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Realization of 3-D Separable-Denominator
Digital Filters with Low [,-Sensitivity

Takao HinamotolLife Fellow, IEEE,Akimitsu Doi and Wu-Sheng Lukellow, IEEE

~ Abstract—Three-dimensional (3-D) digital filters find applica- ~ for suppressing overflow [14],[15]. In addition, considerable
tions in a variety of image and video signal processing problems. research interest has also been observed in the design of
This paper presents a coefficient-sensitivity analysis for a wide multidimensional (M-D) recursive digital filters [16]-[19]. Our

class of 3-D digital filters with separable denominators in local : - . . .
state space that leads to an analytic formulation for sensitivity Study of 3-D separable-denominator digital filters is motivated

minimization, and to present two solution techniques for the @s it fits naturally into typical time-space digital filtering
sensitivity minimization problem at hand. To this end, a vector- settings. An example of this scenario is a video processing
matrix-vector decomposition of a given 3-D transfer function that  task such as compression or de-noising of a video clip, in
separates the three variables and leads to a state-space realizationy, 4t the signals of interest assume the form of a time series,
in a form convenient for subsequent analysis. Anl;-sensitivity . . L .

analysis is then performed, the result is a computationally with a_ Z'D_ spa_t|al-doma|n S|gr_1al known as |mage at egch
tractable formula of the overall l,-sensitivity for 3-D digital Sampling time instant. For a signal compression task, since
filters. The Iz-sensitivity is minimized subject to lo-scaling con- the signal redundancy in the time domain and spatial domain
straints by using one of the two solution methods proposed — one are inherently different, the filters to be used for time-domain
relaxes the constraints into a single trace constraint and solves processing and spatial-domain processing have to be distinctly

the relaxed problem with an effective matrix iteration scheme; . Lo .
while the other converts the contained optimization problem at designed, this justifies the use of a 3-D filter of the form

hand into an unconstrained problem and solves it using a quasi- H(z1,20,23) = Hi(21)H2(22,23), where z; and (22, z3)
Newton algorithm. A case study is presented to illustrate the are associated with the time domain and the 2-D spatial
validity and effectiveness of the proposed techniques. domain, respectively. Assume that for processing efficiency
Index Terms—3-D separable-denominator digital filters, min- ©One decides to use IR filters, thefiz (22, 23) is a 2-D IIR
imal state-space realization, I>-sensitivity analysis, low [,- filter. Since for most spatial filtering the desired frequency
sensitivity, l2-scaling constraints, no overflow oscillations, La- responses are quadrantally symmetrical, it is well known that
grange function, bisection method, quasi-Newton method Ha (22, 23) possesses separable denominators [20]. As a result,
it is quite natural to study 3-D IIR separable-denominator
|. INTRODUCTION digit'al f?lters. Relevant recent' studies also in.clude sta}te-gpace
realization of general M-D filters and possible applications
It is of practical significance in many applications to conef state-space realization in uncertainty modeling [21], and
struct a filter structure so that the coefficient sensitivity of 8D realization and its applications in distributed grid sensor
digital filter is minimum or nearly minimum in a certain sensenetworks [22]. In addition, a state-space model for general M-
Due to finite-word-length (FWL) effects caused by coefficier spatially distributed dynamic system is proposed in [23], and
truncation or rounding, poor sensitivity may lead to degrad@ew results on stability and stability margin for 2-D systems
tion of the transfer characteristics in a FWL implementatiogre reported in [24]. On the other hand, the literature offers
of the digital filter. For instance, the characteristics of asnly handful results on efficient realization of 3-D state-space
originally stable filter might be so altered that the filter magigital filters with minimum coefficient sensitivity [25]. This is
become unstable. This motivates the study of the coefficigikely due to the fact that the problems encountered in the 3-D
sensitivity minimization problem for digital filters. Severafilters are considerably more involved and challenging relative
techniques have been proposed to analgzeensitivity and to their 1-D and 2-D counterparts because here one deals with
to synthesize the state-space model structures that minim@&e coefficient arrays instead of coefficient vectors for 1-D
lo-sensitivity [1]-[6]. The minimization ofls-sensitivity for and coefficient matrices for 2-D filters.
two-dimensional (2-D) state-space digital filters has also beenThe objectives of this paper are twofold: to present a
investigated [5],[7]-[9]. More recently, the minimization probcoefficient-sensitivity analysis for a wide class of 3-D digital
lem of I,-sensitivity subject td,-scaling constraints has beerfilters with separable denominators in local state space that
treated for 1-D and 2-D state-space digital filters [10]-[13]. leads to an analytic formulation for sensitivity minimization,
is known that the use of scaling constraints can be beneficigld to present two solution techniques for the sensitivity
. . _ minimization problem at hand. To this end, we present a
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is a computationally tractable formula of the overajt Qoo @oi1 *** GOINs
sensitivity of a 3-D separable-denominator state-space digital , | 10 dur 0 (1N
filter. We remark that the formula is of considerable difference | : : :
from that of [25] as _it ta_lkes into c_onside_ratipn t_he particular aN,0 ONJL 0 GNLIN
structure of the realization, especially with its fixed 0 and 1 (2b)
components subject to dynamic-ranggescaling constraints. We note that the decomposition in (2a) is somewhat similar
As a result, this paper deals with a non-convex constraingglthat of a finite 3-D array into the product of two finite 1-D
optimization problem to produce a state-space realization wigBctor arrays and another 1-D finite matrix array in the middle,
reduced number of nontrivial parameters, guaranteed freedgg done in [26]. Furthermore, if the numerator in (1a) is
of internal overflow and reasonably low coefficient sensitivitgeparable, that iSV (21, 2o, 23) = Ni(21)No(22) N3(23) with
We present two solution methods — one relaxes the constraintg ;) = Zi:v:lo angfg for I = 1,2,3, thena,jx = arias;azy,
into a single trace constraint and solves the relaxed probleipids for i = 0,1,---,Ny, j = 0,1,---,N, and k =
with an effective matrix iteration scheme where the Lagranggei, ..., Ns. In such a case, matrices; for [ = 0,1, -+, N
multiplier is determined via a bisection technique; while thgill possess considerably higher sparsity.
other converts the contained optimization problem at hand intoThe 1-D transfer functionH »(z,) in (2b) has(Ns + 1)
an unconstrained problem and solves it using a quasi-NewiaButs and(V, + 1) outputs. It can be realized with a minimal
algorithm. Closed-form formula for the gradient is derivedtate-space modéld,, By, C2, Ay), as
for efficient evaluation. A numerical example is presented
to illustrate the validity and effectiveness of the proposed x(k+1) = Asx(k) + Bau(k)
techniques in Section IV. . . _ _ . y(k) = Cam(k) + Aqu(k)
Throughout, I,, denotes the identity matrix of dimension
n x n. The transpose (conjugate transpose) of a matiis Where x(k) is a p x 1 state-variable vectoru(k) is an
indicated byA” (A*). tr[A] is used to denote the trace of a N3 + 1) x 1 input vector,y(k) is an (N; + 1) x 1 output
square matrixA. Moreover, bold uppercase, bold lowercasegector, andA,, By, C> and A, are real constant matrices of
and plain lowercase are used to make the distinction betweapropriate dimensions. Herg,is the least dimension such
matrices, vectors and scalar values, respectively. that a state-space realization &f(z;) is controllable and
observable. Such a realization is called a minimal realization
Il. REALIZATION AND SENSITIVITY ANALYSIS [27]. The reader is referred to Appendix | that explains
A. Minimal Realization how this realization can actually be constructed. The transfer

