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Abstract

Roundoff noise (RN) is known to exist in digital filters and systems under finite-precision operations and can

become a critical factor for severe performance degradation in IIR filters and systems. In the literature, two classes

of methods are available for RN reduction or minimization — one uses state-space coordinate transformation,

the other uses error feedback/feed-forward of state variables. In this paper, we propose a method for the joint

optimization of error feedback/feed-forward and state-space realization. It is shown that the problem at hand can be

solved in an unconstrained optimization setting. With a closed-form formula for gradient evaluation and an efficient

quasi-Newton solver, the unconstrained minimization problem can be solved efficiently. With the infinite-precision

solution as a reference point, we then move on to derive a semidefinite programming (SDP) relaxation method for

an approximate solution of optimal error-feedback matrix with sum-of-power-of-two entries under a given state-

space realization. Simulations are presented to illustrate the proposed algorithms and demonstrate the performance

of optimized systems.

Keywords: roundoff noise in digital filters, state-space transformation, error-feedback matrix, unconstrained opti-

mization.

EDICS: 2-QUAN (Quantization Effects and Roundoff Analysis)
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I. INTRODUCTION

Since the work of [1][2], it has been well understood that the roundoff noise (RN) of infinite-

impulse-response (IIR) digital filters under fixed-point arithmetic operations can be substantially

reduced by using adequately chosen state-space realizations [3]–[5]. It has also been known that

RN reduction can be accomplished by feeding the quantization error of state variables back to

the filter’s input through a memoryless (constant) error-feedback matrix without affecting the

filter’s input-output characteristics [6]–[8]. In addition, error feed-forward helps further reduce

the RN [6]. Alternatively, the RN reduction problem has also been studied in various different

settings [9]–[18]. Naturally, the success of these techniques leads one to the consideration of a

joint optimization of error feedback and state-space realization so as to achieve greater reduction

in RN. It turns out that obtaining such a jointly optimized error feedback and realization requires

the solution of a sophisticated constrained nonlinear minimization problem (see Sec. III). In [8],

an iterative algorithm for the above optimization problem was proposed for IIR filters with scalar

error-feedback matrices, but it appears to be inherently difficult to extend the algorithm to the

cases where the error-feedback matrices are diagonal or general.

The objectives of this paper are two-fold. First, the problem of joint optimization of error-

feedback/feed-forward and state-space realization for RN minimization is investigated in a gen-

eral nonlinear optimization framework where the error-feedback matrix can be a scalar, diagonal,

or general matrix. Using linear-algebraic techniques, we convert the constrained optimization

problem at hand into an unconstrained problem which can be solved using powerful quasi-

Newton algorithms [19]. A nice feature of employing a general optimization setting for our

problem is that both the realization optimization [1][2] and the error-feedback-matrix optimiza-

tion [8] become special cases of the proposed formulation that explains why digital filters with

jointly optimal error feedback and realization always outperform previously reported systems.

The second objective of the paper is to present a solution to the optimal discretization for the

error-feedback matrix obtained by the above-mentioned method. Specifically, we are concerned

with IIR digital filters whose (infinite precision) jointly optimized error-feedback matrix and

state-space realization have been determined and the error-feedback matrix is required to be im-

plemented using sum-of-power-of-two (SP2) entries, each with fixed number of bits. Because

of the discrete nature of the problem, its optimal solution is essentially a combinatorial opti-
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mization problem with exponential-time computational complexity. Using the infinite-precision

solution obtained, the problem at hand is formulated as a (−1, 1)-quadratic programming prob-

lem and a semidefinite programming (SDP) relaxation [20] is applied to obtain an approximate

solution of the problem. This approximate solution is of interest as it can be calculated using ef-

ficient interior-point SDP solvers [21][22] of polynomial-time complexity and, as demonstrated

by our computer simulations, it is often near optimal.

The paper is organized as follows. Sec. II gives background materials including review of

state-space structure of IIR digital filters with error feedback and feed-forward and basic ele-

ments of SDP. Sec. III describes a general optimization formulation for the problem at hand and

presents an unconstrained minimization based solution method. Sec. IV presents a (−1, 1)-

quadratic programming formulation for the optimization of discrete error-feedback matrix and

then an SDP-relaxation based approximate solution, and computer simulation results are pre-

sented to illustrate the proposed algorithms as well as demonstrate system performance as com-

pared to previously reported results.

In the rest of the paper, boldfaced characters denote matrices and vectors; I denotes the

identity matrix of proper dimension; K1/2 denotes the symmetric square root of positive definite

matrix K; AT , A∗, tr(A) and (A)ii denotes the transpose, conjugate-transpose, trace, and the

ith diagonal element of A, respectively; and ‖v‖ denotes the standard Euclidean norm of vector

v.

II. PRELIMINARIES

A. State-Space Digital Filters with Error Feed-Forward and Error Feedback [6]

Let (A, b, c, d)n be a minimal state-space realization of a stable IIR digital filter of order n.

