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Lo-Sensitivity Minimization of One- and
Two-Dimensional State-Space Digital Filters
Subject toL,-Scaling Constraints

Takao HinamotoFellow, IEEE,Ken-ichi lwata and Wu-Sheng Likellow, IEEE

Abstract—We investigate the problem of minimizing an Lo- [15] and Lo-sensitivity minimization problem [10],[16]-[19]
sensitivity measure subject toLz-norm dynamic-range scaling have also been investigated. However, to our best knowledge,
constraints for one-dimensional (1-D) as well as a class of two- little has been done for the minimization df,-sensitivity

dimensional (2-D) state-space digital filters, where the 2-D digital biect to thel, d . i traints f
filters are described by a transposed structure of the Fornasini- subject to 2-N0rm dynamic-range scaling constraints for

Marchesini second local state-space model. In each case, a novebtate-space digital filters [20], although it has been known that

iterative technique is developed to solve the constraint optimiza- the use of scaling constraints can be beneficial for suppressing

tion problem directly. Our solution methods are largely based overflow oscillations [21],[22].

on thg use of a ngrange function and some matrix-theoretic This paper investigates the problem of minimizing &g

techniques. Numerical examples are presented to demonstrate o . . .

the effectiveness of the proposed techniques. sensitivity measure subject #6,-norm dynamic-range scaling
constraints for state-space digital filters as well as a class of 2-

D state-space digital filters. To this end, an expression for eval-

| uating theLo-sensitivity is introduced, and the,-sensitivity

Index Terms— L»-sensitivity minimization, Lz-norm dynamic-
range scaling constraints, Lagrange’s function, optimal realiza-
tion, state-space digital filters, a class of 2-D state-space digital

filters. minimization problem subject to the scaling constraints is for-
mulated in each case. An iterative algorithm is then developed
[. INTRODUCTION in each case to solve the constraint optimization problem

F h decad he i fini ql directly. Our solution methods are largely based on the use
FV\?Lr va?r t rc;e Eca €s, t. e.fl_ssue on m'tﬁ wor 'engétga Lagrange function and some matrix-theoretic techniques.
( ) effects has been a significant research topic in t ext, the coordinate transformation matrix is ajusted without

|mpler(rj1en|t athOI’;f of frl]xed-rk))omt sta;tje-space E'g'f[al f;:ters. _%It ring the Lo-sensitivity to satisfy the scaling constraints,
great deal of efforts have been made to synthesize the oplimgy ;5" sed to construct the optimal state-space filter struc-

FWL state-space filter structures that minimize the FWl o yhat minimizes the.,-sensitivity measure subject to the
gffects on the eff|_<:|ency anq performance qf the filter actual aling constraints. Two numerical examples are presented to
implemented. This paper is concerned with the problem 8Emonstrate the utility of the proposed algorithms.

minimizing coefficient sensitivity in state-space digital filters. Unlike the work reported in [20], the proposed iterative

Given a transfe_r_fun_cnon W'Fh infinite accuracy Coemc'_em?echnique relies on neither converting the problem into an
that meets specification requirements, we often need to imple;

. ) T ‘Unconstrained optimization formulation nor using a quasi-
ment its state-space model using a finite binary representatlmwton algorithm. From computer simulation results, it has
This requires the truncation or rounding of coefficients in t '

: . fimed out that the proposed iterative technique requires less
state-spape_model to fit the _FWL qonstralnts. As a result, t an half amount of computations to attain practically the same
characteristics of a stable filter might be so altered that t 8nvergence accuracy as compared to the technique reported
filter may become unstable. This motivates the study of tk

- s o ) 20].
coefficient sensitivity minimization problem. In the literature, [20] . . . . .

) o o hroughoutI,, denotes the identity matrix of dimension
techniques for synthesizing the state-space descriptions thaT

minimize the coefficient sensitivity can be divided into twcﬁ ;cg.o-ll‘_gestrigrss(:r?aetr(i;caoglrgg;;gzzgsti:?ezjz)aawfu[%d
main classesL;/L.-mixed sensitivity minimization [1]-[5] 9 '

and L-sensitivity minimization [6]-[10]. In [6-[10], it has respectively. Theth diagonal element of a square matu

been argued that the sensitivity measure based ohshreorm is denoted by(A);.

