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L2-Sensitivity Minimization of One- and
Two-Dimensional State-Space Digital Filters

Subject toL2-Scaling Constraints
Takao Hinamoto,Fellow, IEEE,Ken-ichi Iwata and Wu-Sheng Lu,Fellow, IEEE

Abstract— We investigate the problem of minimizing an L2-
sensitivity measure subject toL2-norm dynamic-range scaling
constraints for one-dimensional (1-D) as well as a class of two-
dimensional (2-D) state-space digital filters, where the 2-D digital
filters are described by a transposed structure of the Fornasini-
Marchesini second local state-space model. In each case, a novel
iterative technique is developed to solve the constraint optimiza-
tion problem directly. Our solution methods are largely based
on the use of a Lagrange function and some matrix-theoretic
techniques. Numerical examples are presented to demonstrate
the effectiveness of the proposed techniques.

Index Terms— L2-sensitivity minimization, L2-norm dynamic-
range scaling constraints, Lagrange’s function, optimal realiza-
tion, state-space digital filters, a class of 2-D state-space digital
filters.

I. INTRODUCTION

For over three decades, the issue on finite word length
(FWL) effects has been a significant research topic in the
implementation of fixed-point state-space digital filters. A
great deal of efforts have been made to synthesize the optimal
FWL state-space filter structures that minimize the FWL
effects on the efficiency and performance of the filter actually
implemented. This paper is concerned with the problem of
minimizing coefficient sensitivity in state-space digital filters.
Given a transfer function with infinite accuracy coefficients
that meets specification requirements, we often need to imple-
ment its state-space model using a finite binary representation.
This requires the truncation or rounding of coefficients in the
state-space model to fit the FWL constraints. As a result, the
characteristics of a stable filter might be so altered that the
filter may become unstable. This motivates the study of the
coefficient sensitivity minimization problem. In the literature,
techniques for synthesizing the state-space descriptions that
minimize the coefficient sensitivity can be divided into two
main classes:L1/L2-mixed sensitivity minimization [1]-[5]
and L2-sensitivity minimization [6]-[10]. In [6]-[10], it has
been argued that the sensitivity measure based on theL2-norm
only is more natural and reasonable relative to theL1/L2-
mixed sensitivity minimization. For 2-D state-space digital fil-
ters, theL1/L2-mixed sensitivity minimization problem [11]-
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[15] and L2-sensitivity minimization problem [10],[16]-[19]
have also been investigated. However, to our best knowledge,
little has been done for the minimization ofL2-sensitivity
subject to theL2-norm dynamic-range scaling constraints for
state-space digital filters [20], although it has been known that
the use of scaling constraints can be beneficial for suppressing
overflow oscillations [21],[22].

This paper investigates the problem of minimizing anL2-
sensitivity measure subject toL2-norm dynamic-range scaling
constraints for state-space digital filters as well as a class of 2-
D state-space digital filters. To this end, an expression for eval-
uating theL2-sensitivity is introduced, and theL2-sensitivity
minimization problem subject to the scaling constraints is for-
mulated in each case. An iterative algorithm is then developed
in each case to solve the constraint optimization problem
directly. Our solution methods are largely based on the use
of a Lagrange function and some matrix-theoretic techniques.
Next, the coordinate transformation matrix is ajusted without
altering theL2-sensitivity to satisfy the scaling constraints,
and is used to construct the optimal state-space filter struc-
ture that minimizes theL2-sensitivity measure subject to the
scaling constraints. Two numerical examples are presented to
demonstrate the utility of the proposed algorithms.

Unlike the work reported in [20], the proposed iterative
technique relies on neither converting the problem into an
unconstrained optimization formulation nor using a quasi-
Newton algorithm. From computer simulation results, it has
turned out that the proposed iterative technique requires less
than half amount of computations to attain practically the same
convergence accuracy as compared to the technique reported
in [20].

ThroughoutIn denotes the identity matrix of dimension
n×n. The transpose (conjugate transpose) of a matrixA and
trace of a square matrixA are denoted byAT (A∗) and tr[A],
respectively. Theith diagonal element of a square matrixA
is denoted by(A)ii.