This realization can be expressed as

x(k + 1) = Ax(k) + bu(k) (1a)

y(k) = cx(k) + du(k) (1b)

where A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n, and d ∈ R. Now assuming that (i) the filter is

implemented subject to finite-word-length (FWL) constraint and quantization takes place before

matrix-vector multiplications, and (ii) error-feedback and error-feed-forward for state variables
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are used for the sake of RN reduction, then the filter’s model becomes [8]

x̃(k + 1) = AQ[x̃(k)] + bu(k) + De(k) (2a)

ỹ(k) = cQ[x̃(k)] + du(k) + he(k) (2b)

where Q[·] denotes the quantizer that rounds the fraction of each input component to a b-bit

number, e(k) is the quantization error defined by

e(k) = x̃(k) − Q[x̃(k)]

and D and h are referred to error-feedback matrix and error-feed-forward vector, respectively.

Fig. 1 shows a block diagram of the state-space filter described by (2).
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Fig. 1. Error feedback and error feed-forward in a state-space digital filter.

From (1) and (2), the roundoff noise for the filter can be modeled as

∆x(k + 1) = A∆x(k) + (A − D)e(k) (3a)

∆y(k) = c∆x(k) + (c − h)e(k) (3b)

where ∆x(k) = x(k) − x̃(k) and ∆y(k) = y(k) − ỹ(k). In the frequency domain, the noise

process is modeled by

∆Y (z) = GD,h(z)E(z) (4a)

GD,h(z) = c(zI − A)−1(A − D) + c − h (4b)

where ∆Y (z) and E(z) are the z-transforms of ∆y(k) and e(k), respectively, and GD,h(z)

denotes the transfer function from the quantization error to output roundoff noise. Therefore, a
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noise gain due to quantization error can be defined as

I(D) = tr(WD,h) (5a)

where

WD,h =
1

2πj

∮
|z|=1

G∗
D,h(z)GD,h(z)

dz

z
(5b)

It is known that the matrix WD,h in (5b) can be expressed as [8]

WD,h = (A − D)T Wo(A − D) + (c − h)T (c − h) (6)

where Wo is the observability Gramian of the filter and can be computed by solving the Lya-

punov equation [23]

Wo − AT WoA = cT c (7)

B. Semidefinite Programming

Semidefinite programming (SDP) is concerned with a class of constrained optimization prob-

lems where a linear objective function is minimized subject to matrix constraints which affinely

depend on the variable vector. Typically an SDP problem can be formulated as

minimize cT x (8a)

subject to: F (x) = F 0 +
r∑

i=1

xiF i � 0 (8b)

where matrices F i for 0 ≤ i ≤ r are symmetric and � 0 means positive semidefinite. Since

linear function cT x is always convex and the feasible region defined by the linear matrix in-

equality (LMI) in (8b) is convex, SDP forms an important subclass of convex programming

problems that includes both linear and convex quadratic programming as special cases. Efficient

polynomial-time interior-point algorithms have been extended to SDP [24][25] and software im-

plementations of the algorithms are available, including the LMI Control Toolbox [21], SeDuMi

[22], and SDPT3 [26].

III. JOINT OPTIMIZATION OF ERROR-FEEDBACK AND REALIZATION:

THE INFINITE PRECISION CASE

This section presents a solution of the problem at hand, where the entries of error-feedback

matrix and error-feed-forward vector are assumed to have infinite precision. In the context
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of numerical optimization, this simply means that the entries of matrix D can be treated as

continuous variables.

A. An Optimization Formulation

As is well-known [23], the state-space realizations that are equivalent to a particular re-

alization of a given digital filter, say (A, b, c, d)n, are characterized by (A, b, c, d)n

= (T−1AT , T−1 b, cT , d)n where T ∈ Rn×n is a nonsingular coordinate transformation

matrix. Under a transformation T , the noise gain defined in (5) becomes

I(D, h, T ) = tr(WD,h) (9a)

where

WD,h = (A − D)T Wo(A − D) + (c − h) T(c − h) (9b)

Wo = T T WoT (9c)

A basic constraint imposed on RN minimization is the l2-norm dynamic range of the state vari-

ables [1][2]. Under a coordinate transformation, this constraint can be expressed as

(Kc)ii = 1 for 1 ≤ i ≤ n (10a)

where

Kc = T−1KcT
−T (10b)

and Kc is the controllability Gramian of the original realization and can be computed by solving

the Lyapunov equation [23]

Kc − AKcA
T = bbT (11)

The constrained optimization problem for the minimization of the noise gain subject to l2-

norm dynamic range constraints can now be described as

minimize
D, h, T

J(D, h, T ) = tr[WD,h] (12a)

subject to: (T−1KcT
−T )ii = 1 for 1 ≤ i ≤ n (12b)

where WD,h and Wo are given in (9).

The problem formulation in (12) is rather general. As a matter of fact, it includes the following

two special cases: If error feedback and error feed-forward are not used, then D and h are set
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to null, which in conjunction with (9b) and (7) implies that

J(0,0, T ) = tr(Wo) (13)

Several methods of minimizing J(0,0, T ) in (13) subject to (12b) were investigated in [1][2].

Another special case of (12) is to minimize the objective function J(D, h, T ) for a fixed T (i.e.,

for a given state-space realization). This problem has been addressed in [8]. Consequently, the

solution of the general optimization problem in (12) that finds the jointly optimized D, h and T

is expected to be superior to the solutions obtained from these two special cases.