only is more natural and reasonable relative to the'La- 1. L,-SENSITIVITY MINIMIZATION FOR 1-D
mixed sensitivity minimization. For 2-D state-space digital filFILTERS

ters, theL, /Lo-mixed sensitivity minimization problem [11]- . )
A. Lo-Sensitivity Analysis
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where (k) is an n x 1 state-variable vectoru(k) is a In order to evaluate the term[¥(I,)] in (6), one only
scalar input,y(k) is a scalar output, andi,b,c and d are needs to computd/ (P) with P = I,,. However, the general
real constant matrices of appropriate dimensions. The transfefution method for computingVZ (P) with an arbitrary
function of the filter in (1) is given by positive-definite matrixP will be required in our subsequent
_ development. We shall address this issue shortly.
_ o 1
H(z) = c(zIn — A)"b+d. @ it a coordinate transformation defined by
The L'g-'s'ensmvny of the filter in (1) is def|n'ed as follows. E(k) =T 'a(k) ®)
Definition 1: Let X be anm x n real matrix and letf(X)

be a scalar complex function &, differentiable with respect is applied to the filter in (1), then the new realization
to all the entries ofX. The sensitivity function off with (A, b,€,d), can be characterized by
respect toX is then defined as A—T AT Bb=T"b c—=ecT

B ) _ ’ 7 ©)

Sx = a—;;, (Sx)is = L (3) K. =T 'K.T™ ", W,=T"W,T.

From (2) and (9), it is clear that the transfer functiéiiz) is
invariant under the coordinate transformation in (8). In addi-
tion, under the coordinate transformation in (8), the Gramian
M (I,)) becomesI”” M (P)T and theL,-sensitivity measure
in (6) is changed to

- aa:ij
wherez;; denotes thds, j)th entry of matrixX.
Definition 2: Let X (z) be anm x n complex matrix-valued

function of a complex variable and letz,,(z) be the(p, ¢)th
entry of X (z). The Ly-norm of X (z) is then defined as

1 s S1(P) = tr{M(P)P)] + tr{W ,P] + tr([ K .P~* 10
1X (2)||, = [%/ ZZ|xm(€J )| dw] 1(P) [M(P)P] [ ] [ ] (10)
0 p=1g=1 @) where P = T'T" . Noting that
1 1\ 2 F(2)G(z) = T 'F(2)G(z)T
215 Jiz1=1 z 1 2I,—A  —bc 0
=[T7" 0] R T
From (2) and Definitions 1 and 2, the overall-sensitivity " (11
measure for the filter in (1) is defined as Where
2 2 2
el e
C
? ? 9 ? ®) and denoting the observability Gramian of the system in (11)
= [[IF ()G || + HGT(Z)H +[IF (2)|I3 by Y, it can be shown for an arbitra? = TT", the matrix
H 2 M (P) can be obtained by solving the Lyapunov equation
where
T -1
A b A b P 0
F(z) = (:I, - A)7'b,  G(2) = c(zL, — A)". Y = { 0 ﬂ Y { 0 ﬂ + { o 0 ] (12)

The termd in (2) and the sensitivity with respect to it areand then taking the lower-right x n block of Y as M (P),
coordinate-independent and therefore they are neglected hege.

) It is easy to show that thé&,-sensitivity measure in (5) can M(P) = [ 0 I, } y { 0 } . (13)
e expressed as I,
Sy = tr[M(I,)] +tr[W,] +tr[K ] (6) Moreover, if the Ly-norm dynamic-range scaling constraints
are imposed on the new state-variable vecil), it is
where required that
1 dz _
K.=— F()FT(z7H = (K= (T 'K.T T)y;=1 fori=12,---,n.
215 J)z=1 z
(14)
1 T . dz The problem ofLs-sensitivity minimization subject td.o-
W,=— G (2)G(z7")— i . :
275 Jjz1=1 z norm dynamic-range scaling constraints can now be formu-
1 d lated as follows:For given A, b and ¢, obtain ann x n
M(P) = poe [F(2)G(2)] TP‘lF(z‘l)G(z‘l)j nonsingular matrixI" which minimizes the sensitivity measure
|z|=1

S1(P) in (10) subject to the scaling constraints in (14)
The matricesK . and W, in (6) are called the controllability B
and observability Gramians, respectively, and can be obtainel
by solving the following Lyapunov equations [23]: The problem of minimizingS; (P) in (10) subject to the
constraints in (14) is a constrained nonlinear optimization
problem where the variable matrix iB. If we sum then
K.= AK A" + bb" (7) constraints in (14) up, then we have