Consider a stable 3-D separable-denominator digital filte];unCtlon of the linear system in (3) can be expressed as

,1=0,1,--, No.

®3)

N H = Cy(zI, — As)"'By + Ao. 4
H(z1, 29, 25) = (21,22, 23) (1a) 2(22) 2(221), 2) 2+ Ay (4)
D1(21)Da(22) D3(23) . .
. The 1-D trasfer functionf,(z;) in (2b) has(N; + 1)
where the denominator and the numerator are assumed to be d indl hile th for f .
coprime and Inputs and a single output, while the 1-D transfer function
. gs(z3) in (2b) has a single input andN; + 1) outputs.
LA & o Consequently they can be realized with minimal state-space
—i.,—J.,—k
N(z1,22,23) = Zzzaijkzl %% models(A;, By, ey, €1 )n, and(As, én,,Cs,€1)n, as
i=0 j=0 k=0

(1b) B
Ni (@b eD)zy 4 4 (€N —biy, ez
_ —¢ _ P — 2 1/~1 N1 1-1)~1 +€T
Di(z) =1 +§§71bl§zl for 1=1,2,3. Fi(z1) T S R 1

=T —1 =T
) L =en (z1In, — A B, t+e€
Although H(z1, 2z2,23) has separable denominator, it is (21, v ! !
not a separable transfer function because the numerator (25) = 3 Lo
N(z1,29,23) is a non-separable polynomial. A key step to- gs%3) = 1+ bgyz5 "t + -+ by, 25 ¢ L
wards a m|n|n_1a_l gtate_z-spac_e reallzg't_lqn@(zl,zg,Z3) and = Cy(z3ly, — As) len, + &1,
subsequent minimization of ifs-sensitivity is to separate the (5a)

terms in three variables iff (21, 22, 23). To this end, algebraic respectively, where [27]
manipulations are performed 0¥i(z1, 22, z3), which lead (1a)

(ég*bglél)zg_l%*' . '+(éN3fb3N3é1)Z_N3

to a vector-matrix-vector expression whetgz1, 22, z3) are [ 0 : 0 --- 1
completely separated in its three variables. Namely, ' .
p y Sep Y Ay = | oo b, , By = b, :
H(z1,22,23) = f1(21)H2(22) g3(23) (2a) In . 1 0
L 1— .
where cs3
[1,21_1,,2;N1] [1’Z?’—1"."Z§N3]T B 0 . I 1T |
2)=— e, z3)= + AN3-1
fl( 1) Dl(Zl) g3( 3) D3(23) Az = | .o 3. .. ) Cs;= 0 01
A0+A12;1+"'+ANZ;N2 C3
H = 2 L ]
2(22) Do (22) 10---0