B. An Equivalent Unconstrained Problem

Since the IIR filter at hand is assumed to be stable, controllable and observable, the control-

lability matrix Kc is positive definite [23]. Let K1/2
c denote the symmetric square root of Kc,

i.e., K1/2
c is a symmetric matrix satisfying K1/2

c K1/2
c = Kc, then K1/2

c is also positive definite

and we can define

T̂ = T T K−1/2
c (14)

which implies that T−1 = T̂
−T

K−1/2
c and the constraints in (12b) become

(T̂
−T

T̂
−1

)ii = 1 for 1 ≤ i ≤ n (15)

The constraints in (15) simply mean that each column in T̂
−1

must be a unity vector. This can

be satisfied if T̂
−1

assumes the form

T̂
−1

=

[
t1

‖t1‖
t2

‖t2‖
· · · tn

‖tn‖

]
(16)

with ti ∈ Rn×1. To complete our problem conversion, we use (9) and (14) to re-write the

objective function in (12a) in terms of D, h and T̂ as

J(D, h, T̂ ) = J1 + J2 (17a)

where

J1 = tr[T̂ (Â − T̂
T
DT̂

−T
)T Ŵo(Â − T̂

T
DT̂

−T
)T̂

T
] (17b)

J2 = tr[T̂ (ĉ − hT̂
−T

)T (ĉ − hT̂
−T

)T̂
T
] (17c)
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Â = K−1/2
c AK1/2

c (17d)

ĉ = cK1/2
c (17e)

Ŵo = K1/2
c WoK

1/2
c (17f)

Notice that for any D, h, and T̂ , both J1 and J2 are nonnegative, hence we always have

J(D, h, T̂ ) ≥ 0. With T̂
−1

assuming the form in (16), the constraints on dynamic range are

eliminated and the joint optimization problem in (12) can be stated as

min
D, h, T̂

J(D, h, T̂ ) = J1 + J2 (18)

In what follows we examine the problem in (18) for several cases of particular interest, where

the entries of D and h assume different degrees of freedom.

Case 1: Both D and h have full degree of freedom. In this case, the optimal choices of D and

h are

D = A, h = c (19)

which leads to the absolute minimum J(D, h, T̂ ) = 0. Although this solution is hardly of use

in practical implementation, it serves as a reference point when an optimal integer-valued (or

sum-of-power-of-two (SP2) valued ) D and h are sought, see Sec. IV.

Case 2: D is a scalar matrix, i.e., D = αI , and h is a general vector. In this case, the choice of

h = c makes J2 vanish and the objective function in (18) becomes

J(αI, c, T̂ ) = tr[T̂ (Â − αI)T Ŵo(Â − αI)T̂
T
] (20)

Hence the variables in the minimization are {ti, 1 ≤ i ≤ n} plus a scalar α.

Case 3: D contains certain number of zero entries in fixed places but is free elsewhere, and h

is a general vector. This obviously includes the case where D is a diagonal matrix. With the

choice h = c, the objective function in (18) assumes the form

J(D, c, T̂ ) = tr[T̂ (Â − T̂
T
DT̂

−T
)T Ŵo(Â − T̂

T
DT̂

−T
)T̂

T
] (21)

The variables involved in the minimization are {ti, 1 ≤ i ≤ n} and the nonzero entries in D.

Again in both Case 2 and Case 3 the solution obtained will serve as a reference point for the

search of optimal integer-valued (or SP2-valued) D and h, see Sec. IV for the details.
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Finally, we remark that although the vectors {ti, 1 ≤ i ≤ n} have to be such that T̂ is non-

singular, this type of “constraint” needs not to be imposed explicitly because a near singular T̂

would make the value of J(D, h, T̂ ) very large, hence the process of minimizing J(D, h, T̂ )

automatically avoids considering ill-conditioned T̂ . Consequently, the problem in (18) is prac-

tically an unconstrained minimization problem.

C. A Quasi-Newton Algorithm for Problem (18)

For the sake of simplicity we assume that the error feed-forward vector h is set to be equal

to c so as to eliminate term J2 in (18). For the cases where h is not available or contains a

number of zeros, the method described below still applies with straightforward modifications.

Let x be the column vector that collects the variables in D and T̂ , thus J(D, T̂ ) is a function

of x, denoted by J(x). The algorithm starts with a trivial initial point x0 obtained by letting

D = I and T̂ = I . Suppose we are in the kth iteration to update the most recent point xk. A

quasi-Newton algorithm updates xk to xk+1 as

xk+1 = xk + λkdk (22)

in two steps: (i) Determine a search direction dk = −Skgk where gk = ∇J(x) is the gradient of

the objective function and Sk is a positive-definite approximation of the inverse Hessian matrix

of J(x). A popular quasi-Newton algorithm is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [19] which updates Sk through the recursive relation

Sk+1 = Sk +

(
1 +

γT
k Skγk

γT
k δk

)
δkδ

T
k

γT
k δk

− (δkγ
T
k Sk + Skγkδ

T
k )

γT
k δk

(23)

where S0 = I , δk = xk+1 − xk, and γk = gk+1 − gk. (ii) Once the search direction dk is

computed, the one-dimensional optimization (often called line search)

λk = arg minimize
λ

J(xk + λdk) (24)

is carried out to determine the value of λk. If the iteration progress measured by ‖xk+1 − xk‖,

is greater than a prescribed tolerance ε, then set k := k + 1 and repeat from Step (i), otherwise

the iteration is terminated and xk+1 is claimed to be a solution point.