W,=A"W,A+c"ec. T 'K T 7 =tr[K.P '] =n. (15)

2-Sensitivity Minimization
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Consequently, the problem of minimizing (10) subject to thie to relax it into the following recursive second-order matrix
constraints in (14) can belaxedinto the following problem: equation:

minimize Sy (P) in (10)
subject to t[,KCP—l] — (16) whgrePi is assumed to be known frqm the preyious recursion.
Noting thatP W P = M has the unique solution [5]:

Although clearly a solution of problem (16) is not necessarily L L L .
a solution of the problem of minimizing (10) subject to the P=W :W:MW:?2]2W "2 (21)
cons.tralnts in (14), |t_ is |mporta}nt to stress t.hat the UIt'maWhereW > 0andM >0 are symmetric, the solutiof?; . |
solution we seek for is not matri® but a nonsingular matrix of (20) is given by
T that is related to the solution of the problem of minimizing
(10) subject to the constraints in (14) Bs= TT7. If matrix P4 :F(P,»)*%[F(Pi)%G(Pi, )\i)F(PZ-)%]%F(Pi)*%.
P is a solution of problem (16) and'/? denotes a matrix (22)
square root ofP, i.e., P = P/2P'/? then it is easy to see To derive a recursive formula for the Lagrange multiplier
that any matrixT' of the form T = P'/?U whereU is an we employ (19) to write
arbitrary orthogonal matrix still holds the relatidd = TT7T. )
As will be shown shortly, under the constrairftkf, P '] = n U[PF(P) =t[N(P)P™ ] +n(A+1) (23)
in (16) there exists an orthogonal matilix such that matrix \hich naturally suggests the following recursion far
T = P'/?U satisfies the constraints in (14), whele/? is a

square root of the solution matriR for problem (16). \. _ UPiF(P)] — rN(P)P; '] L @)
It is for these reasons we now address problem (16) as the o n ’

first step of our solution strategy. To solve (16), we define thg the above algorithm,\; is obtained from the previous

Lagrange function of the problem as iteration. The iteration process starts wih = I,, and any

value of \; > 0, and continues until (19) is satisfied within a
(17) prescribed numerical tolerance.
+ AWK P —n) As the second step of the solution strategy, we now turn
our attention to the construction of the optimal coordinate
Fansformation matrid’ that solves the problem of minimizing
10) subject to the constraints in (14). As analyzed earlier, the
optimal T' assumes the form

J1(P,)\) = tr{ M (P)P] + tt[W ,P] + tr[K .P~ "]

where \ is a Lagrange multiplier. It is well known that the
solution of problem (16) must satisfy the Karush-Kuhn-TuckA(
(KKT) conditionsdJ; (P, A)/0P = 0 anddJ, (P, \)/OX =0
where the gradients are found to be [24]

T = P: 25
ON(PN) _ M(P)- P 'NP)P! v (29)
opP . . whereP'/? is the square root of the matriR obtained above,
+W,o-(A+1)PT K. P (18) and U is ann x n orthogonal matrix to be determined as
0JL (P, \) —WK.P Y n follows. From (Szand (25) it follows that
oA K,=T'K.T "
where N (P) can be obtained by solving the following Lya- _UTPiK PiU (26)
punov equation: - ¢ :
T In order to find an orthogonal matri such that the matrix
Z = {A bc} VA {A bc} + { 00 ] K., in (26) satisfies the constraints in (14), we perform the
0 4 0 4 0 P eigenvalue-eigenvector decomposition for the positive definite
and then taking the upper-left x n block of Z, i.e., matrix P~ /2K .P~'/? as
-3 -3 _ T
N(P)=[1, O}Z[IO”]. PK.P: = ROR @7)

where ® = diag{6;,62,---,0,} with 6, > 0 and R is an
Note that matrixZ corresponds to the controllability Gramianorthogonal matrix. Next an orthogonal mati such that
of the system in (11).

Hence the KKT conditions become L
PF(P)P = G(P,)) 19 sosT_ | * 1 v (29)
tr[chil]:n : Lok
*  --c k1
where
F(P)=M(P)+W, can be obtained by numerical manipulations [22, p.278].