II. L2-SENSITIVITY MINIMIZATION FOR 1-D
FILTERS

A. L2-Sensitivity Analysis

Consider a stable, controllable and observable, state-space
digital filter (A, b, c, d)n described by

x(k + 1) = Ax(k) + bu(k)

y(k) = cx(k) + du(k)
(1)
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where x(k) is an n × 1 state-variable vector,u(k) is a
scalar input,y(k) is a scalar output, andA, b, c and d are
real constant matrices of appropriate dimensions. The transfer
function of the filter in (1) is given by

H(z) = c(zIn −A)−1b + d. (2)

The L2-sensitivity of the filter in (1) is defined as follows.
Definition 1: Let X be anm×n real matrix and letf(X)

be a scalar complex function ofX, differentiable with respect
to all the entries ofX. The sensitivity function off with
respect toX is then defined as

SX =
∂f

∂X
, (SX )ij =

∂f

∂xij
(3)

wherexij denotes the(i, j)th entry of matrixX.
Definition 2: Let X(z) be anm×n complex matrix-valued

function of a complex variablez and letxpq(z) be the(p, q)th
entry of X(z). The L2-norm of X(z) is then defined as

‖X(z)‖2 =

[
1
2π

∫ 2π

0

m∑
p=1

n∑
q=1

∣∣xpq(ejω)
∣∣2 dω

] 1
2

=

(
tr

[
1

2πj

∮

|z|=1

X(z)X∗(z)
dz

z

]) 1
2

.

(4)

From (2) and Definitions 1 and 2, the overallL2-sensitivity
measure for the filter in (1) is defined as

S1 =
∥∥∥∥

∂H(z)
∂A

∥∥∥∥
2

2

+
∥∥∥∥

∂H(z)
∂b

∥∥∥∥
2

2

+
∥∥∥∥

∂H(z)
∂cT

∥∥∥∥
2

2

=
∥∥[F (z)G(z)]T

∥∥2

2
+

∥∥∥GT (z)
∥∥∥

2

2
+ ‖F (z)‖22

(5)

where

F (z) = (zIn −A)−1b, G(z) = c(zIn −A)−1.

The termd in (2) and the sensitivity with respect to it are
coordinate-independent and therefore they are neglected here.

It is easy to show that theL2-sensitivity measure in (5) can
be expressed as

S1 = tr[M(In)] + tr[W o] + tr[Kc] (6)

where

Kc =
1

2πj

∮

|z|=1

F (z)F T (z−1)
dz

z

W o =
1

2πj

∮

|z|=1

GT (z)G(z−1)
dz

z

M(P ) =
1

2πj

∮

|z|=1

[F (z)G(z)]T P−1F (z−1)G(z−1)
dz

z

The matricesKc andW o in (6) are called the controllability
and observability Gramians, respectively, and can be obtained
by solving the following Lyapunov equations [23]:

Kc = AKcA
T + bbT

W o = AT W oA + cT c.

(7)

In order to evaluate the term tr[M(In)] in (6), one only
needs to computeM(P ) with P = In. However, the general
solution method for computingM(P ) with an arbitrary
positive-definite matrixP will be required in our subsequent
development. We shall address this issue shortly.

If a coordinate transformation defined by

x(k) = T −1x(k) (8)

is applied to the filter in (1), then the new realization
(A, b, c, d)n can be characterized by

A = T −1AT , b = T −1b, c = cT

Kc = T −1KcT
−T , W o = T T W oT .

(9)

From (2) and (9), it is clear that the transfer functionH(z) is
invariant under the coordinate transformation in (8). In addi-
tion, under the coordinate transformation in (8), the Gramian
M(In) becomesT T M(P )T and theL2-sensitivity measure
in (6) is changed to

S1(P ) = tr[M(P )P ] + tr[W oP ] + tr[KcP
−1] (10)

whereP = TT T . Noting that

F (z)G(z) = T −1F (z)G(z)T

=
[
T −1 0

] [
zIn −A −bc

0 zIn −A

]−1 [
0
T

]