The implementation of (22) requires the gradient of J(x). Closed form expressions for J(x)

with scalar, diagonal, and other types error-feedback matrix D are given in Appendix A.
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We stress that the objective function J in (18) is not convex with respect to variables in D and

t1, . . . , tn. As a result, a solution obtained by the BFGS algorithm can only be claimed to be

locally optimal. On the other hand, our computer simulations have indicated that the proposed

algorithm appears to be rather insensitive to the choice of initial point. The reader is referred to

Sec. III.D for more details.

D. Examples

We present two examples to illustrate the proposed optimization method. The first example

concerns a 3rd-order lowpass IIR digital filter which was also used in [8]. The second example

is about a 9th-order lowpass IIR filter which is used to demonstrate the ability of the proposed

algorithm to deal with relatively large number of variables.

Example 1 Consider a 3rd-order stable IIR lowpass digital filter whose controllable canonical

realization is denoted by (A, b, c, d)3 with

A =




0 1 0

0 0 1

0.339377 −1.152652 1.520167


 (25a)

b = [0 0 0.437881]T (25b)

c = [0.212964 0.293733 0.718718] (25c)

d = 6.59592 × 10−2 (25d)

The controllability Gramian Kc of the above filter has been normalized to satisfy the constraints

(Kc)ii = 1 for i = 1, 2, 3. Without error feedback and error feed-forward (i.e., D = 0 and

h = 0), the noise gain of filter (25) was found to be [8]

tr(Wo) = 11.1332

If one applies the method of [1][2] to (25) to obtain a realization (A, b, c, d)3 for roundoff

noise minimization (without error feedback and error feed-forward), then the noise gain was

reduced to [8]

tr(Wo) = 2.3554

Next, the feed-forward vector h is assumed to be equal to c, and we compute jointly opti-

mal error-feedback and state-space realization, with D being scalar and diagonal matrices, by
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solving the respective minimization problem (18) using BFGS updates. The total number of

variables involved in the optimization are 10 (for a scalar D) and 12 (for a diagonal D). The

initial point used corresponds to D = I and T̂ = I , and with ε = 10−8 the algorithm con-

verges with less than 20 iterations. The minimized noise gains obtained with separately and

jointly optimized error-feedback matrix D and feed-forward vector h of integer quantized, 3-

bit quantized, and infinite precision are given in Table I. For comparison purposes, Table I also

includes the noise gains obtained in [8] where the error-feedback matrix is optimized for a fixed

state-space realization that is optimal (without error feedback) for roundoff noise minimization.

These values are listed in Table I in the lines where “Separate” is indicated for the column

“Joint/Separate”. Form the simulation results, it is evident that the proposed joint optimization

offers consistent performance improvement for RN reduction.

In addition to the above initial point, as many as 20 randomly chosen initial points were also

used to test the robustness of the proposed algorithm. The solutions obtained with 18 of these

initial points were identical to the one described above. The solutions obtained with the other 2

initial points are different from the above-described solution with slightly degraded performance.

TABLE I

PERFORMANCE COMPARISON FOR EXAMPLE 1

Accuracy of D and h

Matrix D Optimization Infinite 3-Bit Integer

Method Precision Quantization Quantization

Null — 2.3554

Scalar Separate 0.7552 0.7607 1.3697

Joint 0.7537 0.7596 1.2825

Diagonal Separate 0.6246 0.6303 1.0108

Joint 0.6164 0.6268 1.0005

General — 0 0.0088 1.1468

Example 2 Now we consider a 9th-order stable IIR lowpass filter whose transfer function is
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denoted by

H(z) =
b1z

9 + b2z
8 + · · · + b9z + b10

a1z9 + a2z8 + · · · + a9z + a10

where the coefficients are given in Table II.

TABLE II

COEFFICIENTS OF H(z)

i ai bi

1 1 0.002198

2 −3.640015 −0.007993

3 7.148374 0.010478

4 −9.521133 −0.007251

5 9.297299 0.011297

6 −6.830931 −0.010582

7 3.754299 −0.017728

8 −1.485109 0.023996

9 0.384233 0.006712

10 −0.049851 0.046116

Next we obtain the controllable canonical realization of the filter and normalize its control-

lability matrix by scaling so as to satisfy the constraints (Kc)ii = 1 for i = 1, 2, . . . , 9. The

state-space realization obtained is denoted by (A, b, c, d)9 and its noise gain (without error

feedback and error feed-forward) was found to be

tr(Wo) = 3.1354 × 103

Without using error feedback and error feed-forward, the method of [1][2] was applied to obtain

a realization (A, b, c, d)9 for RN minimization, whose noise gain was reduced to

tr(Wo) = 2.5315

The proposed joint optimization method was then applied to the controllable canonical real-

ization with error-feedback matrix D being scalar and diagonal matrices. As in Example 1,
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h = c was assumed, and for both cases the same initial point, which corresponds to the choice

of D = I , T̂ = I , was used. With ε = 10−4, it took the algorithm 35 (for a scalar D) and 196

(for a diagonal D) iterations to converge. The minimized noise gains obtained with separately

and jointly optimized error-feedback matrix D and feed-forward vector h of integer-quantized,

3-bit quantized, and infinite precision are given in Table III. Again, for comparison purposes,

Table III also lists the noise gains obtained using separate realization and error-feedback matrix

optimization proposed in [8]. From the table, it is observed that the performance improvement

provided by the proposed joint optimization appears to be more pronounced. Based on this and a

large number of simulations conducted so far, we conclude that the proposed joint optimization

can offer improved performance gain for IIR state-space digital filters of relatively high order.