Using (26), (27) and (28), it can be readily verified that the
orthogonal matrixt/ = RS” leads to aK, in (26) whose
The first equation in (19) is highly nonlinear with respect tdiagonal elements are equal to unity, hence the constraints in
P. An effective approach to solving the first equation in (19)14) are now satisfied. This matrik together with (25) gives

G(P,\) = N(P)+ (A +1)K..
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the solution of the problem of minimizing (10) subject to the From (31) and Definition 1, it can easily be verified that

constraints in (14) as
8H(zl, 22) 1

= F T
T = PzRST. (29) DA, 2, [F (21, 22)G (21, 22)]
8H(z1,22) N T
Il. Lo-SENSITIVITY MINIMIZATION FOR 2-D b G (21,22) (33)
DIGITAL FILTERS
M :ijlF(Zl,ZQ), k:]_,Q
A. Lo-Sensitivity Analysis ocl

Consider a local state-space model;, Az, b, ¢y, ca,d), where
[25] for a class of 2-D state-space digital filters that is
described by

— — -1
F(Zl,ZQ) = (Inle 1A1722 1A2) b

] ] G(Zl,ZQ) = (Zl_lcl + 22_102)
2(i+1,j+1) (In =27 AL — 251 A)

y(i,7)

x(i,j+1)
w(i+1,7)

-1

A, AQ]

(&1 Co

The termd in (31) and its sensitivity are independent on the
u(i, 7) (30) LSS coordinate and therefore they are neglected here.
Definition 3: Let X (21, 22) be anm x n complex matrix
valued function of the complex variables and z;. The Lo
wherex(i, j) is ann x 1 local state vectory(i, j) is a scalar norm of X (21, z2) is then defined as
input, y(i,7) is a scalar output, andi;, As,b,c1,c2 andd
are real constant matrices of appropriate dimensions. The 2-[).X (z1, z2)||,
filter in (30) is assumed to be stable, locally controllable and 1 oar 2 M n
locally observable. The transfer function of the 2-D filter in = 7/ / ZZ |zpq (€747, €742) | dw1dw2
(30) is given by (27

b

+
d

p=1g=1

1
H(z1,29) = (27 er + 25 M ea) _ ]{ X( dzidzy |\ 2
1 (31) 277] Iy JTs (21, 22) X7 (21, 22) Z1%2

. (In—Zl_lAl — 29 1A2) b+d (34)
wherel’; = {z; : |z;| =1} for i =1, 2.
A block diagram of the local state-space (LSS) model in From (33) and Definition 3, the overall,-sensitivity mea-

(30) is shown in Fig. 1. It is interesting to note that sure for the 2-D filter in (30) is evaluated by
—1 2 2 2
HT(z1,29) = bT (I,, — 27 AT — 271 AT OH (21, z2) O0H (21, 22)
(21, 22) ( 1 A1 T 2 2) (32) Sy = Z A 2
(Z1 cT + 25 02)+d k=1
2
; . . O0H (21, 22)
can be viewed as a transfer function of the Fornasini- Z el
Marchesini second LSS model [26]. Sind&(z1,z2) = k= k 2

HT (21, 2), the LSS model in (30) corresponds to a transposed

_ T2 T 2
structure of the Fornasini-Marchesini second LSS model. = 2[|[F (21, 22) G (z1, )] 7|, + HG (ZI’ZQ)HQ

+2||F (21,225

- (35)
_<lX_(ITJi‘>_ The Ly-sensitivity measure in (35) can be written as
A
1] © Sy = 2t[M(I,,)] + tr[W,] + 2tr[K ] (36)
A
u(ij) Y Y(iJj)
—4>—{>—>@—ox(1‘+1, J+1) @ w» Where
by t ! K-t % fp(z o) FT (o, 25 ) E1d2
221 c (27_(_])2 e 1,42 1 %2 2129
| [ 1 T 1 -1 ledZQ
A X We= g , 5 G T
d 1
(I M(P)= F T p-1
|/ ( ) (27’(’])2 f;l éz[ (2’1, ZQ)G(Zly 22)}
Fig. 1. A LSS model for 2-D filters. F (zfl, Z;l)G(Zl 1o P )dzldzz

2122
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Matrices K., W, and M (P) are called 2-D Gramians andwhere X\ is a Lagrange multiplier. As is well known, the

can be derived from

K.=> > f.5)f"(.9)

i=0 j=0

Wo =YY g"(i4)gli,j)

i=0 j=0

(37)