(11)
where

F (z) = (zIn −A)−1b, G(z) = c(zIn −A)−1

and denoting the observability Gramian of the system in (11)
by Y , it can be shown for an arbitraryP = TT T , the matrix
M(P ) can be obtained by solving the Lyapunov equation

Y =
[

A bc
0 A

]T

Y

[
A bc
0 A

]
+

[
P−1 0
0 0

]
(12)

and then taking the lower-rightn× n block of Y asM(P ),
i.e.,

M(P ) =
[

0 In

]
Y

[
0
In

]
. (13)

Moreover, if theL2-norm dynamic-range scaling constraints
are imposed on the new state-variable vectorx(k), it is
required that

(Kc)ii = (T −1KcT
−T )ii = 1 for i = 1, 2, · · · , n.

(14)
The problem ofL2-sensitivity minimization subject toL2-

norm dynamic-range scaling constraints can now be formu-
lated as follows:For given A, b and c, obtain an n × n
nonsingular matrixT which minimizes the sensitivity measure
S1(P ) in (10) subject to the scaling constraints in (14).

B. L2-Sensitivity Minimization

The problem of minimizingS1(P ) in (10) subject to the
constraints in (14) is a constrained nonlinear optimization
problem where the variable matrix isP . If we sum then
constraints in (14) up, then we have

tr[T−1KcT
−T ] = tr[KcP

−1] = n. (15)
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Consequently, the problem of minimizing (10) subject to the
constraints in (14) can berelaxedinto the following problem:

minimize S1(P ) in (10)

subject to tr[KcP
−1] = n.

(16)

Although clearly a solution of problem (16) is not necessarily
a solution of the problem of minimizing (10) subject to the
constraints in (14), it is important to stress that the ultimate
solution we seek for is not matrixP but a nonsingular matrix
T that is related to the solution of the problem of minimizing
(10) subject to the constraints in (14) asP = TT T . If matrix
P is a solution of problem (16) andP 1/2 denotes a matrix
square root ofP , i.e., P = P 1/2P 1/2, then it is easy to see
that any matrixT of the form T = P 1/2U whereU is an
arbitrary orthogonal matrix still holds the relationP = TT T .
As will be shown shortly, under the constraint tr[KcP

−1] = n
in (16) there exists an orthogonal matrixU such that matrix
T = P 1/2U satisfies the constraints in (14), whereP 1/2 is a
square root of the solution matrixP for problem (16).

It is for these reasons we now address problem (16) as the
first step of our solution strategy. To solve (16), we define the
Lagrange function of the problem as

J1(P , λ) = tr[M(P )P ] + tr[W oP ] + tr[KcP
−1]

+λ(tr[KcP
−1]− n)

(17)

whereλ is a Lagrange multiplier. It is well known that the
solution of problem (16) must satisfy the Karush-Kuhn-Tucker
(KKT) conditions∂J1(P , λ)/∂P = 0 and∂J1(P , λ)/∂λ = 0
where the gradients are found to be [24]

∂J1(P , λ)
∂P

= M(P )− P −1N(P )P −1

+W o − (λ + 1)P −1KcP
−1

∂J1(P , λ)
∂λ

= tr[KcP
−1]− n

(18)

whereN(P ) can be obtained by solving the following Lya-
punov equation:

Z =
[

A bc
0 A

]
Z

[
A bc
0 A

]T

+
[

0 0
0 P

]

and then taking the upper-leftn× n block of Z, i.e.,

N(P ) =
[

In 0
]
Z

[
In

0

]
.

Note that matrixZ corresponds to the controllability Gramian
of the system in (11).

Hence the KKT conditions become

P F (P )P = G(P , λ)

tr[KcP
−1] = n

(19)

where
F (P ) = M(P ) + W o

G(P , λ) = N(P ) + (λ + 1)Kc.

The first equation in (19) is highly nonlinear with respect to
P . An effective approach to solving the first equation in (19)

is to relax it into the following recursive second-order matrix
equation:

P i+1F (P i)P i+1 = G(P i, λi) (20)

whereP i is assumed to be known from the previous recursion.
Noting thatP WP = M has the unique solution [5] :

P = W − 1
2 [W

1
2 M W

1
2 ]

1
2 W − 1

2 (21)

whereW > 0 andM ≥ 0 are symmetric, the solutionP i+1

of (20) is given by

P i+1 =F (P i)−
1
2 [F (P i)

1
2 G(P i, λi)F (P i)

1
2 ]

1
2 F (P i)−

1
2 .

