âh−a‖2 ≤ (16b)

|hi| ≤ di for 1≤ i≤ n (16c)

By treating the bounds and di (1≤ i≤ n) as auxiliary design variables and defining

d =

⎡
⎢⎢⎢⎣
d1
d2
...
dn

⎤
⎥⎥⎥⎦ , x =

⎡
⎣d
h

⎤
⎦ , A1 = [0 Â]M×(2n+1), b =

⎡
⎢⎢⎢⎣
1
0
...
0

⎤
⎥⎥⎥⎦

(2n+1)×1

,

f =

⎡
⎣ 1

en
0

⎤
⎦

(2n+1)×1

, en =

⎡
⎢⎢⎢⎣
1
1
...
1

⎤
⎥⎥⎥⎦
n×1

, A2 =
[
0 In In
0 In −In

]
2n×(2n+1)

the problem in (16) becomes

minimize fTx (17a)

subject to: ‖A1x−a‖2 ≤ bTx (17b)

A2x≥ 0 (17c)

which is a standard second-order cone programming (SOCP) problem [15]. From the unique
and global solution x∗ of (17), h∗ can be obtained as the last n entrices of x∗. Because
of the use of the sparsity-promoting term ‖h‖1 in (15) (hence in (16) and (17)), h∗ is
indicative of the index locations at which the impulse response can adequately be set to
zero. A target impulse-response sparsity K can be readily satisfied by hard-thresholding h∗
with an appropriate threshold t . The set of indices at which the impulse response is set to
zero is denoted by I ∗

2 and, by definition, it is characterized by

I ∗
2 = {i : 1≤ i≤ n, |h∗i | ≤ t} (18)

It is this set I ∗
2 that is the essential result produced by design phase 1.

4.2 CP Formulation for Design Phase 2

As demonstrated in Sec. 2, nullifying small-magnitude impulse-response entries inevitably
deteriorates the filter’s performance even if a fairly small threshold is used in the nullifica-
tion process. In phase 2 of the design, this problem is addressed by optimizing the rest of
(nonzero) impulse response entries with respect to an LS criterion subject to the sparsity
constraint. This leads to a constrained problem of the type in (9) with an L2-norm objective



9

function. By introducing a weighting function in (9a) and using (6) and (11), the problem
under consideration is formulated as

minimize
∫ ∫

W ( 1, 2)[hT c( 1, 2)−Ad( 1, 2)]2d 1d 2 (19a)

subject to: hi = 0 for i ∈ I ∗
2 (19b)

which is evidently a convex quadratic programming problem. The solution of (19) can be
calculated by first eliminating the constrains in (19b) by substituting them into (19a), re-
sulting in a unconstrained convex problem, and then solving it analytically. To this end, let
ĥ and ĉ( 1, 2) be the vectors generated from h and c( 1, 2), respectively, by deleting
the entries whose indices belong to set I ∗

2 . Subject to the constraints in (19b), we have

hT c( 1, 2) = ĥ
T
ĉ( 1, 2), hence (19) is simplified to the unconstrained problem

minimize ĥ
T
Q̂ĥ−2ĥ

T
q̂+ (20)

with

Q̂ =
∫ ∫

W ( 1, 2) ĉ( 1, 2)ĉT ( 1, 2) d 1 d 2

q̂ =
∫ ∫

W ( 1, 2) ĉ( 1, 2) Ad( 1, 2) d 1 d 2

=
∫ ∫

W ( 1, 2) A2
d( 1, 2) d 1 d 2

Because Q̂ is positive definite, the global minimum of (20) is reached by

ĥ
∗ = Q̂

−1
q̂ (21)

The full-scale solution of dimension n for problem (19) can now be obtained by inserting
zero entries into ĥ

∗
so as to satisfy (19b). The solution so constructed is denoted by hLS.

5 An Algorithm for Minimax Designs

5.1 LP Formulation for Design Phase 1

With (6) and (11), a frequency-weighted version of formulation (8) with L norm in its first
term becomes

minimize
h

[maximize
( 1, 2)∈

W ( 1, 2)|hT c( 1, 2)−Ad( 1, 2)|+ ‖h‖1] (22)

By introducing an upper bound forW ( 1, 2)|hT c( 1, 2)−Ad( 1, 2)| over a finite set
of frequency grids d = { i = ( (i)