M(P)=> "> H"(i,j)P " H(,j)

i=0 j=0
where
fi.j) = AUb
g(i,j) = ct AU 4 g, AT
ACO — 1 A =0, j<00rj<0

A — AlA(i*LJ’) +A2A(i,j*1)
= AULD A+ AGITTD A, (4,5) > (0,0)
H(i,j)= Y.Y  flkr)gli—kj—r)
(0,0)< (k1) < (i)

with the partial ordering for integer pair@, j) used in [27,
p.2].
If a coordinate transformation defined by

z(i,j) =T ~'x(i,)) (38)

solution of the minimization problem of (42) must satisfy the
KKT conditions 0.J3(P,\)/0P = 0 and 02(P,\)/OA = 0
where the gradients are found to be [24]

% =2M(P)-2P 'NP)P!
+W,-(A+2)P 'K.P! (43)
OJ2(P, ) 1
E\ =tr[K.P | —n
where N (P) is derived from
N(P)=> "> H(i,j)PH"(i,]).
i=0 j=0
Hence the KKT conditions become
PF(P)P = G(P,)\)
(44)

trfK.P ' =n
where
F(P)=2M(P)+W,
G(P,)\)=2N(P)+ (N +2)K..

The first equation in (44) is highly nonlinear with respect to
P. An effective approach to solving the first equation in (44)

is applied to the 2-D filter in (30), we obtain a new realizatiof to relax it into the following recursive second-order matrix

(A, A3, b,¢, ¢, d), characterized by
A, =T 'AT  A,=T7'A,T
b=T7"'b, ¢ =c1T, & =cT (39)
K. =T'k1 7" W,=T"W,T.

Noting that the coordinate transformation in (38) transforms

the gramianM (I,,) into T M (P)T, (36) becomes

Sy(P) = 2tr[M (P)P] + trlW,P] + 2tr[K.P~']  (40)

where P = TT?. Moreover, if theL,-norm dynamic-range
scaling constraints are imposed on the LSS vegtor ), then

(K.)u=(T 'K.T ")y=1

for i=1,2,---.n
(41)
are required.
The problem considered here is as followsr given A1,
As, b, ¢; andcg, obtain ann x n nonsingular matrix” which
minimizes (40) subject to the scaling constraints in (41)

B. Lo-Sensitivity Minimization

In order to minimize (40) over am x n sSymmetric
positive-definite matrixP subject to therelaxed constraint

equation:

P, \F(P;)P;y1 = G(P;, \) (45)
whereP; is assumed to be known from the previous recursion
and then the solutio®;; is given by

Pi 1 =F(P;) 2[F(P;)?G(P;,\)F(P;)?| " F(P;)"*.
(46)
To derive a recursive formula for the Lagrange multiplier
we use (44) to write

tr[PF(P)] = 2tr[N(P)P ']+ n(A +2) (47)
that naturally reveals the following recursion far
. Y APl
Mot = P F(P;)] - 20[N(P)P;"] 48)

n

where)\; is obtained from the previous iteration. The iteration
process starts wittl?; = I,, and any value of\; > 0, and
continues until (44) is satisfied within a prescribed numerical
tolerance.

tr[K.P '] = n derived from (41), we define the Lagrange Finally, the process in (25)-(29) is applied to the resulting

function
Jo(P,)\) = 2tr[M (P)P] + tr(W,P] + 2tr[K P~ "]

FAUr[K.P ' —n)
(42)

optimal matrix P in order to construct the optimal transfor-
mation matrixT = P2 RS’ minimizing (40) subject to the
constraints in (41).

IV. NUMERICAL EXAMPLES
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Example I Let a state-space digital filter in (1) be specified 150 r T T 100
b \
y \ — L(P,)
0 1 o 1 A | \
A= 0 0 1
0.453770 —1.556160 1.974860 150
b=[0 0 024209 |" >

J(P, )

c=[0.095706 0.095086 0.327556 |
d = 0.015940. [\ T 0

Performing the computation of (7), (12) and (13), the Gram:
mians K., W, and M (I5) are calculated as

[ 1.000000 0.872501 0.562821 0 , .
K, = | 0872501 1.000000 0.872501 10° 10 TS
| 0562821 0.872501 1.000000 Iterations

0.820741 —2.035328  1.628161
W, = | —2.035328  5.307273 —4.264903
1.628161 —4.264903  3.941491

8.921380 —22.046457  17.916285
M (I3)=|—22.046457 55.671710 —46.052011 .
17916285 —46.052011 42.522082 3.5}

The Lo-sensitivity measure in (6) is then computed as
S1 = 120.184677.