(22)
To derive a recursive formula for the Lagrange multiplierλ,
we employ (19) to write

tr[PF (P )] = tr[N(P )P−1] + n(λ + 1) (23)

which naturally suggests the following recursion forλ:

λi+1 =
tr[P iF (P i)]− tr[N(P i)P−1

i ]
n

− 1. (24)

In the above algorithm,λi is obtained from the previous
iteration. The iteration process starts withP 1 = In and any
value ofλ1 > 0, and continues until (19) is satisfied within a
prescribed numerical tolerance.

As the second step of the solution strategy, we now turn
our attention to the construction of the optimal coordinate
transformation matrixT that solves the problem of minimizing
(10) subject to the constraints in (14). As analyzed earlier, the
optimal T assumes the form

T = P
1
2 U (25)

whereP 1/2 is the square root of the matrixP obtained above,
and U is an n × n orthogonal matrix to be determined as
follows. From (9) and (25) it follows that

Kc = T−1KcT
−T

= U T P− 1
2 KcP

− 1
2 U .

(26)

In order to find an orthogonal matrixU such that the matrix
Kc in (26) satisfies the constraints in (14), we perform the
eigenvalue-eigenvector decomposition for the positive definite
matrix P−1/2KcP

−1/2 as

P− 1
2 KcP

− 1
2 = RΘRT (27)

where Θ = diag{θ1, θ2, · · · , θn} with θi > 0 and R is an
orthogonal matrix. Next an orthogonal matrixS such that

SΘST =




1 ∗ · · · ∗
∗ 1

.. .
...

...
.. .

.. . ∗
∗ · · · ∗ 1




(28)

can be obtained by numerical manipulations [22, p.278].
Using (26), (27) and (28), it can be readily verified that the
orthogonal matrixU = RST leads to aKc in (26) whose
diagonal elements are equal to unity, hence the constraints in
(14) are now satisfied. This matrixT together with (25) gives
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the solution of the problem of minimizing (10) subject to the
constraints in (14) as

T = P
1
2 RST . (29)

III. L2-SENSITIVITY MINIMIZATION FOR 2-D
DIGITAL FILTERS

A. L2-Sensitivity Analysis

Consider a local state-space model(A1, A2, b, c1, c2, d)n

[25] for a class of 2-D state-space digital filters that is
described by

[
x(i + 1, j + 1)

y(i, j)

]
=

[
A1 A2

c1 c2

][
x(i, j + 1)

x(i + 1, j)

]

+

[
b

d

]
u(i, j) (30)

wherex(i, j) is ann× 1 local state vector,u(i, j) is a scalar
input, y(i, j) is a scalar output, andA1,A2, b, c1, c2 and d
are real constant matrices of appropriate dimensions. The 2-D
filter in (30) is assumed to be stable, locally controllable and
locally observable. The transfer function of the 2-D filter in
(30) is given by

H(z1, z2) = (z−1
1 c1 + z−1

2 c2)

· (In − z−1
1 A1 − z−1

2 A2

)−1
b + d.

(31)

A block diagram of the local state-space (LSS) model in
(30) is shown in Fig. 1. It is interesting to note that

HT (z1, z2) = bT
(
In − z−1

1 AT
1 − z−1

2 AT
2

)−1

· (z−1
1 cT

1 + z−1
2 cT

2

)
+ d

(32)

can be viewed as a transfer function of the Fornasini-
Marchesini second LSS model [26]. SinceH(z1, z2) =
HT (z1, z2), the LSS model in (30) corresponds to a transposed
structure of the Fornasini-Marchesini second LSS model.

y j,( i )u j,( i )

d

z
2

– 1

⊕

z1
– 1 c

A

1A

2 2c

1

b

( )i , +j 1x

( ),i+1 jx

( )i+ , +j 11x ⊕⊕

Fig. 1. A LSS model for 2-D filters.

