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Realization of 3-D Separable-Denominator
Digital Filters with Low l2-Sensitivity
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Abstract— Three-dimensional (3-D) digital filters find applica-
tions in a variety of image and video signal processing problems.
This paper presents a coefficient-sensitivity analysis for a wide
class of 3-D digital filters with separable denominators in local
state space that leads to an analytic formulation for sensitivity
minimization, and to present two solution techniques for the
sensitivity minimization problem at hand. To this end, a vector-
matrix-vector decomposition of a given 3-D transfer function that
separates the three variables and leads to a state-space realization
in a form convenient for subsequent analysis. Anl2-sensitivity
analysis is then performed, the result is a computationally
tractable formula of the overall l2-sensitivity for 3-D digital
filters. The l2-sensitivity is minimized subject to l2-scaling con-
straints by using one of the two solution methods proposed – one
relaxes the constraints into a single trace constraint and solves
the relaxed problem with an effective matrix iteration scheme;
while the other converts the contained optimization problem at
hand into an unconstrained problem and solves it using a quasi-
Newton algorithm. A case study is presented to illustrate the
validity and effectiveness of the proposed techniques.

Index Terms— 3-D separable-denominator digital filters, min-
imal state-space realization, l2-sensitivity analysis, low l2-
sensitivity, l2-scaling constraints, no overflow oscillations, La-
grange function, bisection method, quasi-Newton method

I. INTRODUCTION

It is of practical significance in many applications to con-
struct a filter structure so that the coefficient sensitivity of a
digital filter is minimum or nearly minimum in a certain sense.
Due to finite-word-length (FWL) effects caused by coefficient
truncation or rounding, poor sensitivity may lead to degrada-
tion of the transfer characteristics in a FWL implementation
of the digital filter. For instance, the characteristics of an
originally stable filter might be so altered that the filter may
become unstable. This motivates the study of the coefficient
sensitivity minimization problem for digital filters. Several
techniques have been proposed to analyzel2-sensitivity and
to synthesize the state-space model structures that minimize
l2-sensitivity [1]-[6]. The minimization ofl2-sensitivity for
two-dimensional (2-D) state-space digital filters has also been
investigated [5],[7]-[9]. More recently, the minimization prob-
lem of l2-sensitivity subject tol2-scaling constraints has been
treated for 1-D and 2-D state-space digital filters [10]-[13]. It
is known that the use of scaling constraints can be beneficial

Manuscript received January 26, 2012; revised mm dd, 2012.
T. Hinamoto and A. Doi are with Hiroshima Institute of Technol-

ogy Hiroshima 731-5193, Japan (e-mails: hinamoto@ieee.org, doi@cc.it-
hiroshima.ac.jp, Phone:+81-82-921-4338, Fax:+81-82-921-8978)

W.-S. Lu is with the Depertment of Electrical and Computer Engi-
neering, University of Victoria, Victoria, B.C, Canada, V8W 3P6. (e-mail:
wslu@ece.uvic.ca, Phone:+1-250-721-8692, Fax:+1-250-721-6052)

for suppressing overflow [14],[15]. In addition, considerable
research interest has also been observed in the design of
multidimensional (M-D) recursive digital filters [16]-[19]. Our
study of 3-D separable-denominator digital filters is motivated
as it fits naturally into typical time-space digital filtering
settings. An example of this scenario is a video processing
task such as compression or de-noising of a video clip, in
that the signals of interest assume the form of a time series,
with a 2-D spatial-domain signal known as image at each
sampling time instant. For a signal compression task, since
the signal redundancy in the time domain and spatial domain
are inherently different, the filters to be used for time-domain
processing and spatial-domain processing have to be distinctly
designed, this justifies the use of a 3-D filter of the form
H(z1, z2, z3) = H1(z1)H2(z2, z3), where z1 and (z2, z3)
are associated with the time domain and the 2-D spatial
domain, respectively. Assume that for processing efficiency
one decides to use IIR filters, thenH2(z2, z3) is a 2-D IIR
filter. Since for most spatial filtering the desired frequency
responses are quadrantally symmetrical, it is well known that
H2(z2, z3) possesses separable denominators [20]. As a result,
it is quite natural to study 3-D IIR separable-denominator
digital filters. Relevant recent studies also include state-space
realization of general M-D filters and possible applications
of state-space realization in uncertainty modeling [21], and
3-D realization and its applications in distributed grid sensor
networks [22]. In addition, a state-space model for general M-
D spatially distributed dynamic system is proposed in [23], and
new results on stability and stability margin for 2-D systems
are reported in [24]. On the other hand, the literature offers
only handful results on efficient realization of 3-D state-space
digital filters with minimum coefficient sensitivity [25]. This is
likely due to the fact that the problems encountered in the 3-D
filters are considerably more involved and challenging relative
to their 1-D and 2-D counterparts because here one deals with
3-D coefficient arrays instead of coefficient vectors for 1-D
and coefficient matrices for 2-D filters.

The objectives of this paper are twofold: to present a
coefficient-sensitivity analysis for a wide class of 3-D digital
filters with separable denominators in local state space that
leads to an analytic formulation for sensitivity minimization,
and to present two solution techniques for the sensitivity
minimization problem at hand. To this end, we present a
vector-matrix-vector decomposition of a given 3-D transfer
function that separates the three frequency-dependent variables
(z1, z2, z3), and leads in turn to a state-space realization in
a form convenient for subsequent analysis. Anl2-sensitivity
analysis is then carried out, a central result of the analysis
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is a computationally tractable formula of the overalll2-
sensitivity of a 3-D separable-denominator state-space digital
filter. We remark that the formula is of considerable difference
from that of [25] as it takes into consideration the particular
structure of the realization, especially with its fixed 0 and 1
components subject to dynamic-rangel2-scaling constraints.
As a result, this paper deals with a non-convex constrained
optimization problem to produce a state-space realization with
reduced number of nontrivial parameters, guaranteed freedom
of internal overflow and reasonably low coefficient sensitivity.
We present two solution methods – one relaxes the constraints
into a single trace constraint and solves the relaxed problem
with an effective matrix iteration scheme where the Lagrange
multiplier is determined via a bisection technique; while the
other converts the contained optimization problem at hand into
an unconstrained problem and solves it using a quasi-Newton
algorithm. Closed-form formula for the gradient is derived
for efficient evaluation. A numerical example is presented
to illustrate the validity and effectiveness of the proposed
techniques in Section IV.