ChoosingP; = I3 and A; = 100 in (22) and (24) as the
initial estimates, it took the proposed iterative algorithm 500
iterations to converge to

2.307529 1.375667 0.514400
P = | 1.375667 1.103115 0.678193
0.514400 0.678193 0.666912

-50

Fig. 2. Lo-Sensitivity and\ Performances.

tr[ K. P

which yields

0 1 2
0.906372 0.756223 0.956110 10 10 Iterations 10
T = 0.196978 0.857123 0.574155

—0.369823 0.597630 0.415910
In this case, the GrammiaM (P) is computed from (12) and

Fig. 3. t{K.P~!] Performance.

(13) as
1.908677 —0.301984 —1.313686 For comparison purposes, only the iterative algorithm in
M (P)=|-0.301984  1.701052  0.430349 (22) is applied by letting\; = 0 for any i and settingP; =
—1.313686  0.430349  1.395025 I3 in order to minimize thelL,-sensivivity measure in (10)

without considering the scaling constraints in (14)) and after

and theL,-sensitivity measure in (10) is minimized subject t . . )
2 y (10) ) 00 iterations it converges to

the scaling constraints in (14) to

S1(P) = 8.672129. [ 4.774934 2.835816 1.053819 |
P = | 2835816 2.287705 1.415049
Profiles of the Lo-sensitivity, parameter\, as well as 1.053819 1.415049 1.403809

tr[K.P~'] during the first 500 iterations of the algorithm )
are shown in Figs. 2 and 3, respectively. Together the@&ich yields

figures clearly reveal a two-stage convergence behavior of 9185162 0.0 0.0 1
the algorithm in that the first stage (which consists of just T — | 1.297760 0.776%68 0.0
one iteration) of the algorithm reduces the-sensitivity 0.482261 1.015861 0.373174

drastically without maintaining the constrainthf.P~'] = n,
and the second stage of the algorithm is able to restore #red S;(P) = 7.832680. Note that this method is essentially

constraint thcPfl] = n while further reducing theL,- the same as in [10]. The above coordinate transformation
sensitivity slightly. matrix T is then scaled by an appropriate nonsingular diagonal
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matrix, so that the scaling constraints in (14) are satisfied. Thealculated as

the result is 1.000000 0.987279
| 0.987279  1.000000

S1(P) = 9.822372 Ke=1 0010868 0.976755

0.844274 (.888478

whereP = TT" and W, =

1.337108 —1.304050
L0 0.0 0.0 Lo | ~1:304050  1.637345
T = | 0593806 0.562461 0.0 . 0.189462 —0.429399
0.220698 0.735495 0.307225 —0.556646  0.576183

M(1,) =
Applying the technique reported in [20] yields 1.043052 —1.097577
Lg8 | ~1:097577  1.238037
0.637299 —0.830495
S,(P) = 8.683274 ~0.982714  1.153558

0.940868
0.976755
1.000000
0.952963

0.189462
—0.429399
2.122604
—2.191942

0.637299
—0.830495
2.324302
—2.574574

0.844274
0.888478
0.952963
1.000000

~0.556646 |
0.576183

—2.191942
2.672474 |

~0.982714]
1.153558
~2.574574
3.019844 |

where the infinite sums in (37) were truncated withj) =
where (100,100). The Lo-sensitivity measureS, in (36) is then

computed as

0.913655 —0.857313 0.877296

Sy = 15337.965477.