From (31) and Definition 1, it can easily be verified that

∂H(z1, z2)
∂Ak

= z−1
k [F (z1, z2)G(z1, z2)]T

∂H(z1, z2)
∂b

= GT (z1, z2)

∂H(z1, z2)
∂cT

k

= z−1
k F (z1, z2), k = 1, 2

(33)

where

F (z1, z2) =
(
In − z−1

1 A1 − z−1
2 A2

)−1
b

G(z1, z2) = (z−1
1 c1 + z−1

2 c2)
· (In − z−1

1 A1 − z−1
2 A2

)−1
.

The termd in (31) and its sensitivity are independent on the
LSS coordinate and therefore they are neglected here.

Definition 3: Let X(z1, z2) be anm × n complex matrix
valued function of the complex variablesz1 and z2. The L2

norm of X(z1, z2) is then defined as

||X(z1, z2)||2

=

[
1

(2π)2

∫ 2π

0

∫ 2π

0

m∑
p=1

n∑
q=1

∣∣xpq(ejω1 , ejω2)
∣∣2 dω1dω2

] 1
2

=
(

tr

[
1

(2πj)2

∮

Γ1

∮

Γ2

X(z1, z2)X∗(z1, z2)
dz1dz2

z1z2

]) 1
2

(34)
whereΓi = {zi : |zi| = 1} for i = 1, 2.

From (33) and Definition 3, the overallL2-sensitivity mea-
sure for the 2-D filter in (30) is evaluated by

S2 =
2∑

k=1

∥∥∥∥
∂H(z1, z2)

∂Ak

∥∥∥∥
2

2

+
∥∥∥∥

∂H(z1, z2)
∂b

∥∥∥∥
2

2

+
2∑

k=1

∥∥∥∥
∂H(z1, z2)

∂cT
k

∥∥∥∥
2

2

= 2
∥∥[F (z1, z2)G(z1, z2)]T

∥∥2

2
+

∥∥∥GT (z1, z2)
∥∥∥

2

2

+2 ‖F (z1, z2)‖22 .
(35)

The L2-sensitivity measure in (35) can be written as

S2 = 2 tr[M(In)] + tr[W o] + 2 tr[Kc] (36)

where

Kc =
1

(2πj)2

∮

Γ1

∮

Γ2

F (z1, z2)F T (z−1
1 , z−1

2 )
dz1dz2

z1z2

W o =
1

(2πj)2

∮

Γ1

∮

Γ2

GT (z1, z2)G(z−1
1 , z−1

2 )
dz1dz2

z1z2

M(P ) =
1

(2πj)2

∮

Γ1

∮

Γ2

[F (z1, z2)G(z1, z2)]T P−1

·F (z−1
1 , z−1

2 )G(z−1
1 , z−1

2 )
dz1dz2

z1z2
.
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MatricesKc, W o and M(P ) are called 2-D Gramians and
can be derived from

Kc =
∞∑

i=0

∞∑

j=0

f(i, j) f T (i, j)

W o =
∞∑

i=0

∞∑

j=0

gT (i, j) g(i, j)

M(P ) =
∞∑

i=0

∞∑

j=0

H T (i, j)P−1H(i, j)

(37)

where

f(i, j) = A(i,j)b

g(i, j) = c1A
(i−1,j) + c2A

(i,j−1)

A(0,0) = In, A(i,j) = 0, i < 0 or j < 0

A(i,j) = A1A
(i−1,j) + A2A

(i,j−1)

= A(i−1,j)A1 + A(i,j−1)A2, (i, j) > (0, 0)

H(i, j) =
∑ ∑

(0,0)≤(k,r)≤(i,j)

f(k, r) g(i− k, j − r)

with the partial ordering for integer pairs(i, j) used in [27,
p.2].

If a coordinate transformation defined by

x(i, j) = T −1x(i, j) (38)

is applied to the 2-D filter in (30), we obtain a new realization
(A1,A2, b, c1, c2, d)n characterized by

A1 = T −1A1T , A2 = T −1A2T

b = T −1b, c1 = c1T , c2 = c2T

Kc = T−1KcT
−T , W o = T T W oT .