Throughout,In denotes the identity matrix of dimension
n × n. The transpose (conjugate transpose) of a matrixA is
indicated byAT (A∗). tr[A] is used to denote the trace of a
square matrixA. Moreover, bold uppercase, bold lowercase
and plain lowercase are used to make the distinction between
matrices, vectors and scalar values, respectively.

II. REALIZATION AND SENSITIVITY ANALYSIS

A. Minimal Realization

Consider a stable 3-D separable-denominator digital filter

H(z1, z2, z3) =
N(z1, z2, z3)

D1(z1)D2(z2)D3(z3)
(1a)

where the denominator and the numerator are assumed to be
coprime and

N(z1, z2, z3) =
N1∑
i=0

N2∑
j=0

N3∑
k=0

aijkz−i
1 z−j

2 z−k
3

Dl(zl) = 1 +
Nl∑

ξ=1

blξz
−ξ
l for l = 1, 2, 3.

(1b)

Although H(z1, z2, z3) has separable denominator, it is
not a separable transfer function because the numerator
N(z1, z2, z3) is a non-separable polynomial. A key step to-
wards a minimal state-space realization ofH(z1, z2, z3) and
subsequent minimization of itsl2-sensitivity is to separate the
terms in three variables inH(z1, z2, z3). To this end, algebraic
manipulations are performed onN(z1, z2, z3), which lead (1a)
to a vector-matrix-vector expression whereH(z1, z2, z3) are
completely separated in its three variables. Namely,

H(z1, z2, z3) = f1(z1)H2(z2) g3(z3) (2a)

where

f1(z1) =
[1, z−1

1 , · · · , z−N1
1 ]

D1(z1)
, g3(z3)=

[1, z−1
3 , · · · , z−N3

3 ]T

D3(z3)

H2(z2) =
∆0 + ∆1z

−1
2 + · · · + ∆N2z

−N2
2

D2(z2)

∆l=


a0l0 a0l1 · · · a0lN3

a1l0 a1l1 · · · a1lN3

...
...

. ..
...

aN1l0 aN1l1 · · · aN1lN3

, l=0, 1, · · · , N2.

(2b)
We note that the decomposition in (2a) is somewhat similar

to that of a finite 3-D array into the product of two finite 1-D
vector arrays and another 1-D finite matrix array in the middle,
as done in [26]. Furthermore, if the numerator in (1a) is
separable, that is,N(z1, z2, z3) = N1(z1)N2(z2)N3(z3) with
Nl(zl) =

∑Nl

ξ=0 alξz
−ξ
l for l = 1, 2, 3, thenaijk = a1ia2ja3k

holds for i = 0, 1, · · · , N1, j = 0, 1, · · · , N2 and k =
0, 1, · · · , N3. In such a case, matrices∆l for l = 0, 1, · · · , N2

will possess considerably higher sparsity.
The 1-D transfer functionH2(z2) in (2b) has(N3 + 1)

inputs and(N1 +1) outputs. It can be realized with a minimal
state-space model(A2, B2,C2,∆0)p as

x(k + 1) = A2x(k) + B2u(k)
y(k) = C2x(k) + ∆0u(k)

(3)

where x(k) is a p × 1 state-variable vector,u(k) is an
(N3 + 1) × 1 input vector,y(k) is an (N1 + 1) × 1 output
vector, andA2, B2, C2 and∆0 are real constant matrices of
appropriate dimensions. Here,p is the least dimension such
that a state-space realization ofH2(z2) is controllable and
observable. Such a realization is called a minimal realization
[27]. The reader is referred to Appendix I that explains
how this realization can actually be constructed. The transfer
function of the linear system in (3) can be expressed as

H2(z2) = C2(z2Ip − A2)−1B2 + ∆0. (4)

The 1-D trasfer functionf1(z1) in (2b) has (N1 + 1)
inputs and a single output, while the 1-D transfer function
g3(z3) in (2b) has a single input and(N3 + 1) outputs.
Consequently they can be realized with minimal state-space
models(A1, B1, e

T
N1

, eT
1 )N1 and (A3, êN3 , C3, ê1)N3 as

f1(z1) =
(eT

2−b11e
T
1)z

−1
1 +· · ·+(eT

N1
−b1N1e

T
1)z

−N1
1

1 + b11z
−1
1 + · · · + b1N1z

−N1
1

+ eT
1

= eT
N1

(z1IN1 − A1)−1B1 + eT
1

g3(z3) =
(ê2−b31ê1)z−1

3 +· · ·+(êN3−b3N3 ê1)z−N3
3

1 + b31z
−1
3 + · · · + b3N3z

−N3
3

+ ê1

= C3(z3IN3 − A3)−1êN3 + ê1,
(5a)

respectively, where [27]

A1 =

 0
...

· · · · · · · · · · b1

IN1−1

...

 , B1 =

 0 · · · 1

b1

... . .
. ...

1 · · · 0



A3 =

 0
... IN3−1

· · · · · · · · · · · · · · ·
c3

 , C3 =


c3

· · · · · · · · · · · ·
0 · · · 0 1
... . . .

...
1 0 · · · 0


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[e1, e2, · · · , eN1 ] = IN1 , [ê1, ê2, · · · , êN3 ] = IN3

b1 = − [b1N1 , · · · , b12, b11]
T
, c3 = − [b3N3 , · · · , b32, b31] .

(5b)
The state-space model in (3) contains(p + N1 + 1)(p +

N3 + 1) nontrivial and independent parameters, while the
numbers of independent parameters in (5a) areN1 and N3,
respectively. We stress that although the parameter vectors in
each of(A1,B1) and(A3, C3) appear twice, as independent
parameters we count each of them only once because, when
it varies, the two copies vary in exactly the same way.