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. YY, ZZZ 2012 3

[e1,e2, - en] = Iy, (€1, €2,---,en,] = In, Definition 1: Let X and f(X) be anm x n real matrix and
by = —[bin,, -, bio, bH]T7 c3 = —|bsn,, -+, b32,b31]. @ scalar complex function oX differentiable with respect to
(5b) all the entries ofX, respectively. The sensitivity function of
The state-space model in (3) contaigs+ N1 + 1)(p + f(X) with respect toX is then defined as
N3 + 1) nontrivial and independent parameters, while the
numbers of independent parameters in (5a) Afeand N, g - HX) (Sx )i = af (X)
respectively. We stress that although the parameter vectors in X X ’ X /i 0xi;
each of(A,, B1) and (A3, C3) appear twice, as independent o )
parameters we count each of them only once because, widifre=:; denotes thi, j)th entry of matrixX.
it varies, the two copies vary in exactly the same way. By means of (2a), (4), (5a), Definition 1, and the formula
As a result, a local state-space model for the 3-D digital
filter with separable denominator in (1a) can be realized by

x'(i,j,k) = Ax(i, j, k) + bu(i, j, k)
wherei, j, k > 0 and

)

dA™! DA
——A 11— 8
ot ot ’ ®)
(6a) the sensitivities ofH (21, 2o, z3) With respect to matricesls,
B,, Cs, Ay, by, andcl are evaluated as

6H(z1, Z92, Z3)

& (i+1,5,k) 2" (i, j. k)] o4, ~ Uzl )
m/(2‘7.7.7 k) = U(Z j + 1 k) ) SC(Z,], k): :131)(7%’.]:7 k) 6H(Z z P )
zha el BB g = e )
Al A4 A() BIAOél aH( 2 )
A= 0 Ay A5 |, b= Baéy i L L T [f(ZQaZB)fl(Zl)]T
L 0 0 A3 éN@, ] 602 (ga)
c=[ey €Cy e ACs ]|,  d=ao OH(:1:22028) 0y g ()]
A, = B,Cy, As=ByCs, Ag=B1ACs. eZAN
(6b) 5H(21, 22, 25) T
Here, =" (i,j, k) is an N; x 1 horizontal state vector, Oby = [f1(21) H2(22)g5(23)9: (21)]
x'(i,j,k) is ap x 1 vertical state vectorg®(i, j,k) is an OH (21, 22, 23)
N3 x 1 additional state vectow(i, j, k) is a scalar input, and # = f3(23)F1(21)H2(22)g5(23)
y(i, j, k) is a scalar output. €3
In summary, the 3-D digital filter under consideration admitgnere
an implementation scheme as illustrated in Fig. 1 showing
vividly a system structure that allows one to focus on optimiz- F(z2,23) = (220, — A2) "' By g3(23)
ing its dominating 1-D MIMO subsystelf,, Ba, C2, Ag), o 2) = Vo (2o — As)—1
in order to reduce its coefficient sensitivity. 9(1,72) = f1(21)Calz]y 2) (9b)

(21) = ey, (z1dn, — A1)}
)

g:
Fs(z3) = (23N, — As) " tens,.

Definition 2: Let X (z1,22,23) be anm x n complex-
valued matrix function of complex variables, z; and z3,
andx,q(z1, 22, z3) be the(p, ¢)th entry of X (21, 22, z3). The
lo-norm of X (z1, 22, 23) is defined as

27 27 27
X (21, 22, 23) ||, = [27r / //

m n 2
Z |zp, ej‘”l , €792 el93) |2dw1dw2dw3]
p=1g=1
e A
l (2. DR [P [T [
Fig. 1. Block diagram of a 3-D separable-denominator digital filter. 1
le dZQ ng
X (21,22, 23) X" (21, 22, 23) — — — .
P . Z1 R9 X3
B. Io-Sensitivity Analysis (10)

Thely-sensitivities of the 3-D transfer function in (2a) with With (10), the overalll;-sensitivity measure for the 3-D
respect to coefficient matriced,, B, Ca, Ag, by, andel  transfer function in (2a) is defined using (4) and (5a) by
are computed as follows.
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8H(Zl7 22, 23)

2 2 [esBNee]
8H(z1 z9 2’3) e
= e I,— Ay) 'BaR;j2y 27
S H 8A2 ) H aBQ ) f(ZQ, zZ3 fl Zl ZZ:;];O z2 2 2R,]Zl Z3
OH 2 |0H (21, 22, 23) || N T T
|G || HC ) gy gy Hatendaa(on () = 3 (6, ek ]
ICs 2 94, 2 i=0 j=0
aH(ZhZQ;ZS) 2 aH(Zl7Z2723) 2 AT . A1 Blrijéﬁl -t 0 Z_iz_j
b, ) dct ) 152N 0 A Iy, |72 73

We remark that measurgin (11) is a natural 3-D extension of
the classical,-sensitivity measure for 1-D state-space digitalf3(z3)f1(21)H2(22)g3(z3) - Z Z [Lws O]
filters [1]. We also remark that coefficient sensitivity is closely o S
related to FWL effects, the reader is referred to Appendix Il | <Z3IZN3 . {Ag eNsringb |:€N§T'ij61:| zfizQ_j.
for further details. EN;
To derive a computationally tractable formula for sensitivit ) L (13)_

S, we need to evaluate the terms in (9a) explicitly. To thigeferring to (9a), (10) and (13), thg-sensitivity measure in
end, we write the impulse responses of the following thrd&l) can be expressed as