(39)

Noting that the coordinate transformation in (38) transforms
the gramianM(In) into T T M(P )T , (36) becomes

S2(P ) = 2 tr[M(P )P ] + tr[W oP ] + 2 tr[KcP
−1] (40)

whereP = TT T . Moreover, if theL2-norm dynamic-range
scaling constraints are imposed on the LSS vectorx(i, j), then

(Kc)ii = (T −1KcT
−T )ii = 1 for i = 1, 2, · · · , n

(41)
are required.

The problem considered here is as follows:For givenA1,
A2, b, c1 andc2, obtain ann×n nonsingular matrixT which
minimizes (40) subject to the scaling constraints in (41).

B. L2-Sensitivity Minimization

In order to minimize (40) over ann × n symmetric
positive-definite matrixP subject to therelaxed constraint
tr[KcP

−1] = n derived from (41), we define the Lagrange
function

J2(P , λ) = 2 tr[M(P )P ] + tr[W oP ] + 2 tr[KcP
−1]

+λ(tr[KcP
−1]− n)

(42)

where λ is a Lagrange multiplier. As is well known, the
solution of the minimization problem of (42) must satisfy the
KKT conditions ∂J2(P , λ)/∂P = 0 and ∂2(P , λ)/∂λ = 0
where the gradients are found to be [24]

∂J2(P , λ)
∂P

= 2 M(P )− 2 P −1N(P )P −1

+W o − (λ + 2)P −1KcP
−1

∂J2(P , λ)
∂λ

= tr[KcP
−1]− n

(43)

whereN(P ) is derived from

N(P ) =
∞∑

i=0

∞∑

j=0

H(i, j)PHT (i, j).

Hence the KKT conditions become

P F (P )P = G(P , λ)

tr[KcP
−1] = n

(44)

where

F (P ) = 2 M(P ) + W o

G(P , λ) = 2 N(P ) + (λ + 2)Kc.

The first equation in (44) is highly nonlinear with respect to
P . An effective approach to solving the first equation in (44)
is to relax it into the following recursive second-order matrix
equation:

P i+1F (P i)P i+1 = G(P i, λi) (45)

whereP i is assumed to be known from the previous recursion
and then the solutionP i+1 is given by

P i+1 =F (P i)−
1
2 [F (P i)

1
2 G(P i, λi)F (P i)

1
2 ]

1
2 F (P i)−

1
2 .

(46)
To derive a recursive formula for the Lagrange multiplierλ,
we use (44) to write

tr[PF (P )] = 2 tr[N(P )P−1] + n(λ + 2) (47)

that naturally reveals the following recursion forλ:

λi+1 =
tr[P iF (P i)]− 2 tr[N(P i)P−1

i ]
n

− 2 (48)

whereλi is obtained from the previous iteration. The iteration
process starts withP 1 = In and any value ofλ1 > 0, and
continues until (44) is satisfied within a prescribed numerical
tolerance.

Finally, the process in (25)-(29) is applied to the resulting
optimal matrixP in order to construct the optimal transfor-
mation matrixT = P

1
2 RST minimizing (40) subject to the

constraints in (41).

IV. NUMERICAL EXAMPLES
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Example 1: Let a state-space digital filter in (1) be specified
by

A =




0 1 0
0 0 1

0.453770 −1.556160 1.974860




b =
[

0 0 0.242096
]T

c =
[

0.095706 0.095086 0.327556
]

d = 0.015940.

Performing the computation of (7), (12) and (13), the Gram-
miansKc, W o andM(I3) are calculated as

Kc =




1.000000 0.872501 0.562821
0.872501 1.000000 0.872501
0.562821 0.872501 1.000000




W o =




0.820741 −2.035328 1.628161
−2.035328 5.307273 −4.264903

1.628161 −4.264903 3.941491




M(I3) =




8.921380 −22.046457 17.916285
−22.046457 55.671710 −46.052011

17.916285 −46.052011 42.522082


.

The L2-sensitivity measure in (6) is then computed as

S1 = 120.184677.