1 ,
(i)
2 ), 1 ≤ i≤M} ⊆ , (22) is reduced to a tractable

constrained problem as

minimize + ‖h‖1 (23a)

subject to: W ( i)|hT c( i)−Ad( i)| ≤ , 1≤ i≤M (23b)
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In the same way as in the LS design, term ‖h‖1 in (23a) is replaced by the sum of upper
bounds for the entries of h. This leads (23) to

minimize +
n

i=1
di (24a)

subject to: W ( i)|hT c( i)−Ad( i)| ≤ , 1≤ i≤M (24b)

|hi| ≤ di 1≤ i≤ n (24c)

By treating the bounds and di as auxiliary design variables, (24) becomes a linear pro-
gramming (LP) problem that can be expressed as

minimize fTx (25a)

subject to: Ax≥ b (25b)

where

x =

⎡
⎣d
h

⎤
⎦ , f =

⎡
⎣ 1

en
0

⎤
⎦ , A =

[
A1

A2

]
, b =

[
b1
0

]

with

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 W ( 1)cT ( 1)
...
...

...
1 0 W ( M)cT ( M)
1 0 −W ( 1)cT ( 1)
...
...

...
1 0 −W ( M)cT ( M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2 =
[
0 In In
0 In −In

]
, b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W ( 1)Ad( 1)
...

W ( M)Ad( M)
−W ( 1)Ad( 1)

...
−W ( M)Ad( M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The unique and globally optimal solution h∗ of problem (23) can be obtained by collecting
the last n components of the solution x∗ of problem (25). Just like the LS design in Sec.
4, a target impulse response sparsity K can be satisfied by hard-thresholding h∗ with an
appropriate threshold t . This yields an index set

I ∗ = {i : 1≤ i≤ n, |h∗i | ≤ t} (26)

5.2 LP Formulation for Design Phase 2

With I ∗ identified in phase 1, phase 2 of the design is performed by solving the constrained
minimax problem

minimize
h

maximize
( 1, 2)∈

W ( 1, 2)|hT c( 1, 2)−Ad( 1, 2)| (27a)

subject to: hi = 0 for i ∈ I ∗ (27b)

The constrains in (27b) ensures the desired sparsity for the impulse response while mini-
mizing the largest weighted approximation error over the entire region of interest, . Re-
alistically (27) is carried out over a dense but finite set of frequency grids d = { i =
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( (i)
1 ,

(i)
2 ), 1 ≤ i ≤M} ⊆ and the problem is solved by minimizing an upper bound

for the weighted approximation error over d subject to (27b), and it can be formulated as

minimize (28a)

subject to: W ( i)|hT c( i)−Ad( i)| ≤ 1≤ i≤M (28b)

hi = 0 for i ∈ I ∗ (28c)

Here we follow the treatment of the sparsity constraint in Sec. 4.2 to define vectors ĥ and
ĉ( ) by deleting those entries of h and c( ) whose indices belong to set I ∗. Subject to
constraints in (28c), we have hT c( ) = ĥ

T
ĉ( ), hence (28) is simplified to

minimize (29a)

subject to: W ( i)|ĥT ĉ( i)−Ac( i)| ≤ , 1≤ i≤M (29b)

With as an auxiliary variable, problem (29) becomes an LP problem of the form

minimize fTx (30a)

subject to: Ax≥ b (30b)

with

x =
[
ĥ

]
, f =

[
1
0

]
, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 W ( 1)ĉT ( 1)
...

...
1 W ( M)ĉT ( M)
1 −W ( 1)ĉT ( 1)
...

...
1 −W ( M)ĉT ( M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W ( 1)Ad( 1)
...

W ( M)Ad( M)
−W ( 1)Ad( 1)

...
−W ( M)Ad( M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The optimal ĥ
∗
is obtained by collecting the last n entries of the solution x∗ of problem (30),

and the solution of problem (28) is then constructed by inserting zero entries into ĥ
∗
so as

to satisfy (28c). The solution so obtained is denoted by hminimax .