2-D transfer functions as S = tr[M A(I,)] + tr[W ] + tr[K o] (142)
a
gs(23)F1(21) ZZRUzl P H[N &, ] + tr[W] + tr[K]
i=0j=0 where GramiansVI 4(P), W, Ko, Na,, W1, and K3
e i can be computed usin
H(22)g5(23) = erijzz 23’ (12a) poo N g
i=0 j=0 0
o0 oo o MAP)=) [0 I,,]M;“J[Ip]
f1(z1)Ho(z2) = Z ety i=0 j=0
i=0 j=0 A _ | A2 BoaR;Co MA Az BoR;;Co
where fori > 1 and: > 1, * 0 As 0 As
s N . 27 _1
ROO = éléip7 Rij = C3Aé 18]\[36%1141 lBl + |: PO 8 :|
RiO - élejj\ﬂflAiilBla ROj = C3Ag7 eN:;e,{ oo oo
i 14 _ _ c
Too = Aoel, Tij; = CQAZQ 1B2C3A3 en, Wp = ZZWU’ K¢ = ZZKU
(12b) i=0 j=0 i=0 j=0

rio = CoAY ' Boér, 1o = AgC3AL ey,
700 = €1 Ag, i =exn, AT 'B1C2A} ' B,
i = e, AT B1Ag, i =€ C2A} ' Bo.
. L . Na, =Y Y RIR
Since the 3-D filter in (1a) is assumed to be stable, each 0 i

Wi = AJW[ZA; + CoR;R;;C5
K{ = A,K{ A} + ByR;;R].B]

series in (12a) is convergent, hence the infinite sum can be 00
approximated by a finite sum witfn,0) < (4,5) < (1,J) W, — [0 I 0
provided that positive integers and J are sufficiently large. ! ZZ M Iy,

. . 0 5=0
From (12b), it follows that the adequate numerical values of 0=

. ) _r 71T —T
such I and J depend on the spectral radiuses of matrices ! — [ Ay, Birjjey, } wl [ Ay Birijey, }
A, As, and As. A practical approach to identify the right ’ 0 A Y10 A

values of] and.J is by trial-and-error in that one computes + [E% elr, el }T [ek, elriek, |
a truncated series with certaifl,.J), then repeating the ' ! ' !
computation with bothl and.J increased by a certain amount K; = Z Z Iy, K3 { In, ]
and compare the two results. The process continues until the i=0 j=0 0
difference in norm between the two resulting matrices is less A en i C A v Co 17
than a prescribed tolerance. K}, = [ 03 N“A” 3 ] K3 { 03 N?’AZJ 3 }
From (9a), (9b) and (12a) it follows that 3 3
~ A A ~ A A T
EN,;Tij€1 EN,;Tij€1 14b
Son ot ) = 33 RSl | R e IR
=0 j=0
—1
: (z212p— [ “(‘]2 Bﬁ”c? D [ IO :|zllzgj ll. REALIZATION WITH LOW SENSITIVITY
2
o oo b Transfer functionH (z1, 22, 23) in (2a) consists of three 1-

93(23)g(21, 20) = ZZRiJC?(Z?IP — A5)7'z772;7 D factors. As shown in (5a) and (5b), realizations of the
i=0 j=0 first and last factors, i.ef,(z1) and gs(z3), possess rather
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simple structures as they involve onl; and N; independent  Directly dealing with thels-scaling constraints in (19) was
parameters, respectively, in addition to the fixed ones afalind technically unfeasible. Instead, we consider a relaxation
zeros. We note, however, that if coordinate transformation$ (19) to a single constraint as
would be applied to (_ae}ch of the;_e_ two sub—trapsfer functions tr[T—lKT—T] _ tr[KP‘l] — . (20)
so as to reduce coefficient sensitivity, the resulting state-space
realizations would in general involve as many28/, (N, + The relaxation proposed in (20) for the constraints in (19)
1)+ N3(N3 +1)] parameters, which implies a drastic increaseas two advantages: First, rather than dealing with a total of
in realization complexity. On the contrary, the sub-transf@onstraints in (19), with (20) we have only one single equality
function H(z,) contains most of the filter's nontrivial co- constraint that, as will be demonstrated below, can be handled
efficients and its state-space realizatioA,, By, C3, Ag), by a Lagrange function with one additional parameter; second,
hardly contains many fixed trivial components like ones arftPm (20) it is seen that the constraint is now expressed in
Zeros (see (A4) in Appendix |), therefore, app”cation of Eerms of matrixP, therefore, once an optimir is identified,
coordinate transformation t0As, Bs, Ca, Ay), will not in-  an optimal coordinate transformation matffkxcan be set to
crease realization complexity in a significant manner. For these T — P*U (21)
reasons, we in the rest of the paper shall seek to minimize the ) )
sensitivity associated with matrix transfer functiﬂlg(zg). with U a p x p orthogonal matrix. Note that changing
Applying a coordinate transformatiad(k) = T 'az(k) to N (21) to a different orthogonal matrix does not affect the

the linear systeniAs, B, Cs, Ag), in (3), we obtain a new optimality of T in (21) in the sense that, for any orthogoial
realization(A,, Bs, Ca, Ag), characterized by P = TT7" remains valid, hence it does not alter the optimal

o value of the sensitivity measure in (16b). Further notice that
Ay =T 'AT, B,=T 'B,, C,=C,T (15) with (21), (19) becomes

1 _T .
whereT is ap x p nonsingular matrix. For the new realization, (U’ P 2KP 2U);;=1 for i=1,2,---,p.  (22)
the [>-sensitivity measure in (14a) is written as With K fixed and P determined, it is straightforward to
_ find an orthogonal matriXU so that the constraints in (22)
S(P) = J(P)+tr[Na,] + tr{W;] + tr[K 16a i . .
(P) (P) [Na] Wi L] (162) (hence (19)) are satisfied. In words, via (21) a solution of
where the relaxed problem can be readily concerted to a solution

