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Abstract The problem of minimizing an L2-sensitivity measure subject to L2-

norm dynamic-range scaling constraints for state-space digital filters is formulated.

It is shown that the problem can be converted into an unconstrained optimization

problem by using linear-algebraic techniques. Next, the unconstrained optimization

problem is solved by applying an efficient quasi-Newton algorithm with closed-form

formula for gradient evaluation. The coordinate transformation matrix obtained is

then used to construct the optimal state-space filter structure that minimizes the

L2-sensitivity measure subject to the scaling constraints. A numerical example is

presented to illustrate the utility of the proposed technique.
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I. INTRODUCTION

The problem of realizing a fixed-point state-space digital filter with finite word

length (FWL) is a significant research topic, since the efficiency and performance

of the filter are directly affected by the choice of its state-space filter structure.

When a transfer function with infinite accuracy coefficients is designed so as to

meet the filter specification requirements and realized by a state-space model, in

order to implement the filter in a finite binary representation, the coefficients in the

state-space model must be truncated or rounded to fit the FWL constraints. This

coefficient quantization usually alters the characteristics of the filter. For instance,

it may change a stable filter to an unstable one. This motivates the study of the

coefficient sensitivity minimization problem. In the literature, two main classes of

techniques have been proposed for constructing state-space digital filters that mini-

mize the coefficient sensitivity in [1]-[10]: L1/L2-sensitivity minimization [1]-[5] and

L2-sensitivity minimization [6]-[10]. It has been argued [6]-[10] that the sensitivity

measure based on the L2 norm is more natural and reasonable relative to that based

on the L1/L2-sensitivity minimization. The L1/L2-sensitivity minimization and L2-

sensitivity minimization have also been considered in linear continuous-time systems

in [11] and [10], respectively. However, to our best knowledge, there is no study for

the minimization of the L2-sensitivity subject to the L2-norm dynamic-range scaling

constraints for state-space digital filters, although it has been known that the use

of scaling constraints can be beneficial for suppressing overflow oscillation [12],[13].

This paper investigates the problem of minimizing the L2-sensitivity measure sub-

ject to L2-norm dynamic-range scaling constraints for state-space digital filters. To

this end, we introduce an expression for evaluating the L2-sensitivity and formulate

the L2-sensitivity minimization problem subject to the scaling constraints. Next,

the constrained optimization problem is converted into an unconstrained optimiza-

tion problem by using linear-algebraic techniques. The unconstrained optimization

problem is then solved using an efficient quasi-Newton algorithm [14]. A numerical

example is presented to demonstrate that the proposed algorithms offer reduced

L2-sensitivity compared with that obtained using the conventional methods.
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Throughout In denotes the identity matrix of dimension n × n. The transpose

(conjugate transpose) of a matrix A and trace of a square matrix A are denoted

by AT (A∗) and tr[A], respectively. The direct sum of matrices and ith diagonal

element of a square matrix A are denoted by ⊕ and (A)ii, respectively.

II. L2-SENSITIVITY ANALYSIS

Consider a stable, controllable and observable state-space digital filter

x(k + 1) = Ax(k) + bu(k)

y(k) = cx(k) + du(k)
(1)

where x(k) is an n × 1 state-variable vector, u(k) is a scalar input, y(k) is a scalar

output, and A, b, c and d are real constant matrices of appropriate dimensions. The

transfer function of (1) is given by

H(z) = c(zIn − A)−1b + d. (2)

Definition 1 : Let X be an m × n real matrix and let f(X) be a scalar complex

function of X, differentiable with respect to all the entries of X. The sensitivity

function of f with respect to X is then defined as

SX =
∂f

∂X
, (SX )ij =

∂f

∂xij
(3)

where xij denotes the (i, j)th entry of matrix X.

Definition 2 : Let X(z) be an m×n complex matrix-valued function of a complex

variable z and let xpq(z) be the (p, q)th entry of X(z). The L2-norm of X(z) is then

defined as

‖X(z)‖2 =


 1

2π

∫ 2π

0

m∑
p=1

n∑
q=1

∣∣∣xpq(e
jω)
∣∣∣2 dω




1
2

=

(
tr

[
1

2πj

∮
|z|=1

X(z)X∗(z)
dz

z

]) 1
2

.