TABLE III

PERFORMANCE COMPARISON FOR EXAMPLE 2

Accuracy of D and h

Matrix D Optimization Infinite 3-Bit Integer

Method Precision Quantization Quantization

Null — 2.5315

Scalar Separate 1.0846 1.0994 1.6220

Joint 0.9545 0.9680 1.3650

Diagonal Separate 1.0219 1.0326 1.5070

Joint 0.7770 0.7958 1.1892

General — 0 0.0379 1.4509

IV. DISCRETE OPTIMIZATION OF ERROR-FEEDBACK MATRIX AND

ERROR-FEED-FORWARD VECTOR

A. Problem Statement

In the preceding section, state-space realization, error-feedback matrix and error-feed-forward

vector are optimized under the assumption of infinite-precision implementation. In [8], after a

(separately) optimized error-feedback matrix is obtained, its discrete counterpart with sum-of-

power-of-two (SP2) entries is generated by rounding. A question that naturally arises is whether
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or not “optimal” error-feedback matrix D and error-feed-forward vector h with SP2 components

can be computed based on the optimal infinite-precision D and h with much reduced compu-

tational complexity compared to what is required for a solution of an integer programming (IP)

problem. More specifically, here the term “an SP2 entry”, say γ, is referred to a real number

which can be expressed as

γ =
U∑

i=−L

γi2
i (26)

where γi ∈ {0, 1,−1}, and L and U are nonnegative integers defining the number of bits avail-

able for the representation of the integer and fractional parts of γ, respectively. In particular,

with L = 0, γ in (26) represents an integer between −(2U+1 − 1) and 2U+1 − 1.

Suppose (A, b, c, d)n is the state-space realization that, together with error-feedback matrix

Dopt and error-feed-forward vector hopt are obtained by the proposed joint optimization method.

We seek for a general matrix D and a general vector h that solve the discrete optimization

problem

minimize
D, h

I(D) = tr[(D − A)T Wo(D − A) + (c − h)T (c − h)] (27a)

subject to: all entries of D and h are SP2 (27b)

(D, h) is in the vicinity of (Dopt, hopt) (27c)

The precise meaning of the term “vicinity” in (27c) will become transparent shortly. The reason

we constrain our search to the vicinity of (Dopt, hopt) is purely technical: Since (Dopt, hopt)

is the optimal solution for the infinite precision case, it is reasonable to expect a good discrete

candidate nearby (Dopt, hopt); but more importantly, it is this constraint that allows one to

convert the problem at hand into a (−1, 1)-quadratic programming problem which admits a

semidefinite programming (SDP) relaxation [20] — a key step towards a near-optimal solution

with reduced computational complexity. Details of this development are given next.

B. Problem Conversion

First, note that the term (c − h)T (c − h) in (27a) does not depend on D, hence the problem

in (27) can be addressed by splitting it into two sub-problems as follows:

minimize
D

tr(DT WoD − 2DT WoA) (28a)

subject to: entries of D are SP2 (28b)
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D in the vicinity of Dopt (28c)

where the term AT WoA contained in the first term in (27a) has been dropped, and

minimize
h

tr[(c − h)T (c − h)] (29a)

subject to: all entries of h are SP2 (29b)

h in the vicinity of hopt (29c)

If we denote the vectors generated by stacking the columns of D, Dopt and WoA by d, dopt,

and p, respectively, and denote the block diagonal matrix diag{Wo, Wo, . . . , Wo} ∈ Rn2×n2

by Q, then the problem in (28) becomes

minimize
d

dT Qd − 2dT p (30a)

subject to: entries of d are SP2 (30b)

d in the vicinity of dopt (30c)

Let d be denoted by d = [d1 d2 · · · dn2 ]T . For a given bit number for the representation

of each component dk, the least SP2 upper bound dk and largest lower bound dk of the infinite-

precision dk can be identified. It follows that dk ≤ dk ≤ dk and in each open interval (dk, dk)

no SP2 terms with the given number of bits exist. Fig. 2 illustrates the first several components

dk and their bounds. The SP2 representation based on rounding is given by

d
(r)
k =




dk if dk − dk ≤ dk − dk

dk otherwise
(31)

We denote dr = [d
(r)
1 d

(r)
2 · · · d

(r)
n2 ]T and remark that although dr satisfies the constraints in

(30b) and (30c), in general dr does not minimize the objective function in (30a). As will be

shown in Sec. IV.C, however, the SP2 representation obtained by rounding is indeed the solution

of (30) when Dopt is scalar or diagonal.