6 Simulation Studies

6.1 Effect of Using a Sparsity-Promoting Measure

The objective functions used in phase 1 of LS and minimax designs are sparsity promot-
ing as they both contain the term ‖h‖1 (see (14) and (23)). In this section, we provide
numerical evidences to illustrate the effect of using a sparsity-promoting measure in the de-
signs. To this end, a circularly symmetric lowpass filter of size 15× 15 with p = 0.5 ,
a = 0.8 , and w = 1 (see (13)) was obtained by minimizing the objective function in (14)

with = 0.5. Since the filter is circularly symmetric, the frequency baseband can be reduced
to {( 1, 2) : 0≤ 1, 2 ≤ }. The set d includes 188 grid points in the passband and 446
grid points in the stopband, thus M = 634. By thresholding its solution with t = 0.00149,
an index set I ∗

2 of 104 locations was generated. For comparison, a circularly symmetric
LS lowpass filter with the same filter size, p, a, and w was also designed by minimizing
an objective function with the same fidelity term as in (14) but dropping the term ‖h‖1
there. By thresholding the impulse response obtained with t = 0.002, an index set I2 of
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104 locations was obtained. On comparing the two index sets, it was found that there were
12 locations that were in I ∗

2 but not in I2, which implies that there were 12 locations that
were in I2 but not in I ∗

2 . The locations associated with these sets are shown in Fig . 3.
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Fig. 3 Locations of zeros generated by (a) minimizing (14) (‘◦’ in the figure) and (b) minimizing (14) without
term ‖h‖1 (‘×‘ in the figure).

To examine the effect of working with index set I ∗
2 instead of index set I2, two circu-

larly symmetric lowpass LS filters of size 15×15 with the same p, a, and w given above
subject to sparsity K = 104, specified by sets I ∗

2 and I2, respectively, were designed. The
L2 approximation errors of these filters are shown in Table 1. For comparison, an equivalent
nonsparse LS-optimal lowpass filter of size 11× 11 was designed and its L2 error is also
included in Table 1.

Table 1 Performance comparison for L2 designs

Filter size # of zero coeff. index set of zero locations L2 error

11×11 0 nonsparse 8.0207×10−4

15×15 104 I2 5.2914×10−4

15×15 104 I ∗
2 4.7088×10−4

From Table 1, the positive effect of using a sparsity-promoting measure on filter’s per-
formance is observed.
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6.2 Examples of LS Filters with Sparse Coefficients

Four circularly symmetric lowpass (with p = 0.5 , a = 0.7 ) and four diamond-shaped
lowpass (with p = 0.6 , a = ) LS filters of sizes 11×11, 17×17, 23×23, and 29×29
were designed by applying the algorithm described in Sec. 4, where parameters (see (14))
and threshold t (see (18)) were chosen such that the number of zero coefficients in each
design were significant relative to the filter size. The number of frequency grids placed
in the passband and stopband was M = 719 for all four designs of circularly symmetric
lowpass filter and was M = 615 for all four designs of diamond-shaped lowpass filters. The
performance of the filters designed was evaluated in terms of L2 approximation error e2
(see (7)) and was compared with the equivalent LS-optimal nonsparse filters that contain the
same number of nonzero coefficients as in their sparse counterparts, see the details in Tables
2 and 3.

Table 2 LS designs of circularly symmetric lowpass filters

Filter size 11×11 17×17 23×23 29×29

# of zero coeff. 72 120 304 480

M 719 719 719 719

0.5 0.5 1 0.2

t 0.009 0.002 0.1893×10−3 0.6800×10−3

Approximation error:
Optimal sparse 0.0218 0.0015 8.9175×10−4 1.3832×10−4

Approximation error:
Equi. optimal nonsparse 0.0341 0.0024 0.0014 2.5516×10−4

Relative reduction in
approximation error 36.07% 37.50% 36.30% 45.79%

Table 3 LS designs of diamond-shaped lowpass filters

Filter size 11×11 17×17 23×23 29×29

# of zero coeff. 72 120 304 480

M 615 615 615 615

0.2 0.2 0.1 0.04

t 0.007 3.91×10−4 2.30×10−4 9.0×10−5

Approximation error:
Optimal sparse 0.0055 4.0193×10−5 1.0819×10−5 2.0983×10−6

Approximation error:
Equi. optimal nonsparse 0.0083 1.2258×10−4 3.3936×10−5 4.6271×10−6

Relative reduction in
approximation error 33.73% 67.21% 68.12% 54.65%

From Tables 2 and 3, it is observed that the sparse FIR filters outperform their nonsparse
counterparts. The performance improvement of the sparse FIR filters over the corresponding
nonsparse filters in terms of relative reduction of L2 approximation error is shown in the last



14

row of the tables. As a representative design, the magnitude responses of the optimized
sparse circularly symmetric lowpass filter of size 29×29 with 480 zero coefficients and its
nonsparse counterpart (of size 19×19) are depicted in Fig. 4.
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Fig. 4 Magnitude responses of (a) L2-optimal circularly symmetric lowpass filter of size 29× 29 with 480
zero coefficients and (b) equivalent L2-optimal nonsparse filter of size 19×19 with no zero coefficients.