(4)

From (2), Definition 1 and Definition 2, the overall L2-sensitivity measure for the

state-space digital filter in (1) is defined as

S =

∥∥∥∥∥∂H(z)

∂A

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂H(z)

∂b

∥∥∥∥∥
2

2

+

∥∥∥∥∥∂H(z)

∂cT

∥∥∥∥∥
2

2

=
∥∥∥[F (z)G(z)] T

∥∥∥2

2
+
∥∥∥GT (z)

∥∥∥2

2
+ ‖F (z)‖2

2

(5)
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where

F (z) = (zIn − A)−1b, G(z) = c(zIn − A)−1.

The term d in (2) and the sensitivity with respect to it are coordinate-independent

and therefore they are neglected here.

It is easy to show that the L2-sensitivity measure in (5) can be expressed as

S = tr[MA] + tr[W o] + tr[Kc] (6)

where

MA =
1

2πj

∮
|z|=1

[F (z)G(z)] TF (z−1)G(z−1)
dz

z

Kc =
1

2πj

∮
|z|=1

F (z)F T (z−1)
dz

z

W o =
1

2πj

∮
|z|=1

G T (z)G(z−1)
dz

z
.

The matrices Kc and W o are called the controllability and observability Gramians,

respectively. The Gramians MA, Kc and W o can be obtained by solving the

Lyapunov equations [15]:

[ ∗ ∗
∗ MA

]
=

[
A bc

0 A

]T [ ∗ ∗
∗ MA

]

·
[

A bc

0 A

]
+

[
In 0

0 0

]

Kc = AKcA
T + bbT

W o = ATW oA + cTc

(7)

Utilizing the Cauchy integral theorem, matrix MA in (6) can be written as

MA =
∞∑

k=0

HT (k)H(k) (8)

where

H(k) =
k∑

p=0

ApbcAk−p.

If a coordinate transformation defined by

x(k) = T −1x(k) (9)
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is applied to the state-space model (1), then the new realization (A, b, c, d)n can be

characterized by

A = T −1AT , b = T −1b, c = cT . (10)

From (2) and (10), it is clear that the transfer function H(z) is invariant under

the coordinate transformation in (9). The coordinate transformation defined by (9)

transforms the Gramians {MA, Kc, W o} to {MA, Kc, W o}, and changes (6) to

S(T ) = tr[MA] + tr[W o] + tr[Kc] (11)

where

MA =
∞∑

k=0

T T HT (k)T −T T −1H(k)T

= T TM̂AT

[ ∗ ∗
∗ M̂A

]
=

[
A bc

0 A

]T [ ∗ ∗
∗ M̂A

]

·
[
A bc

0 A

]
+

[
T−T T −1 0

0 0

]

W o = T TW oT , Kc = T −1KcT
−T .

Moreover, if the L2-norm dynamic-range scaling constraints are imposed on the new

state-variable vector x(k), then it is required that for i = 1, 2, · · · , n

(Kc)ii = (T −1KcT
−T )ii = 1. (12)

The problem of L2-sensitivity minimization subject to L2-norm dynamic-range

scaling constraints is now formulated as follows: For given A, b and c (and therefore,

MA, Kc and W o), obtain an n × n nonsingular matrix T which minimizes (11)

subject to the constraints in (12).

Remark 1: By definition, the sensitivity measure described in this paper has no

upper bound but does have a lower bound (say zero) because the sensitivity measure

is always nonnegative. This observation, in conjunction with the fact that both the

objective function (defined by (11)) and constraint functions (defined by (12)) are

continuously differentiable, leads us to conclude that the problem of minimizing

S(T ) subject to (12) admits local solutions. On the other hand, since S(T ) and
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the constraint functions are nonconvex, the best that an optimization algorithm can

claim is that it identifies a local minimizer of the problem at hand.

Remark 2: It is well known that constrained minimization problems, especially

the minimization of nonconvex function subject to nonconvex constraints, are in

general considerably more involved than their unconstrained counterpart, but the

problem is that it is not always possible to convert a nonconvex constrained problem

to an unconstrained one. What is done in the next section is to show that in the

present case we do have an equivalent unconstrained problem to work with.

III. L2-SENSITIVITY MINIMIZATION UNDER SCALING

CONSTRAINTS

When the state-space model (1) is assumed to be stable and controllable, the

controllability Gramian Kc is symmetric and positive-definite [15]. This implies that

K1/2
c satisfying Kc = K1/2

c K1/2
c is also symmetric and positive-definite. Defining

T̂ = T T K
− 1

2
c , (13)

the constraints in (12) can be expressed as

(T̂
−T

T̂
−1

)ii = 1, i = 1, 2, · · · , n. (14)

The constraints in (14) simply state that each column in T̂
−1

must be a unity vector.