ChoosingP 1 = I3 and λ1 = 100 in (22) and (24) as the
initial estimates, it took the proposed iterative algorithm 500
iterations to converge to

P =




2.307529 1.375667 0.514400
1.375667 1.103115 0.678193
0.514400 0.678193 0.666912




which yields

T =




0.906372 0.756223 0.956110
0.196978 0.857123 0.574155

−0.369823 0.597630 0.415910


 .

In this case, the GrammianM(P ) is computed from (12) and
(13) as

M(P )=




1.908677 −0.301984 −1.313686
−0.301984 1.701052 0.430349
−1.313686 0.430349 1.395025




and theL2-sensitivity measure in (10) is minimized subject to
the scaling constraints in (14) to

S1(P ) = 8.672129.

Profiles of the L2-sensitivity, parameterλ, as well as
tr[KcP

−1] during the first 500 iterations of the algorithm
are shown in Figs. 2 and 3, respectively. Together these
figures clearly reveal a two-stage convergence behavior of
the algorithm in that the first stage (which consists of just
one iteration) of the algorithm reduces theL2-sensitivity
drastically without maintaining the constraint tr[KcP

−1] = n,
and the second stage of the algorithm is able to restore the
constraint tr[KcP

−1] = n while further reducing theL2-
sensitivity slightly.
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For comparison purposes, only the iterative algorithm in
(22) is applied by lettingλi = 0 for any i and settingP 1 =
I3 in order to minimize theL2-sensivivity measure in (10)
(without considering the scaling constraints in (14)) and after
500 iterations it converges to

P =




4.774934 2.835816 1.053819
2.835816 2.287705 1.415049
1.053819 1.415049 1.403809




which yields

T =




2.185162 0.0 0.0
1.297760 0.776868 0.0
0.482261 1.015861 0.373174




and S1(P ) = 7.832680. Note that this method is essentially
the same as in [10]. The above coordinate transformation
matrixT is then scaled by an appropriate nonsingular diagonal
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matrix, so that the scaling constraints in (14) are satisfied. Then
the result is

S1(P ) = 9.822372

whereP = TT T and

T =




1.0 0.0 0.0
0.593896 0.562461 0.0
0.220698 0.735495 0.307225


 .

Applying the technique reported in [20] yields

S1(P ) = 8.683274

where

T =




0.913655 −0.857313 0.877296
0.905773 −0.121938 0.493844
0.576905 0.415235 0.377361


 .

From these results, it is observed that the proposed technique
offers a smaller value of theL2-sensitivity measure subject
to the scaling constraints relative to a method (which is
essentially the same as in [10]) for performing the scaling
so as to satisfy the constraints in (14) after minimizing the
L2-sensitivity measure in (10) as well as the existing method
in [20]. It has also turned out that the proposed iterative
technique requires less than half amount of computations to
attain practically the same convergence accuracy as compared
to the method reported in [20].

Example 2: Consider a class of 2-D digital filters in (30)
specified by

A1 =




0 0.481228 0 0
0 0 0.510378 0
0 0 0 0.525287

−0.031857 0.298663 −0.808282 1.044600




A2 =




−0.226080 0.776837 0.024693 −0.000933
−0.843550 1.610400 −0.309366 0.065898
−1.260339 2.005100 −0.453220 0.203118
−1.121498 1.636435 −0.590516 0.562890




b =
[

0 0 0 0.198473
]T

c1 =
[ −0.567054 0.231913 0.197016 0.239932

]

c2 =
[

0.464344 0.441837 −0.061100 0.105505
]

d = 0.00943.

Using (37), the GrammiansKc, W o, and M(I4) are

calculated as

Kc =




1.000000 0.987279 0.940868 0.844274
0.987279 1.000000 0.976755 0.888478
0.940868 0.976755 1.000000 0.952963
0.844274 0.888478 0.952963 1.000000




W o =

10




1.337108 −1.304050 0.189462 −0.556646
−1.304050 1.637345 −0.429399 0.576183

0.189462 −0.429399 2.122604 −2.191942
−0.556646 0.576183 −2.191942 2.672474




M(I4) =

103




1.043052 −1.097577 0.637299 −0.982714
−1.097577 1.238937 −0.830495 1.153558

0.637299 −0.830495 2.324302 −2.574574
−0.982714 1.153558 −2.574574 3.019844




where the infinite sums in (37) were truncated with(i, j) =
(100, 100). The L2-sensitivity measureS2 in (36) is then
computed as

S2 = 15337.965477.