Now denote the midpoint of each interval [dk, dk] as dmk = (dk + dk)/2 and a half of the

interval length as δk = (dk − dk)/2, the bounds dk and dk can then be selected as dmk + rkδk

with rk = 1 and rk = −1, respectively. This in conjunction with Fig. 2 explains the meaning of

the term “vicinity” in (30c). The vector d in (30) can now be expressed as

d = dm + ∆r (32)
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0
1 2 3

2δ3

d3

d3

d3

dk

Continuous coeff.
SP2 upper bound
SP2 lower bound

k

Fig. 2. Continuous components and their least SP2 upper bounds and largest SP2 lower bounds.

where dm = [dm1, dm2, · · · , dm,n2 ]T , ∆ = diag{δ1, δ2, · · · , δn2}, and r = [r1, r2, · · · , rn2 ]T ,

and up to a constant, the objective function in (30a) becomes rT Qδr − 2rT pδ where Qδ =

∆Q∆ and pδ = ∆(p−Qdm). Hence the discrete optimization problem in (30) can be formu-

lated as

minimize
r

rT Qδr − 2rT pδ (33a)

subject to: rk ∈ {−1, 1} for 1 ≤ k ≤ n2 (33b)

Since the components of Qδ and pδ are continuous-valued, the problem in (33) is a (−1, 1)-

mixed integer quadratic programming (MIQP) problem.

C. Two Simple Cases: Dopt is Scalar or Diagonal

The formulation in (33) applies to the case where the error-feedback matrix Dopt is a general

matrix. When Dopt is a diagonal or scalar matrix, the problem at hand is considerably simplified

in terms of the number of variables involved as well as problem complexity.

Case 1: If Dopt = αoptI , then D assumes the form D = αI and the objective function in (28a)
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becomes

tr(Wo)α
2 − 2 tr(WoA)α

where scalar α can be expressed as

α = αm + δr (34)

with

αm = (α + α)/2

α = least upper bound of αopt

α = largest lower bound of αopt

δ = (α − α)/2

r ∈ {−1, 1}

Hence, up to a constant, the objective function is given by

−2δr tr[Wo(A − αmI)]

Because δ ≥ 0, the objective function achieves its minimum if

r = sign{tr[Wo(A − αmI)]} (35)

It is known [8] that the infinite-precision αopt is given by

αopt =
tr(WoA)

tr(Wo)
(36)

It follows that the value of r in (35) can be evaluated as

r = sign[αopttr(Wo) − αmtr(Wo)] = sign(αopt − αm) (37)

where the second equality is based on the fact that tr(Wo) > 0. Consequently, if αopt ≥ αm,

then r = 1 and α = αm + δ = α; and if αopt < αm, then r = −1 and α = αm − δ = α. This

means that α can be obtained by simply rounding the value of αopt.

Case 2: If Dopt = diag{d(opt)
1 , d

(opt)
2 , . . . , d(opt)

n }, then D assumes the form D = diag{d1, d2, . . . , dn}
and the objective function in (28a) becomes

n∑
k=1

[(Wo)kkd
2
k − 2(WoA)kkdk] (38)
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Let dk = dmk + δkrk with dmk = (dk + dk)/2, δk = (dk − dk)/2, and rk ∈ {−1, 1}, (38) can be

written (up to a constant) as

−2
n∑

k=1

δkrk[(WoA)kk − dmk(Wo)kk]

whose minimum is achieved if

rk = sign[(WoA)kk − dmk(Wo)kk] for 1 ≤ k ≤ n (39)

because δk ≥ 0 for all k. From [8], it is known that the infinite-precision {d(opt)
k , 1 ≤ k ≤ n}

are given by

d
(opt)
k =

(WoA)kk

(Wo)kk

1 ≤ k ≤ n (40)

Hence rk in (39) can be evaluated as

rk = sign{(Wo)kk[d
(opt)
k − dmk]} = sign(d

(opt)
k − dmk)

where the second equality holds because (Wo)kk > 0. If d
(opt)
k ≥ dmk, then we have rk = 1 and

dk = dmk + δk = dk; if d
(opt)
k < dmk then rk = −1 and dk = dmk − δk = dk. Consequently, dk

can be obtained by rounding the value of d
(opt)
k .

In words, we conclude that in the cases of Dopt being a scalar or diagonal matrix, the opti-

mal error-feedback matrix S with SP2 entries can be obtained by simply rounding the infinite-

precision Dopt.

D. An Approximate Solution of Problem (33)

In this section, the problem in (33) is relaxed to a semidefinite programming (SDP) problem

so as to obtain a satisfactory approximate solution in polynomial time. Goemans and Williamson

[20] was among the first to propose an SDP relaxation of the MAX-CUT problem — a well-

known integer quadratic programming problem in graph theory. Following [20], SDP relaxation

of various combinatorial optimization problems have been reported in graph optimization, net-

work management, scheduling [27], filter designs [28][30], and other applications [29]. To the

knowledge of the authors, however, to date SDP relaxation has not been applied to obtain an

improved error-feedback matrix with SP2 entries for RN reduction. The first step towards a
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relaxed problem formulation is to write (33) as

minimize tr(Q̂R̂) (41a)

R̂ � 0 (41b)

(R̂)kk = 1 for 1 ≤ k ≤ N (41c)

rank(R̂) = 1 (41d)

where

Q̂ =

[
Qδ −pδ

−pT
δ 0

]
, R̂ =

[
R r

rT 1

]
(41e)

and N = n2 + 1. To see the equivalence of (41) to (33), we note that (33b) means

r2
k = 1 for 1 ≤ k ≤ n2 (42)

On the other hand, the rank condition in (41d) implies that the n2 × n2 matrix R in (41e) must

have the form R = rrT , i.e.,

R̂ =

[
rrT r

rT 1

]
=

[
r

1

]
[rT 1] (43)

which leads to the equivalence of (41c) to (42). Moreover, (43) implies (41b) and the objective

function in (41a) can be expressed as

tr(Q̂R̂) = rT Qδr − 2rT pδ

which is exactly the objective function in (33a).