As a result, a local state-space model for the 3-D digital
filter with separable denominator in (1a) can be realized by

x′(i, j, k) = Ax(i, j, k) + bu(i, j, k)
y(i, j, k) = cx(i, j, k) + du(i, j, k)

(6a)

wherei, j, k ≥ 0 and

x′(i, j, k) =

 xh(i + 1, j, k)
xv(i, j + 1, k)
xa(i, j, k + 1)

 , x(i, j, k)=

 xh(i, j, k)
xv(i, j, k)
xa(i, j, k)


A =

 A1 A4 A6

0 A2 A5

0 0 A3

 , b =

 B1∆0ê1

B2ê1

êN3


c =

[
eT

N1
eT

1 C2 eT
1 ∆0C3

]
, d = a000

A4 = B1C2, A5 = B2C3, A6 = B1∆0C3.
(6b)

Here, xh(i, j, k) is an N1 × 1 horizontal state vector,
xv(i, j, k) is a p × 1 vertical state vector,xa(i, j, k) is an
N3 × 1 additional state vector,u(i, j, k) is a scalar input, and
y(i, j, k) is a scalar output.

In summary, the 3-D digital filter under consideration admits
an implementation scheme as illustrated in Fig. 1 showing
vividly a system structure that allows one to focus on optimiz-
ing its dominating 1-D MIMO subsystem(A2, B2, C2,∆0)p

in order to reduce its coefficient sensitivity.

Fig. 1. Block diagram of a 3-D separable-denominator digital filter.

B. l2-Sensitivity Analysis

The l2-sensitivities of the 3-D transfer function in (2a) with
respect to coefficient matricesA2, B2, C2, ∆0, b1, andcT

3

are computed as follows.

Definition 1: Let X andf(X) be anm×n real matrix and
a scalar complex function ofX differentiable with respect to
all the entries ofX, respectively. The sensitivity function of
f(X) with respect toX is then defined as

SX =
∂f(X)

∂X
, (SX )ij =

∂f(X)
∂xij

(7)

wherexij denotes the(i, j)th entry of matrixX.
By means of (2a), (4), (5a), Definition 1, and the formula

∂A−1

∂t
= −A−1 ∂A

∂t
A−1, (8)

the sensitivities ofH(z1, z2, z3) with respect to matricesA2,
B2, C2, ∆0, b1, andcT

3 are evaluated as

∂H(z1, z2, z3)
∂A2

= [f(z2, z3)g(z1, z2)]T

∂H(z1, z2, z3)
∂B2

= [g3(z3)g(z1, z2)]
T

∂H(z1, z2, z3)
∂C2

= [f(z2, z3)f1(z1)]
T

∂H(z1, z2, z3)
∂∆0

= [g3(z3)f1(z1)]
T

∂H(z1, z2, z3)
∂b1

= [f1(z1)H2(z2)g3(z3)g1(z1)]
T

∂H(z1, z2, z3)
∂cT

3

= f3(z3)f1(z1)H2(z2)g3(z3)

(9a)

where

f(z2, z3) = (z2Ip − A2)−1B2 g3(z3)

g(z1, z2) = f1(z1)C2(z2Ip − A2)−1

g1(z1) = eT
N1

(z1IN1 − A1)−1

f3(z3) = (z3IN3 − A3)−1êN3 .

(9b)

Definition 2: Let X(z1, z2, z3) be an m × n complex-
valued matrix function of complex variablesz1, z2 and z3,
andxpq(z1, z2, z3) be the(p, q)th entry ofX(z1, z2, z3). The
l2-norm of X(z1, z2, z3) is defined as

∥X(z1, z2, z3)∥2 =
[

1
(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

m∑
p=1

n∑
q=1

|xpq(ejω1 , ejω2 , ejω3)|2dω1dω2dω3

] 1
2

=

(
tr

[
1

(2πj)3

∮
|z1|=1

∮
|z2|=1

∮
|z3|=1

X(z1, z2, z3)X∗(z1, z2, z3)
dz1

z1

dz2

z2

dz3

z3

]) 1
2

.

(10)
With (10), the overalll2-sensitivity measure for the 3-D

transfer function in (2a) is defined using (4) and (5a) by
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S =
∥∥∥∥∂H(z1, z2, z3)

∂A2

∥∥∥∥2

2

+
∥∥∥∥∂H(z1, z2, z3)

∂B2

∥∥∥∥2

2

+
∥∥∥∥∂H(z1, z2, z3)

∂C2

∥∥∥∥2

2

+
∥∥∥∥∂H(z1, z2, z3)

∂∆0

∥∥∥∥2

2

+
∥∥∥∥∂H(z1, z2, z3)

∂b1

∥∥∥∥2

2

+
∥∥∥∥∂H(z1, z2, z3)

∂cT
3

∥∥∥∥2

2

.

(11)

We remark that measureS in (11) is a natural 3-D extension of
the classicall2-sensitivity measure for 1-D state-space digital
filters [1]. We also remark that coefficient sensitivity is closely
related to FWL effects, the reader is referred to Appendix II
for further details.

To derive a computationally tractable formula for sensitivity
S, we need to evaluate the terms in (9a) explicitly. To this
end, we write the impulse responses of the following three
2-D transfer functions as

g3(z3)f1(z1) =
∞∑

i=0

∞∑
j=0

Rijz
−i
1 z−j

3

H2(z2)g3(z3) =
∞∑

i=0

∞∑
j=0

rijz
−i
2 z−j

3

f1(z1)H2(z2) =
∞∑

i=0

∞∑
j=0

r̂ijz
−i
1 z−j

2

(12a)

where fori ≥ 1 and i ≥ 1,

R00 = ê1e
T
1 , Rij = C3A

j−1
3 êN3e

T
N1

Ai−1
1 B1

Ri0 = ê1e
T
N1

Ai−1
1 B1, R0j = C3A

j−1
3 êN3e

T
1

r00 = ∆0ê1, rij = C2A
i−1
2 B2C3A

j−1
3 êN3

ri0 = C2A
i−1
2 B2ê1, r0j = ∆0C3A

j−1
3 êN3

r̂00 = eT
1 ∆0, r̂ij = eT

N1
Ai−1

1 B1C2A
j−1
2 B2

r̂i0 = eT
N1

Ai−1
1 B1∆0, r̂0j = eT

1 C2A
j−1
2 B2.

(12b)

Since the 3-D filter in (1a) is assumed to be stable, each
series in (12a) is convergent, hence the infinite sum can be
approximated by a finite sum with(0, 0) ≤ (i, j) ≤ (I, J)
provided that positive integersI andJ are sufficiently large.
From (12b), it follows that the adequate numerical values of
such I and J depend on the spectral radiuses of matrices
A1, A2, and A3. A practical approach to identify the right
values ofI and J is by trial-and-error in that one computes
a truncated series with certain(I, J), then repeating the
computation with bothI andJ increased by a certain amount
and compare the two results. The process continues until the
difference in norm between the two resulting matrices is less
than a prescribed tolerance.