. that accurately satisfies thig-scaling constraints in (19). The
J(P) =t[M4(P)P] + t[WpP| + t[KcP™"]  (16b) yeader is referred to Section IV.A for a numerical example

with P = TT”. For the reasons stated above, our attentidhat illustrates the technique described above. This justifies
shall now be focused on the minimization of sensitivitj'® r€laxation made in (20) and in this way, we now focus on

measure/ (P). the problem
Since f(z2, z3) is the transfer function from the filter input minimize J(P) in (16b) 23)
to the state-variable vectar(k), a controllability Gramiank subject to tr{KP~'] = p.
is defined by To solve problem (23), we define the following Lagrange
dzp dz3 function of the problem:
2 % % 227 23 (225 Z3)
(27m5)? Jizp)=1 J 125121 Zo 23 Jo(P,\) = tr[M 4(P)P] + tr[W 5P|
17) (24)

-1 -1y
that can be obtained by solving the following Lyapunov +tr[Ke P |+ AMtr[KP "] — p)
equations: where\ is the Lagrange multiplier. Computing, (P, \) /0P

- . by using [28, p.275]
Ky = A3sKgA; + én,éy, _
Do , ) dMX)] e dMXTY] gy
K = AQKAQ +BQ(03K003 + 6161 )B dX ’ dX (25)
For the new realizatio{A,, Bo, Cs, Ag),, lo-scaling con- and settingd.J,(P, \)/0P = 0, it follows that
straints on the state-variable vectefk) are given by PF(P)P = G(P, )\ (26a)

(K)i=(T'KT ")y =1 for i=1,2,---,p. (19) where

The reader is referred to Appendix Il that explains (19) in F(P) = Ma(P)+ W5 (26b)
i [ xplai i
details. Summarizing, our sensitivity minimization problem is G(P,2) = Na(P) + Ko+ K
to find a coordinate transformation matri that minimizes With
J(P) in (16b) subject to thés-scaling constraints in (19). B al Ip
Two solution methods for this problem are presented below.NA(P) - ZZ [ I, 0]Nj
We stress that apart from the difference in technical details =0=0

in implementing these methods, they are analogous to their apa _ { Az B2R;;C, } NA
1-D and 2-D counterparts investigated in [10]-[11]. 0 Az *

|

0
Ay ByR;C, 1"
0 A,

A. A Constrained Optimization Method + { 8 } . (26¢)

0
P
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The equation in (26a) is highly nonlinear with respect to In this way, the original constrained optimization problem
P. An effective approach to solving the equation in (26a) isan be converted into an unconstrained optimization problem
to relax it into the following recursive second-order matrixf obtaining ap? x 1 vectorz which minimizesJ(z) in (35a).
equation: Applying a quasi-Newton (known as the Broyden-Fletcher-

P(k+1)F(P(k))P(k+1) _ G(P(k), A1) 27) Goldfarb-Shanno (BFGS)) algorithm [30] to minimiZéx) in
(35a), in thekth iteration the most recent point;, is updated
where P™*) is assumed to be known from the previousy point s, as
recursion and the solutiof**!) is given by

pl+D) F(P(k))*% [F(P(k‘))% Tp+1 =T + apdy (369)
.G(P(k)’ )\(k-‘rl))F(P(k))%]%F(P(k))—%. where
(28) dp,=—-S,VJ(xy), ar=argmin J(xy, + ady)
Here, the Lagrange multipliek**1) can be efficiently ob- . P .
tained using a bisection method [29] so that Spi1= Skt (1+ Yk f§7k> 5/;‘? _ ki Sk ;F(Ssﬂk%
k+1)\ _ = (k) = (k) | (k41 Vi Ok Vi Ok Vi Ok

FOED) = |p—tr[K G (A | < e (29a) So=1I,, Sp=mp1—xk, Y=VJ(®ri1)—VJ(2s).
where (36b)

=, (k) In the above VJ(x) is the gradient of/(x) with respect to

E+1)y — (k)y3 (k) 3 (k+1 (k)y31-3% . e e N :
G () = [F(P™)2G(P® A F(PY)z] 2 x, and S}, is a positive-definite approximation of the inverse
K" F(PW): KF(PM)35. (29b) Hessian matrix ofJ(z). The algorithm starts with a trivial
initial point 2, obtained from an initial assignmefit = I,
This iteration process continues until and this iteration process continues until
|J(PW, AE+D) _ (pr=D R < ¢ (30) | J(Tpg1) — J ()] < € (37)

is satisfied for a prescribed tolerance- 0. If the iteration is g satisfied where > 0 is a prescribed tolerance.

terminated at step, P is claimed to be a solution point.  The BEGS algorithm is a well-known descent algorithm
B. An Unconstrained Optimization Method meaning that a twice continuously differentiable objective
function at the iterates generated by the BFGS algorithm is

Defining . T 1 monotonically decreasing. In theory, it was shown [31] that
=T K> B it the starting point is sufficiently close to a local minimizer
the l»-scaling constraints in (19) can be written as and the initial Hessian approximation is sufficiently close to
AT~ 1 , the Hessian at that minimizer, then the BFGS iterates will
(T T Ju=1fori=1,2--p. (32) converge to the minimizer.
It is obvious that the conditions in (32) are always satisfied The implementation of (36a) requires the gradient/¢f),
by choosingT_l as which can be efficiently evaluated using closed-form expres-
- t t2 ot - sions, see Appendix IV.
13N 1> ]

IV. ACASE STUDY
- T T . 7 We now present a case study to demonstrate the effective-
J(T) =tr[T" MA(TT )T|+t[T" WT|+t[T""KcT ] ness of the two algorithms developed in Section Ill. The case

(34)  study was carried out using MATLAB on a PC with an Intel
and then using (31), thé,-sensitivity measure can be ex-core i-2500 CPU at 3.3 GHz.