The second step does the “relaxation” by dropping the rank condition in (41d), which leads

to the following optimization problem

minimize tr(Q̂R̂) (44a)

subject to: R̂ � 0 (44b)

(R̂)kk = 1 for 1 ≤ k ≤ N (44c)

The equality constraints in (44c) are automatically satisfied if R̂ assumes the form

R̂ =




1 ∗ · · · ∗
∗ 1

. . .
...

...
. . . . . . ∗

∗ · · · ∗ 1




(45)
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which contains N(N − 1)/2 independent parameters because R̂ is symmetric. Let R̂ = {r̂ij}.

The positive semidefinite constraint in (44b) can be written as

R̂ = I +
∑
i�=j

rij(I ij + Iji) � 0 (46)

where I ij is the matrix with zero entries except its (i, j)th component which assumes the value

of 1. With the form of R̂ in (46), the objective function in (44a) is obviously a linear function of

{rij}. Consequently, (44) is an SDP problem (see Eq. (8)).

Once (44) is solved for R̂, the solution vector r with ri ∈ {−1, 1} can be obtained in several

ways. A straightforward solution can be obtained based on (41e) which suggests

r = sign[R̂(1 : n2, N)] (47)

where R̂(1 : n2, N) denotes the first n2 components of the last column vector of R̂. At the cost

of more computations, an often improved solution can be obtained using an optimal rank-one

approximation of R̂ in the 2-norm sense. It is well-known that such an approximation is given

by λ1u1u
T
1 where λ1 and u1 are the largest eigenvalue of R̂ and the associated eigenvector,

respectively. If we write

u1 =

[
u

uN

]
(48)

then

R̂ ≈ λ1u1u
T
1 =

λ1

u2
N

[
ûûT û

ûT 1

]
(49)

where û = u/uN . On comparing (49) with (41e), it is obvious that, up to a positive factor, û is

a close resemblance of r. This suggests the solution

r = sign(u/uN) (50)

Once a binary vector r is obtained, vector d can be computed using (32) and a discrete error-

feedback matrix D can be formed using d.

Two remarks are in order. It is well-known [25] that the MIQP problem in (33) is NP-hard,

whose computational complexity grows exponentially with its problem size. On the other hand,

efficient interior-point algorithms with polynomial-time complexity for SDP problems have been

available since 1990’s [27]. It is important to note that the number of variables in the SDP
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problem (44) has increased to N(N − 1)/2 = n2(1 + n2)/2 while the number of variables in

the original problem (33) is n2. It is therefore expected that solving (44) becomes slow even

for a system of moderate order. This problem can be largely overcome by converting the SDP

problem into a dual SDP problem which involves only n2 variables. The reader is referred to

reference [30] for details. Our second remark is about the quality of the approximate solution

obtained by the SDP relaxation. It is known that for certain types of matrices Q̂, the approximate

solution by SDP relaxation is guaranteed to have excellent quality [20]. Although the matrix Q̂

for the problem at hand does not belong to the matrix class discussed in [20], our computer

simulations have demonstrated that the proposed SDP-relaxation-based method offers in many

cases near-optimal solutions.

E. Examples

We now apply the SDP-relaxation method to the two IIR filters examined in Sec. III.D.

Example 3 Consider the IIR filter in Example 1 where the state-space realization (A, b, c, d)3

satisfying the l2-norm dynamic range constraints was obtained by the method in [1][2]. Accord-

ing to Sec. III.B, we have the infinite-precision solution Dopt = A and hopt = c, which are

given by

Dopt =




0.460807 0.621155 0.154614

−0.436518 0.542428 0.491784

0.007819 −0.232128 0.516932




hopt = [ 0.780485 0.335409 0.241041 ]

A case of particular interest is when both D and h assume integer entries. In this case above

Dopt and hopt suggest the range U = 0 and L = 0. Three approaches, i.e., rounding, SDP

relaxation, and exhaustive search were used, where the exhaustive search evaluates the objective

function in (28a) for all possible combinations of upper and lower bounds of dij and finds the

D at which the function reaches its minimum. For the present example, a 9-entry Dopt means

that the exhaustive search requires a total of 29 function evaluations. The integer-optimal h

was obtained by rounding hopt to h = [1 0 0]. The D matrices obtained by rounding, SDP
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relaxation, and exhaustive search were as follows:

Drounding =




0 1 0

0 1 0

0 0 1




DSDPR =




0 1 0

0 0 1

0 0 0




Dexh =




0 1 0

0 0 1

0 0 0




which correspond to noise gains 1.1468, 0.6435, and 0.6435, respectively. Note that the SDP-

relaxation-based method offered considerably improved performance over the rounding ap-

proach and it indeed reached the minimum noise gain.