From (9a), (9b) and (12a) it follows that

f(z2, z3)g(z1, z2) =
∞∑

i=0

∞∑
j=0

[
Ip 0

]
·
(

z2I2p −
[

A2 B2RijC2

0 A2

])−1 [
0
Ip

]
z−i
1 z−j

3

g3(z3)g(z1, z2) =
∞∑

i=0

∞∑
j=0

RijC2(z2Ip − A2)−1z−i
1 z−j

3

f(z2, z3)f1(z1) =
∞∑

i=0

∞∑
j=0

(z2Ip − A2)−1B2Rijz
−i
1 z−j

3

f1(z1)H2(z2)g3(z3)g1(z1) =
∞∑

i=0

∞∑
j=0

[
eT

N1
eT

1 rije
T
N1

]
·
(

z1I2N1 −
[

A1 B1rije
T
N1

0 A1

])−1 [
0

IN1

]
z−i
2 z−j

3

f3(z3)f1(z1)H2(z2)g3(z3) =
∞∑

i=0

∞∑
j=0

[
IN3 0

]
·
(
z3I2N3 −

[
A3 êN3 r̂ijC3

0 A3

])−1[
êN3 r̂ij ê1

êN3

]
z−i
1 z−j

2 .

(13)
Referring to (9a), (10) and (13), thel2-sensitivity measure in
(11) can be expressed as

S = tr[MA(Ip)] + tr[W B ] + tr[KC ]

+tr[N∆0 ] + tr[W 1] + tr[K3]
(14a)

where GramiansMA(P ), W B , KC , N∆0 , W 1, and K3

can be computed using

MA(P ) =
∞∑

i=0

∞∑
j=0

[
0 Ip

]
MA

ij

[
0
Ip

]

MA
ij =

[
A2 B2RijC2

0 A2

]T

MA
ij

[
A2 B2RijC2

0 A2

]
+

[
P−1 0
0 0

]
W B =

∞∑
i=0

∞∑
j=0

W B
ij , KC =

∞∑
i=0

∞∑
j=0

KC
ij

W B
ij = AT

2 W B
ijA2 + CT

2 RT
ijRijC2

KC
ij = A2K

C
ijA

T
2 + B2RijR

T
ijB

T
2

N∆0 =
∞∑

i=0

∞∑
j=0

RT
ijRij

W 1 =
∞∑

i=0

∞∑
j=0

[
0 IN1

]
W 1

ij

[
0

IN1

]

W 1
ij =

[
A1 B1rije

T
N1

0 A1

]T

W 1
ij

[
A1 B1rije

T
N1

0 A1

]
+

[
eT

N1
eT

1 rije
T
N1

]T [
eT

N1
eT

1 rije
T
N1

]
K3 =

∞∑
i=0

∞∑
j=0

[
IN3 0

]
K3

ij

[
IN3

0

]

K3
ij =

[
A3 êN3 r̂ijC3

0 A3

]
K3

ij

[
A3 êN3 r̂ijC3

0 A3

]T

+
[

êN3 r̂ij ê1

êN3

] [
êN3 r̂ij ê1

êN3

]T

. (14b)

III. REALIZATION WITH LOW SENSITIVITY

Transfer functionH(z1, z2, z3) in (2a) consists of three 1-
D factors. As shown in (5a) and (5b), realizations of the
first and last factors, i.e.f1(z1) and g3(z3), possess rather
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simple structures as they involve onlyN1 andN3 independent
parameters, respectively, in addition to the fixed ones and
zeros. We note, however, that if coordinate transformations
would be applied to each of these two sub-transfer functions
so as to reduce coefficient sensitivity, the resulting state-space
realizations would in general involve as many as2[N1(N1 +
1)+N3(N3 +1)] parameters, which implies a drastic increase
in realization complexity. On the contrary, the sub-transfer
function H2(z2) contains most of the filter’s nontrivial co-
efficients and its state-space realization(A2, B2, C2,∆0)p

hardly contains many fixed trivial components like ones and
zeros (see (A.4) in Appendix I), therefore, application of a
coordinate transformation to(A2, B2, C2,∆0)p will not in-
crease realization complexity in a significant manner. For these
reasons, we in the rest of the paper shall seek to minimize the
sensitivity associated with matrix transfer functionH2(z2).

Applying a coordinate transformationx(k) = T−1x(k) to
the linear system(A2, B2, C2,∆0)p in (3), we obtain a new
realization(A2, B2, C2,∆0)p characterized by

A2 = T−1A2T , B2 = T−1B2, C2 = C2T (15)

whereT is ap×p nonsingular matrix. For the new realization,
the l2-sensitivity measure in (14a) is written as

S(P ) = J(P ) + tr[N∆0 ] + tr[W 1] + tr[K3] (16a)

where

J(P ) = tr[MA(P )P ] + tr[W BP ] + tr[KCP−1] (16b)

with P = TT T . For the reasons stated above, our attention
shall now be focused on the minimization of sensitivity
measureJ(P ).

Sincef(z2, z3) is the transfer function from the filter input
to the state-variable vectorx(k), a controllability GramianK
is defined by

K =
1

(2πj)2

∮
|z2|=1

∮
|z3|=1

f(z2, z3)f∗(z2, z3)
dz2

z2

dz3

z3

(17)
that can be obtained by solving the following Lyapunov
equations:

K0 = A3K0A
T
3 + êN3 ê

T
N3

K = A2KAT
2 + B2(C3K0C

T
3 + ê1ê

T
1 )BT

2 .
(18)

For the new realization(A2, B2, C2,∆0)p, l2-scaling con-
straints on the state-variable vectorx(k) are given by

(K)ii = (T−1KT−T )ii = 1 for i = 1, 2, · · · , p. (19)

The reader is referred to Appendix III that explains (19) in
details. Summarizing, our sensitivity minimization problem is
to find a coordinate transformation matrixT that minimizes
J(P ) in (16b) subject to thel2-scaling constraints in (19).
Two solution methods for this problem are presented below.