By writing J(P) in (16b) as

pressed as Consider a stable 3-D separable-denominator digital filter
J(@) = rTM (DT |+ w[TW T | + [T Koo ] N (23) and (2b) specified by
(353) [ 0.00730  0.34297 —0.09594  0.20541 ]|
where z = (t{,t],---,t])” and A, 10-2| 333408 —5.73707  3.94939 —1.61598
% oo T o 0= —1.46081 2.66051 —1.68094 0.68022
V(T = SN 1.12651 —1.62192 1.24735 —0.55781
MAT) =33 [0 K }M”[K%] - .
i=0j=0 , 2.81318 —5.00467  3.46926 —0.84798
~ A A2 BQRZ‘J‘CQ ~ A A2 BQRZ‘J‘CQ A — 10,2 —5.29980 9.24831 —6.29206 2.80791
M;; = M;; 1= 4.95232 —8.39641 5.73329 —1.62170
0 A2 0 A2
’ 0.72029 —1.34272 0.95941  0.54827
1 a1~ _1 - -
L| KT T K= 0 —0.69409  1.54874 —0.94779  0.39116
0 0 A, 02| 393785 —6.79910  4.66564 —1.96344
2

. 1 1 - 1 1 o —2.37995 4.20737 —2.75482  0.95329
- 0.70545 —0.90615 0.73168 —0.55633
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1.67681 —2.69078  1.98218 —0.33567
—0.59937 1.11289 —0.71981  0.43504
1.82472 —2.93685  2.11591 —0.43417
1.28875 —2.01749  1.51782 —0.09016
[ b1 bz bz | =] bs1 bs2 b33 |
= [ —1.81600 1.23756 —0.31382 |
[ ba1 bog bo3 | =[ —1.81611 1.23775 —0.31391 |.

The totall,-sensitivity defined by (14a) was found to be
S = J(Is)+1.59797 x 10*
where J(I3) defined by (16b) was found to be
J(I3) =9.87319 x 10°.

We see that the sensitivity associated whi(z2), namely
J(I3), was indeed dominating the filter's sensitivity.

The 3-D filter can be realized by a minimal state-space model

Ag =1072

in (3) with A. Application of the Lagrange method
0.00000 —0.19089  0.29060 Choosing P iy I3 in (_28) as an intial estimate and a
o tolerancee = 10~° in the bisection method of (29a) as well
A = 0.74393 —86.40470 133.71075 in (30). it took the L based algorithm 7 iterati
_097211 —57.01643 8822081 as in (30), it took the agrange-based algorithm 7 iterations
to converge to the solution
, 0.00602 —0.00921  0.00699 —0.00095 996693 —2.29606 —2.28843
By, = 10°| —1.10247 1.68622 —1.27902 0.17267 opt __
0.71455  1.09291 —0.82977 0.11192 P =) ~2:29606 3.27352 3.26762
e : e ) | —2.28843  3.26762  3.26176
88;;28 88?;;; :8(1)(2%?12 With K given above and® = P°P*, an orthogonal matritx/
C, = 0.05887 0.05460 —0.08378 satisfying (22) was found to be
0.07079 0.06565 —0.10073 0.91281 0.01760 —0.40801
. . _ _ U= 0.37727 0.34617  0.85897
Applying a coordinate transformation defined by —0.15636 0.93801 —0.30934

which in conjunction with (21) yielded the optimal coordinate
transformation matrix as

T = 103diag{0.01077,2.58588, 1.68384}

and using (14b) with truncatiofn,0) < (¢,7) < (100, 100)

: 0.95919 —0.79515 —0.84535
and (18) to evaluate the Gramiahg$ 4 (I3), W, K¢, Na,, TP — | _0.31867  1.52484  0.92024
Wi, K3, Ko and K yields —0.31499  1.52445  0.91574

0.00021  0.03478 —0.03471 | and the optimal state-space coefficient matrices in (15) were
M 4(I3) = 107 0.03478  5.83540 —5.82400 constructed as
| —0.03471 —5.82400  5.81261 | B 0.62960 —0.10557 —0.29017
0.00014 0.02404 —0.02399 ] Ay = | —0.03842 0.56172 —0.29573
Wp =108 | 0.02404  4.36159 —4.35410 0.40269  0.09232  0.62479
[ —0.02399 —4.35410  4.34663 | B 0.36268 —0.55634  0.50511 —0.05885
570413 —4.79529 —4.78664 By =] —0.12255 0.18883 —0.23407 0.02035
Ko =10 | —4.79520 570413 5.70410 | —0.13464  0.20306  0.02528  0.01847
| —4.78664  5.70410  5.70413 0.06690 —0.34372 0.24644
[8.61482 8.61482 8.61482 8.61482 Cy— 0.01682 —0.08626 0.06888
Noa — 10 |861482 861482 8.61482 8.61482 0.05258  —0.27075  0.20585
Ao = 8.61482 8.61482 8.61482 8.61482 | 0.06038  —0.31154  0.25590
| 8.61482 B8.61482 8.61432 8.61432 The controllability Gramian associated with the optimized
-~ _ state-space model was found to be
2.68584 2.59589 2.34321
W, = 10° | 2.50580 2.68584 2.50580 _ 1.00041—0.63416 0.63416
934321 2.50580 2.68584 K = | —0.63416 1.00041 —0.89767
- ’ ' ’ . 0.63416 —0.89767 1.00041
K 103 gigggi ;ggggé ;igg;i showing that thé,-scaling constraints in (19) were practically
3= ’ ' ’ satisfied. Then thi-sensitivity measure in (24) was computed
| 218528 243584 2.52585 | o & y (24) P
1.42603 1.29740 0.99842 Jo (PP \) = 3.24252 x 10°
Ko =10 (1)33;3(2) 133323 }iggég where A = 8.42179 x 102. The profiles of the,-sensitivity
: : : measureJ, (P, \) and the Lagrange multipliek during the
1.00000 —0.84067 —0.83915 first 7 iterations are shown in Fig. 2, from which it is observed
K = | —0.84067 1.00000 0.99999 that with a tolerance = 10~® the algorithm converges in 7
—0.83915 0.99999 1.00000 iterations.
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Fig. 3. Profile ofl2-sensitivity performance during the first 37 iterations of
Fig. 2.  Profiles ofiz-sensitivity and\ performances during the first 7 the unconstrained optimization method.
iterations of the constrained optimization method.