Example 4 Here we consider the 9th-order IIR filter in Example 2 where the optimized state-

space realization was obtained using the method in [1][2]. Since all entries of the infinite-

precision Dopt and hopt are less than one in magnitude, for the search of optimal integer-valued

D and h, U = 0 and L = 0 were assumed. Since there are 81 entries in D, exhaustive search

that would require 281 function evaluations turned out to be infeasible. The integer-optimal h

was obtained by rounding hopt which yielded h = 0, and the D matrices obtained by rounding

and SDP relaxation were found to be

Drounding =




0 −1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0



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DSDPR =




0 −1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0




which correspond to noise gains 1.4509 and 1.2792, respectively, representing a 12% improve-

ment in the SDP-relaxation solution over that obtained by rounding.

V. CONCLUSIONS

In this paper, joint optimization of error feedback/feed-forward and state-space realization for

RN minimization has been investigated in two different scenarios: Under the assumption of in-

finite precision for both error-feedback and coordinate transformation matrices, the problem at

hand is converted into a general unconstrained problem in which the previously reported opti-

mization for realization-only and error-feedback-only can be regarded as special cases; closed-

form formula for gradient evaluation is derived; and efficient quasi-Newton algorithms are ap-

plicable. In the second scenario, discrete optimization of error-feedback matrix under a given

state-space realization has been studied, in which the infinite-precision solution is utilized as

a reference point, and an SDP-relaxation method is proposed to obtain an approximate solu-

tion of the NP-hard mixed integer quadratic programming problem. Computer simulations have

demonstrated that in the case where a general error-feedback matrix is used, the approximate so-

lution offers improved performance over the rounding-based solution, and can indeed be optimal

or near optimal.
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APPENDIX A EVALUATION OF ∇J(x)

A.1 If D is a scalar matrix

The objective function in (20) has the form J(x) = tr(T̂MT̂
T
) which, in the light of (16),

can be expressed as

J(x) = tr




[
t1

‖t1‖
· · · tn

‖tn‖

]−1

M

[
t1

‖t1‖
· · · tn

‖tn‖

]−T

 (A1)

If D is a scalar matrix, D = αI , then vector x contains a total of n2 + 1 variables, i.e.,

α, t1, t2, . . . , tn. To compute ∂J(x)/∂tij , we perturb the ith component of vector tj by a

small amount, say δ, and keep the rest of T̂ unchanged. If we denote the perturbed jth column

of T̂
−1

by t̃j/‖t̃j‖, then we can write a linear approximation of t̃j/‖t̃j‖ as

t̃j

‖t̃j‖
≈ tj

‖tj‖
− δgij

where gij is a vector given by

gij =
1

‖tj‖3
(tijtj − ‖tj‖2ei) (A2)

and ei is the ith coordinate vector. Now let T̂ ij be the matrix obtained from T̂ with a perturbed

(i, j)th component, then up to the first order the matrix inversion formula [23, p. 655] gives

T̂ ij = T̂ +
δ(T̂ gij)(e

T
j T̂ )

1 − δeT
j T̂ gij

Consequently, we have

∂J(x)

∂tij
= lim

δ→0
[tr(T̂ ijMT̂

T

ij) − tr(T̂MT̂
T
)]/δ

= 2tr[(T̂ gij)(e
T
j T̂ )MT̂

T
]

= 2eT
j (T̂MT̂

T
T̂ )gij for 1 ≤ i, j ≤ n (A3)

Finally, we use (20) to compute

∂J(x)

∂α
= tr[T̂ (2αŴo − Â

T
Ŵo − ŴoÂ)T̂

T
] (A4)
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A.2 If matrix D contains certain number of zero components in fixed places

The type of D matrices we deal with here obviously includes the case of D being a diagonal

matrix. To evaluate the gradient of J in (18) where J2 = 0 is assumed, we write it as

J(x) = tr(T̂MT̂
T
) + tr(DT T̂ ŴoT̂

T
D) − 2tr(T̂ Â

T
ŴoT̂

T
D) (A5)

where

M = Â
T
ŴoÂ

and x in this case contains the nonzero entries of D plus vectors t1, t2, . . . , tn. To compute

∂J(x)/∂tij , we treat all the quantities other than tij in (A5) including D as constant terms. It

then follows from Sec. A.1 that

∂J(x)

∂tij
= 2β1 + 2(β2 − β3) for 1 ≤ i, j ≤ n (A6)

with

β1 = eT
j (T̂MT̂

T
T̂ )gij (A7)

β2 = eT
j (T̂ ŴoT̂

T
DDT T̂ )gij (A8)

β3 = eT
j T̂ (Â

T
ŴoT̂

T
D + ŴoÂT̂

T
DT )T̂ gij (A9)

Finally, using (A5) we compute for D = {dij} the derivative

∂J(x)

∂dij

= 2eT
j (DT T̂ − T̂ Â

T
)ŴoT̂

T
gij (A10)

In particular, if D is a diagonal matrix, i.e., D = diag{d1, d2, . . . , dn}, then

∂J(x)

∂di

= 2eT
i (DT T̂ − T̂ Â

T
)ŴoT̂

T
gii (A11)
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