We stress that apart from the difference in technical details
in implementing these methods, they are analogous to their
1-D and 2-D counterparts investigated in [10]-[11].

A. A Constrained Optimization Method

Directly dealing with thel2-scaling constraints in (19) was
found technically unfeasible. Instead, we consider a relaxation
of (19) to a single constraint as

tr[T−1KT−T ] = tr[KP−1] = p. (20)

The relaxation proposed in (20) for the constraints in (19)
has two advantages: First, rather than dealing with a total ofp
constraints in (19), with (20) we have only one single equality
constraint that, as will be demonstrated below, can be handled
by a Lagrange function with one additional parameter; second,
from (20) it is seen that the constraint is now expressed in
terms of matrixP , therefore, once an optimalP is identified,
an optimal coordinate transformation matrixT can be set to

T = P
1
2 U (21)

with U a p × p orthogonal matrix. Note that changingU
in (21) to a different orthogonal matrix does not affect the
optimality ofT in (21) in the sense that, for any orthogonalU ,
P = TT T remains valid, hence it does not alter the optimal
value of the sensitivity measure in (16b). Further notice that
with (21), (19) becomes

(UT P− 1
2 KP−T

2 U)ii = 1 for i = 1, 2, · · · , p. (22)

With K fixed and P determined, it is straightforward to
find an orthogonal matrixU so that the constraints in (22)
(hence (19)) are satisfied. In words, via (21) a solution of
the relaxed problem can be readily concerted to a solution
that accurately satisfies thel2-scaling constraints in (19). The
reader is referred to Section IV.A for a numerical example
that illustrates the technique described above. This justifies
the relaxation made in (20) and in this way, we now focus on
the problem

minimize J(P ) in (16b)
subject to tr[KP−1] = p.

(23)

To solve problem (23), we define the following Lagrange
function of the problem:

Jo(P , λ) = tr[MA(P )P ] + tr[W BP ]

+tr[KCP−1] + λ(tr[KP−1] − p)
(24)

whereλ is the Lagrange multiplier. ComputingJo(P , λ)/∂P
by using [28, p.275]

d[tr(MX)]
dX

= MT,
d[tr(MX−1)]

dX
= −(X−1MX−1)T

(25)
and setting∂Jo(P , λ)/∂P = 0, it follows that

PF (P )P = G(P , λ) (26a)

where
F (P ) = MA(P ) + W B

G(P , λ) = NA(P ) + KC + λK
(26b)

with

NA(P ) =
∞∑

i=0

∞∑
j=0

[
Ip 0

]
NA

ij

[
Ip

0

]

NA
ij =

[
A2 B2RijC2

0 A2

]
NA

ij

[
A2 B2RijC2

0 A2

]T

+
[

0 0
0 P

]
. (26c)
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The equation in (26a) is highly nonlinear with respect to
P . An effective approach to solving the equation in (26a) is
to relax it into the following recursive second-order matrix
equation:

P (k+1)F (P (k))P (k+1) = G(P (k), λ(k+1)) (27)

where P (k) is assumed to be known from the previous
recursion and the solutionP (k+1) is given by

P (k+1) = F (P (k))−
1
2 [F (P (k))

1
2

·G(P (k), λ(k+1))F (P (k))
1
2 ]

1
2 F (P (k))−

1
2 .

(28)
Here, the Lagrange multiplierλ(k+1) can be efficiently ob-
tained using a bisection method [29] so that

f(λ(k+1)) = | p − tr[K̃
(k)

G̃
(k)

(λ(k+1))] | < ε (29a)

where

G̃
(k)

(λ(k+1)) = [F (P (k))
1
2 G(P (k), λ(k+1))F (P (k))

1
2 ]−

1
2

K̃
(k)

= F (P (k))
1
2 KF (P (k))

1
2 . (29b)

This iteration process continues until

|J(P (k), λ(k+1)) − J(P (k−1), λ(k))| < ε (30)

is satisfied for a prescribed toleranceε > 0. If the iteration is
terminated at stepk, P (k) is claimed to be a solution point.

B. An Unconstrained Optimization Method

Defining
T̂ = T T K− 1

2 (31)

the l2-scaling constraints in (19) can be written as

(T̂
−T

T̂
−1

)ii = 1 for i = 1, 2, · · · , p. (32)

It is obvious that the conditions in (32) are always satisfied
by choosingT̂

−1
as

T̂
−1

=
[

t1
||t1||

,
t2

||t2||
, · · · , tp

||tp||

]
. (33)

By writing J(P ) in (16b) as

J(T ) = tr[T T MA(TT T )T ]+tr[T T W BT ]+tr[T−1KCT−T ]
(34)

and then using (31), thel2-sensitivity measure can be ex-
pressed as

J(x) = tr[T̂ M̂A(T̂ )T̂
T
] + tr[T̂ Ŵ BT̂

T
] + tr[T̂

−T
K̂C T̂

−1
]

(35a)
where x = (tT

1 , tT
2 , · · · , tT

p )T and

M̂A(T̂ ) =
∞∑

i=0

∞∑
j=0

[
0 K

1
2

]
M̂

A

ij

[
0

K
1
2

]

M̂
A

ij =

[
A2 B2RijC2

0 A2

]T

M̂
A

ij

[
A2 B2RijC2

0 A2

]

+

[
K− 1

2 T̂
−1

T̂
−T

K− 1
2 0

0 0

]
Ŵ B = K

1
2 W BK

1
2 , K̂C = K− 1

2 KCK− 1
2 . (35b)

In this way, the original constrained optimization problem
can be converted into an unconstrained optimization problem
of obtaining ap2×1 vectorx which minimizesJ(x) in (35a).