ChoosingP 1 = I4 and λ1 = 100 in (46) and (48) as the
initial estimates, it took the proposed iterative algorithm 2000
iterations to converge to

P =




1.688238 1.500480 1.311958 1.149324
1.500480 1.373665 1.224597 1.077089
1.311958 1.224597 1.148785 1.035997
1.149324 1.077089 1.035997 0.980059




which yields

T =




−1.174654 0.198729 0.493644 0.158893
−1.115961 0.031366 0.322000 0.153714
−1.034448 −0.100879 0.255344 −0.057664
−0.962590 −0.009915 0.107523 −0.204501


 .

In this case, the GrammianM(P ) is computed from (37) as

M(P ) =

103




0.605548 −0.599700 0.142673 −0.347188
−0.599700 0.672622 −0.215513 0.360191

0.142673 −0.215513 1.146333 −1.234023
−0.347188 0.360191 −1.234023 1.478310




over (0, 0) ≤ (i, j) ≤ (100, 100) and the L2-sensitivity
measure in (40) is minimized subject to the scaling constraints
in (41) to

S2(P ) = 372.776304.

Profiles of the L2-sensitivity, parameterλ, as well as
tr[KcP

−1] during the first 2000 iterations of the algorithm
are shown in Figs. 4 and 5, respectively. From these figures,
a two-stage convergence behavior similar to that of Example
1 can also be observed.

For comparison purpose, only the iterative algorithm in (46)
is applied by lettingλi = 0 for any i and settingP 1 = I4 in
order to minimize theL2-sensivivity measure in (40) (without
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Fig. 4. L2-Sensitivity andλ Performances.

Fig. 5. tr[KcP−1] Performance.

considering the scaling constraints in (41)) and after2000
iterations it converges to

P =




2.095327 1.862416 1.628491 1.426572
1.862416 1.705267 1.520239 1.337047
1.628491 1.520239 1.426747 1.286632
1.426572 1.337047 1.286632 1.217307




which yields

T =




1.447524 0.0 0.0 0.0
1.286621 0.223322 0.0 0.0
1.125018 0.325839 0.234330 0.0
0.985525 0.309192 0.329243 −0.205050




andS2(P ) = 372.464800. The above coordinate transforma-
tion matrix T is then scaled by an appropriate nonsingular
diagonal matrix, so that the scaling constraints in (41) are
satisfied. Then the result is

S2(P ) = 458.063668

whereP = TT T and

T =




1.0 0.0 0.0 0.0
0.888843 0.187005 0.0 0.0
0.777201 0.272850 0.171289 0.0
0.680835 0.258910 0.240668 −0.250773


 .

From the above result, it is observed that the constrained opti-
mization technique proposed here offers smallerL2-sensitivity
subject to the scaling constraints relative to a method for
carrying out the scaling so as to satisfy the constraints in (41)
after minimizing theL2-sensitivity measure in (40).

V. CONCLUSION

The problem of minimizing anL2-sensitivity measure sub-
ject to L2-norm dynamic-range scaling constraints for state-
space digital filters as well as a class of 2-D state-space digital
filters have been investigated. In each case, a novel iterative
algorithm has been developed to solve the constraint optimiza-
tion problem directly. This has been performed by using a
Lagrange function and some matrix-theoretic techniques. The
optimal state-space filter structure has been constructed by ap-
plying the coordinate-transformation matrix ajusted to satisfy
the scaling constraints without altering theL2-sensitivity. In
addition, it has been shown that the 2-D LSS model used to
describe a class of 2-D state-space digital filters corresponds to
a transposed structure of the Fornasini-Marchesini second LSS
model. Our computer simulation results have demonstrated the
effectiveness of the proposed techniques compared with the
existing methods.
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