If matrix T̂
−1

is assumed to have the form

T̂
−1

=

[
t1

||t1|| ,
t2

||t2|| , · · · ,
tn

||tn||
]
, (15)

then (14) is always satisfied. From (13), it follows that (11) is changed to

Jo(T̂ ) = tr

[ ∞∑
k=0

T̂ Ĥ
T
(k)T̂

−1
T̂

−T
Ĥ(k)T̂

T
]

+tr[T̂ Ŵ oT̂
T
] + tr[T̂

−T
T̂

−1
]

(16)

where

Ĥ(k) = K
− 1

2
c H(k)K

1
2
c , Ŵ o = K

1
2
c W oK

1
2
c .
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From the foregoing arguments, the problem of obtaining an n×n nonsingular matrix

T which minimizes (11) subject to the constraints in (12) can be converted into an

unconstrained optimization problem of obtaining an n × n nonsingular matrix T̂

which minimizes (16).

Remark 3: The use of a structured T matrix as specified in (15) is merely

to eliminate the constraints in (12). Needless to say, this increases the degree of

nonlinearity for the objective function in (16). However, due to the equivalence of the

two optimization problem, it can be concluded that the unconstrained minimization

of the objective function in (16) admits at least local solutions.

Now we apply a quasi-Newton algorithm to minimize (16) with respect to matrix

T̂ given by (15). Let x be the column vector that collects the variables in matrix

T̂ . Then Jo(T̂ ) is a function of x, which we denote by J(x). The algorithm starts

with a trivial initial point x0 obtained from an initial assignment T̂ = In. Then,

in the kth iteration a quasi-Newton algorithm updates the most recent point xk to

point xk+1 as

xk+1 = xk + αkdk (17)

where [14]

dk = −Sk∇J(xk)

αk = arg min
α

J(xk + αdk)

Sk+1 = Sk +
(
1 +

γT
k Skγk

γT
k δk

)
δkδ

T

k

γT
k δk

− δkγT
k Sk+Skγkδ

T

k

γT
k δk

S0 = I, δk = xk+1 − xk, γk = ∇J(xk+1) −∇J(xk).

Here, ∇J(x) is the gradient of J(x) with respect to x, and Sk is a positive-definite

approximation of the inverse Hessian matrix of J(x). This iteration process contin-

ues until

|J(xk+1) − J(xk)| < ε (18)

where ε > 0 is a prescribed tolerance. If the iteration is terminated at step k, then

xk is viewed as a solution point.

The implementation of (17) requires the gradient of J(x). Closed-form expressions

for ∇J(x) are given below.
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∂Jo(T̂ )

∂tij
= lim

∆→∞
Jo(T̂ ij) − Jo(T̂ )

∆

= 2β1 − β2 + 2β3

(19)

where T̂ ij is the matrix obtained from T̂ with a perturbed (i, j)th component, which

is given by

T̂ ij = T̂ +
∆T̂ gije

T
j T̂

1 − ∆eT
j T̂ gij

β1 = eT
j

∞∑
k=0

T̂ Ĥ
T
(k)T̂

−1
T̂

−T
Ĥ(k)T̂

T
T̂ gij

β2 = eT
j

∞∑
k=0

T̂
−T

Ĥ(k)T̂
T
T̂ Ĥ

T
(k)gij

β3 = eT
j T̂ Ŵ oT̂

T
T̂ gij

gij = ∂

{
tj

||tj ||
}

/∂tij

=
1

||tj||3 (tijtj − ||tj||2ei)

where ei denotes an n × 1 unit vector whose ith element equals unity.

Remark 4: Although a global solution cannot be claimed, it may be worthwhile

to report that we have applied the proposed algorithm to a significant number of

state-space filters of various sizes, and without exception the algorithm converges to

a solution that outperforms their counterparts obtained by the methods in [10] and

[13]. In this regard, it is interesting to note that the unconstrained solution offered

by the method in [13] is known to be globally optimal.

IV. NUMERICAL EXAMPLE

Consider a state-space digital filter, (1), specified by

A =




0 1 0

0 0 1

0.453770 −1.556160 1.974860




b =
[

0 0 0.242096
]T

c =
[

0.095706 0.095086 0.327556
]
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d = 0.015940

whose poles are at z = 0.6578817 and z = 0.6584892 ± j0.5060989.