Applying a quasi-Newton (known as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS)) algorithm [30] to minimizeJ(x) in
(35a), in thekth iteration the most recent pointxk is updated
to point xk+1 as

xk+1 = x + αkdk (36a)

where

dk =−Sk∇J(xk), αk =arg min
α

J(xk + αdk)

Sk+1 = Sk+
(

1+
γT

k Skγk

γT
k δk

)
δkδT

k

γT
k δk

− δkγT
k Sk + SkγkδT

k

γT
k δk

S0 = Ip2 , δk =xk+1−xk, γk =∇J(xk+1)−∇J(xk).
(36b)

In the above,∇J(x) is the gradient ofJ(x) with respect to
x, andSk is a positive-definite approximation of the inverse
Hessian matrix ofJ(x). The algorithm starts with a trivial
initial point x0 obtained from an initial assignmentT = Ip,
and this iteration process continues until

|J(xk+1) − J(xk)| < ϵ (37)

is satisfied whereϵ > 0 is a prescribed tolerance.
The BFGS algorithm is a well-known descent algorithm

meaning that a twice continuously differentiable objective
function at the iterates generated by the BFGS algorithm is
monotonically decreasing. In theory, it was shown [31] that
if the starting point is sufficiently close to a local minimizer
and the initial Hessian approximation is sufficiently close to
the Hessian at that minimizer, then the BFGS iterates will
converge to the minimizer.

The implementation of (36a) requires the gradient ofJ(x),
which can be efficiently evaluated using closed-form expres-
sions, see Appendix IV.

IV. A CASE STUDY

We now present a case study to demonstrate the effective-
ness of the two algorithms developed in Section III. The case
study was carried out using MATLAB on a PC with an Intel
Core i-2500 CPU at 3.3 GHz.

Consider a stable 3-D separable-denominator digital filter
in (2a) and (2b) specified by

∆0 = 10−2


0.00730 0.34297 −0.09594 0.20541
3.33408 −5.73707 3.94939 −1.61598

−1.46081 2.66051 −1.68094 0.68022
1.12651 −1.62192 1.24735 −0.55781



∆1 = 10−2


2.81318 −5.00467 3.46926 −0.84798

−5.29980 9.24831 −6.29206 2.80791
4.95232 −8.39641 5.73329 −1.62170
0.72029 −1.34272 0.95941 0.54827



∆2 = 10−2


−0.69409 1.54874 −0.94779 0.39116

3.93785 −6.79910 4.66564 −1.96344
−2.37995 4.20737 −2.75482 0.95329

0.70545 −0.90615 0.73168 −0.55633


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∆3 = 10−2


1.67681 −2.69078 1.98218 −0.33567

−0.59937 1.11289 −0.71981 0.43504
1.82472 −2.93685 2.11591 −0.43417
1.28875 −2.01749 1.51782 −0.09016


[

b11 b12 b13

]
=

[
b31 b32 b33

]
=

[
−1.81600 1.23756 −0.31382

][
b21 b22 b23

]
=

[
−1.81611 1.23775 −0.31391

]
.

The 3-D filter can be realized by a minimal state-space model
in (3) with

A2 =

 0.00000 −0.19089 0.29060
0.74393 −86.40470 133.71075

−0.27211 −57.01643 88.22081


B2 = 103

 0.00602 −0.00921 0.00699 −0.00095
−1.10247 1.68622 −1.27902 0.17267
−0.71455 1.09291 −0.82977 0.11192



C2 =


0.07236 0.06711 −0.10298
0.01930 0.01789 −0.02745
0.05887 0.05460 −0.08378
0.07079 0.06565 −0.10073

 .

Applying a coordinate transformation defined by

T = 103diag{0.01077, 2.58588, 1.68384}

and using (14b) with truncation(0, 0) ≤ (i, j) ≤ (100, 100)
and (18) to evaluate the GramiansMA(I3), W B , KC , N∆0 ,
W 1, K3, K0 andK yields

MA(I3) = 107

 0.00021 0.03478 −0.03471
0.03478 5.83540 −5.82400

−0.03471 −5.82400 5.81261


W B = 108

 0.00014 0.02404 −0.02399
0.02404 4.36159 −4.35410

−0.02399 −4.35410 4.34663


KC = 10

 5.70413 −4.79529 −4.78664
−4.79529 5.70413 5.70410
−4.78664 5.70410 5.70413



N∆0 = 10


8.61482 8.61482 8.61482 8.61482
8.61482 8.61482 8.61482 8.61482
8.61482 8.61482 8.61482 8.61482
8.61482 8.61482 8.61482 8.61482



W 1 = 103

 2.68584 2.59589 2.34321
2.59589 2.68584 2.59589
2.34321 2.59589 2.68584


K3 = 103

 2.52585 2.43584 2.18528
2.43584 2.52585 2.43584
2.18528 2.43584 2.52585


K0 = 10

 1.42603 1.29740 0.99842
1.29740 1.42603 1.29740
0.99842 1.29740 1.42603


K =

 1.00000 −0.84067 −0.83915
−0.84067 1.00000 0.99999
−0.83915 0.99999 1.00000

 .

The totall2-sensitivity defined by (14a) was found to be

S = J(I3) + 1.59797 × 104

whereJ(I3) defined by (16b) was found to be

J(I3) = 9.87319 × 108.

We see that the sensitivity associated withH2(z2), namely
J(I3), was indeed dominating the filter’s sensitivity.

A. Application of the Lagrange method

ChoosingP (0) = I3 in (28) as an intial estimate and a
toleranceϵ = 10−8 in the bisection method of (29a) as well
as in (30), it took the Lagrange-based algorithm 7 iterations
to converge to the solution

P opt =

 2.26693 −2.29606 −2.28843
−2.29606 3.27352 3.26762
−2.28843 3.26762 3.26176

 .