the computational complexity, the 7 iterations required by the
B. Application of the quasi-Newton method constrained algorithm consumet.01250 seconds of CPU
By choosingl” = K™% with T = I as an initial estimate time versus7.15158 x 103 seconds for the unconstrained
in (36a) and a tolerance= 10~% in (37), the quasi-Newton algorithm to finish its 37 iterations. Obviously the constrained
algorithm took 37 iterations to converge to the solution method is considerably more efficient than its unconstrained
counterpart. However, for discrete system of large scales, it
GO _ _éggzi’g ;iéggg :8323;; is quite likely that the algorithms’ complexity wiII' change
0'90070 _1'17579 0.96141 due to 'Fhe fact _that th_e con_stramed algorithm he_aV|Iy involves
: : : expensive matrix manipulations such as computing square root
as well as inverse of matrices. For this reason, we believe
that together the two algorithms can serve for sensitivity
minimization for a wide range of system scales.

or equivalently,

0.34976 —1.20354  0.83486
TP = | 0.42464  1.68766 —0.49626
0.42613 1.68528 —0.49116
C. Comparisons with the work in [25]

The Lagrange method was also applied to the 3-D filter

The [»-sensitivity measure in (35a) was then computed as

J(x) = 3.24356 x 103

and the optimal state-space coefficient matrices in (15) weq

constructed as
0.61448 —0.17729 0.32325

investigated in Section 4 of [25]. We shall omit the interme-
te details but focus on comparisons of the results obtained.
The totall»-sensitivity defined by (14a) with (16b) aftés-
scaling was found to be&§ = J(I3) + 21.89505 x 10% =
112.71349 x 10%> where J(I3) = 90.81844 x 102. After 6

Ay = | —0.03747  0.57287 0.17307
| —0.43314 —0.03545 0.62876

0.24441 —0.37603  0.40596 —0.04083
By = | —0.25567 0.39234 —0.37591  0.04130
0.19877 —0.30151  0.06567 —0.02906

[ 0.07181 —0.29561 —0.30148
0.02071 —-0.07290 —0.08203
0.06091 —0.23067 —0.24815

| 0.07718 —0.26188 —0.30285

iterations, the Lagrange method converges to a soluB6tf
with J(P°P") = 9.14487 x 102, which implies a totall,-
sensitivity S = 31.03992 x 102. At this solution, the dynamic-
range constraint§K);; = 1 for i = 1,2,3 are perfectly
satisfied. The total number of nontrivial parameters in its
realization was 55. Alternatively, the algorithm proposed in
[25] was applied, which led to a minimized tofatsensitivity
3.12274 x 10%. The GramianK associated with the optimal
state-space filter was found to be

. . ) ! 1.76972 1.14927 0.77867
The profile of thel;-sensitivity measurd (x) during the first K — | 1.14927 1.91704 0.94657

37 iterations is shown in Fig. 3, from which it is observed 0.77867 0.94657 2.25271
that with a tolerance = 10~® the algorithm converges in 37
iterations. Clearly, the dynamic-range constrairi& ),; = 1 are violated

We see that as far as the example discrete systemfdsall i = 1,2, 3 in this case. The number of nontrivial param-
concerned, the two algorithms offer practically the sameters involved in this realization was 73. From above results,
performance in terms of sensitivity minimization. Concerningze see two options for 3-D state-space filters with separable

Cy=
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denominators: [25] offers techniques for minimum sensitivity APPENDIX II

but with more system parameters and possible violation of

dynamic-range constraints, while the present paper provides ERROR IN TRANSFER FUNCTION

techniques for low sensitivity, reduced number of parameters DUE TO PARAMETER VARIATIONS

(hence faster implementation), and guaranteed freedom otonsider a transfer functiofl (21, z2, z3) that contains\

internal overflow. parameters{p,ps,---,pn}. Let {5;} be the FWL version
of {p;}, wherep; = p; + Ap; with Ap; the parameter per-

V. CONCLUSION turbation, andFI(zl, 29, z3) be the transfer function associated

A minimal state-space realization technique for 3-R\ith perturbed parametei, }. The first-order approximation
separable-denominator digital filters has been explored a§0A (2, z,, z3) then gives

the I,-sensitivity of the minimal state-space model realized

from a given 3-D separable-denominator digital filter has fr(z, 2, 24) = H(z21, 29, 23) + AH (21, 22,23)  (A.58)
been analyzed more precisely by taking into accaurind