T = | 0905773 —0.121938 0.493844 | . ChoosingP; = I, and \; = 100 in (46) and (48) as the

0.576905 0.415235 0.377361
iterations to converge to

initial estimates, it took the proposed iterative algorithm 2000

From these results, it is observed that the proposed technique 1.688238 1.500480 1.311958 1.149324
offers a smaller value of thé.-sensitivity measure subject 1.500480 1.373665 1.224597 1.077089
to the scaling constraints relative to a method (which is © = | 1.311958 1.224597 1.148785 1.035997
essentially the same as in [10]) for performing the scaling 1.149324 1.077089 1.035997 0.980059
so as to satisfy the constraints in (14) after minimizing the )
Lo-sensitivity measure in (10) as well as the existing methd¥ich yields
in [20]. It has also turned out that the proposed iterative _1174654  0.198729 0.493644  0.158893
technique requires less than half amount of computations to _1115961  0.031366 0.322000 0.153714
attain practically the same convergence accuracy as comparéd= —1.034448 —0.100879 0.255344 —0.057664
to the method reported in [20]. ~0.962500 —0.009915 0.107523 —0.204501
Example 2 Consider a class of 2-D digital filters in (30) ) ) )
specified by In this case, the Grammiah (P) is computed from (37) as
M(P) =
i 0 0.481228 0 0 1 0.605548 —0.599700  0.142673 —0.347188
A = 0 0 0.510378 0 103 —0.599700  0.672622 —0.215513  0.360191
0 0 0 0.525287 0.142673 —0.215513 1.146333 —1.234023
| —0.031857 0.298663 —0.808282 1.044600 —0.347188  0.360191 —1.234023  1.478310

[~0.226080 0.776837  0.024693 —0.000933] over (0,0) < (i,j) < (100,100) and the L,-sensitivity

A, — | 70843550 1.610400  —0.309366  0.065898 | measure in (40) is minimized subject to the scaling constraints

~1.260339  2.005100 —0.453220  0.203118 | in (a1) to
| —1.121498  1.636435 —0.590516  0.562890 |

b=[0 0 0 0198473 ]"

So(P) = 372.776304.

Profiles of the L.-sensitivity, parameter\, as well as

—0.567054 0.231913 0.197016 0.239932 | tr[K.P~'] during the first 2000 iterations of the algorithm

C1 = [
co = [ 0464344 0.441837 —0.061100 0.105505 ]
=0

d .00943. 1 can also be observed.

are shown in Figs. 4 and 5, respectively. From these figures,
a two-stage convergence behavior similar to that of Example

For comparison purpose, only the iterative algorithm in (46)
is applied by letting\; = 0 for any 4 and settingP; = I, in
Using (37), the Grammian¥ ., W,, and M (I,) are order to minimize the.,-sensivivity measure in (40) (without
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Fig. 5. t{K.P~!] Performance.

considering the scaling constraints in (41)) and aft@0
iterations it converges to

2.095327 1.862416 1.628491 1.426572
p_ 1.862416 1.705267 1.520239 1.337047
T | 1.628491 1.520239 1.426747 1.286632
1.426572 1.337047 1.286632 1.217307

which yields
1.447524 0.0 0.0 0.0
T 1.286621 0.223322 0.0 0.0
| 1.125018 0.325839 0.234330 0.0
0.985525 0.309192 0.329243 —0.205050

and Sy (P) = 372.464800. The above coordinate transforma
tion matrix T' is then scaled by an appropriate nonsingular
diagonal matrix, so that the scaling constraints in (41) are

satisfied. Then the result is

S5(P) = 458.063668

where P = TT” and

1.0 0.0 0.0 0.0

T — 0.888843 0.187005 0.0 0.0

0.777201 0.272850 0.171289 0.0
0.680835 0.258910 0.240668 —0.250773

From the above result, it is observed that the constrained opti-
mization technique proposed here offers smallgisensitivity
subject to the scaling constraints relative to a method for
carrying out the scaling so as to satisfy the constraints in (41)
after minimizing theL,-sensitivity measure in (40).

V. CONCLUSION

The problem of minimizing arls-sensitivity measure sub-
ject to Lo-norm dynamic-range scaling constraints for state-
space digital filters as well as a class of 2-D state-space digital
filters have been investigated. In each case, a novel iterative
algorithm has been developed to solve the constraint optimiza-
tion problem directly. This has been performed by using a
Lagrange function and some matrix-theoretic techniques. The
optimal state-space filter structure has been constructed by ap-
plying the coordinate-transformation matrix ajusted to satisfy
the scaling constraints without altering tlig-sensitivity. In
addition, it has been shown that the 2-D LSS model used to
describe a class of 2-D state-space digital filters corresponds to
a transposed structure of the Fornasini-Marchesini second LSS
model. Our computer simulation results have demonstrated the
effectiveness of the proposed techniques compared with the
existing methods.
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