With K given above andP = P opt, an orthogonal matrixU
satisfying (22) was found to be

U =

 0.91281 0.01760 −0.40801
0.37727 0.34617 0.85897

−0.15636 0.93801 −0.30934


which in conjunction with (21) yielded the optimal coordinate
transformation matrix as

T opt =

 0.95919 −0.79515 −0.84535
−0.31867 1.52484 0.92024
−0.31499 1.52445 0.91574


and the optimal state-space coefficient matrices in (15) were
constructed as

A2 =

 0.62960 −0.10557 −0.29017
−0.03842 0.56172 −0.29573

0.40269 0.09232 0.62479


B2 =

 0.36268 −0.55634 0.50511 −0.05885
−0.12255 0.18883 −0.23407 0.02035
−0.13464 0.20306 0.02528 0.01847



C2 =


0.06690 −0.34372 0.24644
0.01682 −0.08626 0.06888
0.05258 −0.27075 0.20585
0.06038 −0.31154 0.25590

 .

The controllability Gramian associated with the optimized
state-space model was found to be

K =

 1.00041 −0.63416 0.63416
−0.63416 1.00041 −0.89767

0.63416 −0.89767 1.00041


showing that thel2-scaling constraints in (19) were practically
satisfied. Then thel2-sensitivity measure in (24) was computed
as

Jo(P opt, λ) = 3.24252 × 103

whereλ = 8.42179 × 102. The profiles of thel2-sensitivity
measureJo(P, λ) and the Lagrange multiplierλ during the
first 7 iterations are shown in Fig. 2, from which it is observed
that with a toleranceϵ = 10−8 the algorithm converges in 7
iterations.
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Fig. 2. Profiles ofl2-sensitivity andλ performances during the first 7
iterations of the constrained optimization method.

B. Application of the quasi-Newton method

By choosingT̂ = K− 1
2 with T = I3 as an initial estimate

in (36a) and a toleranceϵ = 10−8 in (37), the quasi-Newton
algorithm took 37 iterations to converge to the solution

T̂
opt

=

 1.03339 1.41754 −0.13472
−0.29813 2.46592 −0.04995

0.90070 −1.17579 0.96141


or equivalently,

T opt =

 0.34976 −1.20354 0.83486
0.42464 1.68766 −0.49626
0.42613 1.68528 −0.49116

 .

The l2-sensitivity measure in (35a) was then computed as

J(x) = 3.24356 × 103

and the optimal state-space coefficient matrices in (15) were
constructed as

A2 =

 0.61448 −0.17729 0.32325
−0.03747 0.57287 0.17307
−0.43314 −0.03545 0.62876


B2 =

 0.24441 −0.37603 0.40596 −0.04083
−0.25567 0.39234 −0.37591 0.04130

0.19877 −0.30151 0.06567 −0.02906



C2 =


0.07181 −0.29561 −0.30148
0.02071 −0.07290 −0.08203
0.06091 −0.23067 −0.24815
0.07718 −0.26188 −0.30285

 .

The profile of thel2-sensitivity measureJ(x) during the first
37 iterations is shown in Fig. 3, from which it is observed
that with a toleranceϵ = 10−8 the algorithm converges in 37
iterations.

We see that as far as the example discrete system is
concerned, the two algorithms offer practically the same
performance in terms of sensitivity minimization. Concerning

0 10 20 30102

104

106

108

1010

Iterations

J(
x)

Fig. 3. Profile ofl2-sensitivity performance during the first 37 iterations of
the unconstrained optimization method.

the computational complexity, the 7 iterations required by the
constrained algorithm consumed46.01250 seconds of CPU
time versus7.15158 × 103 seconds for the unconstrained
algorithm to finish its 37 iterations. Obviously the constrained
method is considerably more efficient than its unconstrained
counterpart. However, for discrete system of large scales, it
is quite likely that the algorithms’ complexity will change
due to the fact that the constrained algorithm heavily involves
expensive matrix manipulations such as computing square root
as well as inverse of matrices. For this reason, we believe
that together the two algorithms can serve for sensitivity
minimization for a wide range of system scales.

C. Comparisons with the work in [25]

The Lagrange method was also applied to the 3-D filter
investigated in Section 4 of [25]. We shall omit the interme-
diate details but focus on comparisons of the results obtained.
The total l2-sensitivity defined by (14a) with (16b) afterl2-
scaling was found to beS = J(I3) + 21.89505 × 102 =
112.71349 × 102 where J(I3) = 90.81844 × 102. After 6
iterations, the Lagrange method converges to a solutionP opt

with J(P opt) = 9.14487 × 102, which implies a totall2-
sensitivityS = 31.03992×102. At this solution, the dynamic-
range constraints(K)ii = 1 for i = 1, 2, 3 are perfectly
satisfied. The total number of nontrivial parameters in its
realization was 55. Alternatively, the algorithm proposed in
[25] was applied, which led to a minimized totall2-sensitivity
3.12274 × 102. The GramianK associated with the optimal
state-space filter was found to be

K =

 1.76972 1.14927 0.77867
1.14927 1.21704 0.94657
0.77867 0.94657 2.25271

 .

Clearly, the dynamic-range constraints(K)ii = 1 are violated
for all i = 1, 2, 3 in this case. The number of nontrivial param-
eters involved in this realization was 73. From above results,
we see two options for 3-D state-space filters with separable
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denominators: [25] offers techniques for minimum sensitivity
but with more system parameters and possible violation of
dynamic-range constraints, while the present paper provides
techniques for low sensitivity, reduced number of parameters
(hence faster implementation), and guaranteed freedom of
internal overflow.

V. CONCLUSION

A minimal state-space realization technique for 3-D
separable-denominator digital filters has been explored and
the l2-sensitivity of the minimal state-space model realized
from a given 3-D separable-denominator digital filter has
been analyzed more precisely by taking into account0 and
1 elements contained in the model. Two iterative methods
have been developed to minimize thel2-sensitivity of the
filter subject to a fixed number of nontrivial parameters and
dynamic-rangel2-scaling constraints. Computer simulation
results have demonstrated the validity and effectiveness of the
proposed techniques.

A problem that might be worthwhile for future studies is
to minimize coefficient sensitivity subject to filter’s robust
stability underl2-scaling constraints. In such a problem, the
results reported in [24] are expected to play a significant role.