Using (7), the Gramians MA, Kc and W o are calculated as

MA =




8.921380 −22.046457 17.916285

−22.046457 55.671710 −46.052011

17.916285 −46.052011 42.522082




Kc =




1.000000 0.872501 0.562821

0.872501 1.000000 0.872501

0.562821 0.872501 1.000000




W o =




0.820741 −2.035328 1.628161

−2.035328 5.307273 −4.264903

1.628161 −4.264903 3.941491




and the L2-sensitivity measure S in (6) is found to be

S = 120.184677.

Choosing T̂ = In (therefore T = K1/2
c in (13)) as the initial estimate and ε =

10−7, it took the proposed quasi-Newton algorithm 15 iterations to converge to

T̂
opt

=




0.376709 −0.319162 0.256412

0.910212 0.154833 −0.218993

0.172058 0.934967 0.941433




or equivalently,

T opt =




0.913655 −0.857313 0.877296

0.905773 −0.121938 0.493844

0.576905 0.415235 0.377361




where (16) is used by truncating the infinite sum with k = 100. In this case, the

L2-sensitivity measure in (11) is minimized subject to the scaling constraints in (12)

to

S(T ) = 8.683279.

The optimal state-space filter structure that minimizes the L2-sensitivity measure,

(11), subject to the scaling constraints in (12) is then constructed by substituting

T = T opt into (10) as
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A =




0.586086 0.567626 0.080361

−0.450289 0.725542 0.188298

−0.017947 −0.021129 0.663233




b =



−0.362927

0.393927

0.762923




c =
[

0.362538 0.042368 0.254527
]

d = 0.015940.

The L2-sensitivity profile of first 18 iterations is given in Table I, where Jo(T̂ ) in

(16) is used to evaluate the L2-sensitivity under the same truncation of the infinite

sum. From Table I, it is seen that with a tolerance ε = 10−7 the algorithm converges

with 15 iterations.

TABLE I

L2-SENSITIVITY PROFILE OF FIRST 18 ITERATIONS

k L2-Sensitivity k L2-Sensitivity

120.18467700 9 8.80368098

0 10.71346288 10 8.70867352

1 10.70375499 11 8.70588841

2 10.70375483 12 8.69200561

3 10.33912612 13 8.69014918

4 10.27174422 14 8.68509811

5 9.59476520 15 8.68327357

6 8.99317571 16 8.68327359

7 8.93852568 17 8.68327362

8 8.88777828 18 8.68327366

For comparison purposes, the method reported in [10] is applied to minimize

the L2-sensivivity measure in (11) (without considering the scaling constraints in

(12)) and the resulting optimal coordinate transformation matrix is scaled by an

appropriate nonsingular diagonal matrix, so that (12) is satisfied. The result is

S(T ) = 9.817579
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where

T =




1.0 0.0 0.0

0.594723 0.562052 0.0

0.221714 0.736136 0.306792




Moreover, by applying the method reported in [13], the optimal coordinate trans-

formation matrix T is constructed as

T =



−0.605406 −0.119653 1.219423

0.107851 0.097317 0.941720

0.540830 −0.071898 0.569047




which minimizes the roundoff noise at the filter output subject to the scaling con-

straints in (12). The L2-sensitivity of the resulting filter with minimum roundoff

noise is computed as

S(T ) = 8.797931.

It is noted that these values of the L2-sensitivity are larger than S(T ) = 8.683279

obtained by the proposed method.

Finally, the results obtained in the simulation are summarized in Table II. From

this table, it is observed that the proposed technique offers the smallest L2-sensitivity

subject to the L2-norm dynamic-range scaling constraints relative to the existing

methods presented in [10] and [13] for state-space digital filters.

TABLE II

L2-SENSITIVITY COMPARISON

Realization L2-Sensitivity

Original 120.184661

Proposed 8.683279

Method in [10] 9.817579

Method in [13] 8.797931
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V. CONCLUSION

The problem of minimizing the L2-sensitivity of a state-space digital filter sub-

ject to L2-norm dynamic-range scaling constraints has been investigated. It has

been shown that the L2-sensitivity minimization problem subject to the scaling

constraints can be converted into an unconstrained optimization problem by using

linear algebraic techniques. An efficient quasi-Newton algorithm has been applied

to solve the unconstrained optimization problem. The coordinate transformation

matrix obtained has allowed us to construct the optimal state-space filter struc-

ture. Our computer simulation results have demonstrated the effectiveness of the

proposed technique compared with the existing methods [10],[13].
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