1 elements contained in the model. Two iterative methogghere AH (21, 25, z3) Will be

have been developed to minimize thgsensitivity of the

filter subject to a fixed number of nontrivial parameters and N OH (21, 22, 23)
dynamic-rangel,-scaling constraints. Computer simulation AH(z,29,23) = Z #Api. (A.5b)
results have demonstrated the validity and effectiveness of the i=1 pi

proposed techniques. F fixed-noint imol tation oF bits. th i
A problem that might be worthwhile for future studies is or a Tixed-point iImplementaton ItS, the parameter

to minimize coefficient sensitivity subject to filter's robusperturbaﬂons are considered to be independent uniformly dis-

) . S —-B-1 9—B-1
stability underi,-scaling constraints. In such a problem, th&rIbUtGd random variables within the ranfe2 ,2 )

results reported in [24] are expected to play a significant rol‘égedne,f;en:je:ure of the transfer function error can statistically

APPENDIX |
MINIMAL REALIZATION OF Hy(z) oAl = (%13.)37{1_1 ]{2_1 ]{Zg_lE[AH(zm,Zs)Q]
We write H () in (2b) as 4 de dzs
H2(22):A0+(A1—b21A0)Zz_l+- (AN, —ban,Ap) 2y 2 o _(A.6) .
Do (22) where E(-) denotes the ensemble average operation. Since

) . ) o (Al {Ap;} are independent uniformly distributed random vari-
which can be realized with a multivariable observable canoniges, it follows that

form (Ao, Bo, Co, Ag) Ny (N, +1) @S
) N

_ OH 2
° O Thwlva BlIAH (120 = Y| P2 o2 )
A= | Ivwr 0 : i=1 i
: —b2oI N, +1 whereo? = E[(Ap;)?] = 2728 /12. Eq. (A.7) establishes an
L 0 - Iy —badnip analytic relationship between variations in the transfer function
[ An, — bon, A induced by an FWL realization and parameter sensitivity.
By = A :b A Co=[0 --- 0 Ini]. APPENDIX Il
27 20 l5-SCALING CONSTRAINTS
Ay — b Ay ?

(A2) Suppose that the input and the output of a 2-D filter
Although this realization is always observable, it is uncontrolf(,, ;) are denoted bye(k,r) andu(k,r), respectively. It
lable unlessrank Vin,(n,+1)—» = N2(N1 + 1), i.e. full rank,  follows from (9b) and (5a) that
whereV; = [By, AgBy, -+, AjBy| andr is the rank ofB,
[27]. Suppose that ko
a(k,r) =Y h(p,q)ulk —p,r —q) (A.8a)

rank Vi, (nN,+1)-1 =P (A.3) o
andwv;, v, -+, v, arep linearly independent column vectors h
from matrixVy, (n,+1)—1. By definingM = [vq, vy, - -+, vp], where
it is shown [32] thatH »(22) can be realized with a minimal — AP IB.C.AT e for 1
state-space modél,, By, Ca, Ag), as (p.9) 2_1 2A 383 €N pa= (A.8b)
AQZ(MTM)flMTAOM B2:(MTM)71MTBO h(p,O) = AIQJ B261 for pZ 1.
Cy,=CyM. Let e; be theith column of the identity matrix ,, an upper

(A.4) bound of theith component of the local state vecte(k, )
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in (A.8a) can be obtained as

> elhina)

plq 0

Zzhpv pv ) €;

p=1¢=0

k r
DY WPk —pr—q) < el Ke;|[ul]?
p=1g¢=0
(A.9a)

(2]

(31
(4]
(5]

le] @ (k,r)[? u(k —p,r —q)

\ /\

(6]

where 7]

K = Zth, T(p,q)-

p=1¢=0

(A.9b)
[8]

Note thateiTKei is theith diagonal element ok, thus if all
the diagonal elements d& are equal to unity, (A.9a) implies
that the amplitude of each component of vecid¥k, ) will
not exceed|u||. Therefore, the dynamic-range constraints ofg)
the state-variables may be imposed as

El

(K)=1 for i=1,2,---,p (A.10) [

The above constraints correspond to (19) in the new realization
and matrixK in (A.9b) coincides with that derived from (18).[12]

APPENDIX IV
GRADIENT OF J ()

The gradient ofJ(x) can be evaluated using closed-form
expressions as [14]
oJ(T)
oti;

(13]

T:;) — J(T)

=201 —202+203 — 2084 [19]

(A.11a)

where T';; is the matrix obtained froni” with a perturbed
(i, 7)th component, which is given by [33, p.655]

(16]

[17]
~ ~ ATgl 6 T ~—1 -1
i =4+ 7JT ij = - Agijejr
1-Ae; Ty, [18]
_ L a2
9y = {7y } /003 = iy (aats —1t31Pe)
I SUEPT
B = eI TM(T)T Tg,;, fs = el TW T Tg,;
=T ~ AT A
62 = TT NA(T)gz]7 ﬁ4 = e?T ch” [20]
1
o A 1 A K 2
M) =S [ K 0 |
i=0 j=0
NA - A2 BQRfL'jCQ NA A2 BQR»L']‘CQ
Yol Ay CAN) Ay [22]
0 0
1T .1 (A.11b) |23
0 K2T TK:>
[24]
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