APPENDIX I

MINIMAL REALIZATION OF H2(z2)

We write H2(z2) in (2b) as

H2(z2)=∆0+
(∆1−b21∆0)z−1

2 +· · ·+(∆N2−b2N2∆0)z−N2
2

D2(z2)
(A.1)

which can be realized with a multivariable observable canonic
form (A0, B0, C0,∆0)N2(N1+1) as

A0 =


0 · · · 0 −b2N2IN1+1

IN1+1 · · · 0
...

...
. . .

... −b22IN1+1

0 · · · IN1+1 −b21IN1+1



B0 =


∆N2 − b2N2∆0

...
∆2 − b22∆0

∆1 − b21∆0

 , C0 = [0 · · · 0 IN1+1] .

(A.2)
Although this realization is always observable, it is uncontrol-
lable unlessrank VN2(N1+1)−r = N2(N1 + 1), i.e. full rank,
whereV i =

[
B0, A0B0, · · · ,Ai

0B0

]
andr is the rank ofB0

[27]. Suppose that

rank VN2(N1+1)−1 = p (A.3)

andv1,v2, · · · , vp arep linearly independent column vectors
from matrixVN2(N1+1)−1. By definingM = [v1, v2, · · · , vp],
it is shown [32] thatH2(z2) can be realized with a minimal
state-space model(A2, B2, C2,∆0)p as

A2 = (MT M)−1MT A0M , B2 =(MT M)−1MT B0

C2 = C0M .
(A.4)

APPENDIX II

ERROR IN TRANSFER FUNCTION
DUE TO PARAMETER VARIATIONS

Consider a transfer functionH(z1, z2, z3) that containsN
parameters{p1, p2, · · · , pN}. Let {p̃i} be the FWL version
of {pi}, where p̃i = pi + ∆pi with ∆pi the parameter per-
turbation, andH̃(z1, z2, z3) be the transfer function associated
with perturbed parameters{p̃i}. The first-order approximation
of H̃(z1, z2, z3) then gives

H̃(z1, z2, z3) = H(z1, z2, z3) + ∆H(z1, z2, z3) (A.5a)

where∆H(z1, z2, z3) will be

∆H(z1, z2, z3) =
N∑

i=1

∂H(z1, z2, z3)
∂pi

∆pi. (A.5b)

For a fixed-point implementation ofB bits, the parameter
perturbations are considered to be independent uniformly dis-
tributed random variables within the range[−2−B−1, 2−B−1].
Then, a measure of the transfer function error can statistically
be defined as

σ2
∆H =

1
(2πj)3

∮
|z1|=1

∮
|z2|=1

∮
|z3|=1

E[|∆H(z1, z2, z3)|2]

·dz1

z1

dz2

z2

dz3

z3
(A.6)

where E(·) denotes the ensemble average operation. Since
{∆pi} are independent uniformly distributed random vari-
ables, it follows that

E[|∆H(z1, z2, z3)|2] =
N∑

i=1

∣∣∣∣∂H(z1, z2, z3)
∂pi

∣∣∣∣2σ2 (A.7)

whereσ2 = E[(∆pi)2] = 2−2B/12. Eq. (A.7) establishes an
analytic relationship between variations in the transfer function
induced by an FWL realization and parameter sensitivity.

APPENDIX III

l2-SCALING CONSTRAINTS

Suppose that the input and the output of a 2-D filter
f(z2, z3) are denoted byx(k, r) and u(k, r), respectively. It
follows from (9b) and (5a) that

x(k, r) =
k∑

p=1

r∑
q=0

h(p, q)u(k − p, r − q) (A.8a)

where

h(p, q) = Ap−1
2 B2C3A

q−1
3 êN3 for p, q ≥ 1

h(p, 0) = Ap−1
2 B2ê1 for p ≥ 1.

(A.8b)

Let ei be theith column of the identity matrixIp, an upper
bound of theith component of the local state vectorx(k, r)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. YY, ZZZ 2012 10

in (A.8a) can be obtained as

|eT
i x(k, r)|2 =

[
k∑

p=1

r∑
q=0

eT
i h(p, q)u(k − p, r − q)

]2

≤ eT
i

(
k∑

p=1

r∑
q=0

h(p, q)hT (p, q)

)
ei

·
k∑

p=1

r∑
q=0

u2(k − p, r − q) ≤ eT
i Kei ||u||2

(A.9a)
where

K =
∞∑

p=1

∞∑
q=0

h(p, q)hT (p, q). (A.9b)

Note thateT
i Kei is theith diagonal element ofK, thus if all

the diagonal elements ofK are equal to unity, (A.9a) implies
that the amplitude of each component of vectorx(k, r) will
not exceed||u||. Therefore, the dynamic-range constraints on
the state-variables may be imposed as

(K)ii = 1 for i = 1, 2, · · · , p. (A.10)

The above constraints correspond to (19) in the new realization
and matrixK in (A.9b) coincides with that derived from (18).

APPENDIX IV

GRADIENT OF J(x)

The gradient ofJ(x) can be evaluated using closed-form
expressions as

∂J(T̂ )
∂tij

= lim
∆→0

J(T̂ ij) − J(T̂ )
∆

= 2β1 − 2β2 + 2β3 − 2β4

(A.11a)
where T̂ ij is the matrix obtained from̂T with a perturbed
(i, j)th component, which is given by [33, p.655]

T̂ ij = T̂ +
∆T̂ gije

T
j T̂

1 − ∆eT
j T̂ gij

, T̂
−1

ij = T̂
−1

− ∆gije
T
j

gij = ∂
{

tj

||tj ||

}
/∂tij = 1

||tj ||3
(tijtj − ||tj ||2ei)

β1 = eT
j T̂ M̂A(T̂ )T̂

T
T̂ gij , β3 = eT

j T̂ Ŵ BT̂
T
T̂ gij

β2 = eT
j T̂

−T
N̂A(T̂ )gij , β4 = eT

j T̂
−T

K̂Cgij

N̂A(T̂ ) =
∞∑

i=0

∞∑
j=0

[
K− 1

2 0
]
N̂

A

ij

[
K− 1

2

0

]

N̂
A

ij =

[
A2 B2RijC2

0 A2

]
N̂

A

ij

[
A2 B2RijC2

0 A2

]T

+

[
0 0

0 K
1
2 T̂

T
T̂K

1
2

]
. (A.11b)
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