6.3 Examples of Minimax FIR Filters with Sparse Coefficients

Four circular symmetric lowpass (with p = 0.5 , a = 0.7 ) and four diamond-shaped
lowpass (with p = 0.6 , a = ) lowpass minimax filters of sizes 11×11, 17×17, 23×
23, and 29×29 were designed by applying the algorithm described in Sec. 5, where param-
eters (see (23)) and t (see (26)) were chosen to produce filters with sufficient coefficient
sparsity relative to their size. The performance of these filters was evaluated in term of L
approximation error, i.e.,

e = max
( 1, 2)∈

|hT c( 1, 2)−Ad( 1, 2)|

and was compared with the equivalent minimax nonsparse filters that contain the same num-
ber of nonzero coefficients as in their sparse counterparts, see Tables 4 and 5 for details. The
number M of frequency grids used in each design is also included in the tables. Note that in
the tables the L approximation error are given in terms of largest ripple over the passband
and minimum attenuation (in dB) over the stopband.

From Tables 4 and 5, we observe that the sparse FIR filters outperform their nonsparse
counterparts in terms of the L approximation error in the passband and stopband. The
performance improvement of the sparse FIR filters over the corresponding nonsparse filters
in terms of relative reduction of L approximation error is shown in the last row of the tables.
As a representative design, the magnitude responses of the minimax sparse diamond-shape
lowpass filter of size 29× 29 with 480 zero coefficients and its nonsparse counterpart (of
size 19×19) are shown in Fig. 5.
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Table 4 Minimax designs of circulary symmetric lowpass filters

Filter size 11×11 17×17 23×23 29×29

# of zero coeff. 72 120 304 480

M 719 719 786 996

0.2 0.1 0.01 0.002

t 0.012 1.40×10−3 1.32×10−3 7.50×10−4

Approximation error: 0.1238/ 0.0332/ 0.0244/ 0.0158
Optimal sparse 16.5891 25.7330 27.9328 32.4586

Approximation error: 0.1641/ 0.0420/ 0.0325/ 0.0184/
Equi. optimal nonsparse 14.5156 23.7501 24.9060 31.4316

Relative reduction in 24.56%/ 20.95%/ 24.92%/ 14.13%/
approximation error 14.28% 8.35% 12.15% 3.27%

Table 5 Minimax designs of diamond-shaped lowpass filters

Filter size 11×11 17×17 23×23 29×29

# of zero coeff. 72 120 304 480

M 615 615 674 794

0.1 0.05 0.02 0.001

t 0.00650 0.00030 0.00031 0.00012

Approximation error: 0.0775/ 0.0089/ 0.0054/ 0.0009
Optimal sparse 20.7722 35.3006 39.0412 49.4370

Approximation error: 0.0902/ 0.0133/ 0.0062/ 0.0025/
Equi. optimal nonsparse 18.9966 32.5474 37.0627 43.6187

Relative reduction in 14.08%/ 33.08%/ 12.90%/ 64%/
approximation error 9.35% 8.46% 5.34% 13.34%
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Fig. 5 Magnitude responses of (a) minimax diamond-shaped lowpass filter of size 29× 29 with 480 zero
coefficients and (b) equivalent minimax nonsparse filter of size 19×19 with no zero coefficients.
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7 Concluding Remarks

By using a sparsity-promoting criterion in a two-phase convex optimization framework, we
have developed a methodology for the design of 2-D FIR filters with sparse coefficients.
Simulation studies are presented to demonstrate that with appropriate choices of design
parameters, especially the values of and t , optimal LS and minimax filters subject to
a target coefficient sparsity K can be obtained to outperform their equivalent nonsparse
counterparts. A drawback of the class of sparse filters studied in this paper is their larger
group delay relative to their nonsparse counterparts. This should motivate studies on sparse
digital filters with low group delay. It is also noticed that although optimized sparse filters
offer improved performance over their nonsparse counterparts, the amount of improvement
varies from case to case. This issue renders it necessary to study the interplay between the
parameters , t , and sparsity K, and how the choices of and t effect filter’s performance
subject to a desired coefficient sparsity. Also, one may look into the implementation issues
for digital filters with sparse coefficients in order to take full advantages of having many
zero entries in impulse response. The design concept and techniques developed here are in
general applicable to other types of digital filters and filter banks. Investigation of some of
these issues are under way and will be reported elsewhere.
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