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Optimal Synthesis of a Class of 2-D Digital Filters with

Minimum L2-Sensitivity and No Overflow Oscillations

Takao HINAMOTO†a), Fellow, Ken-ichi IWATA†b), Nonmember,
Osemekhian I. OMOIFO†c), Student Member,

Shuichi OHNO†d), Member, and Wu-Sheng LU††e), Nonmember

SUMMARY The minimization problem of an L2-sensitivity
measure subject to L2-norm dynamic-range scaling constraints is
formulated for a class of two-dimensional (2-D) state-space digital
filters. First, the problem is converted into an unconstrained op-
timization problem by using linear-algebraic techniques. Next,
the unconstrained optimization problem is solved by applying
an efficient quasi-Newton algorithm with closed-form formula for
gradient evaluation. The coordinate transformation matrix ob-
tained is then used to synthesize the optimal 2-D state-space fil-
ter structure that minimizes the L2-sensitivity measure subject
to L2-norm dynamic-range scaling constraints. Finally, a numer-
ical example is presented to illustrate the utility of the proposed
technique.
key words: L2-sensitivity minimization, L2-scaling constraints,
no overflow oscillations, optimal synthesis, a class of 2-D state-
space digital filters.

1. INTRODUCTION

This paper is concerned with the optimal realization
of a fixed-point 2-D state-space digital filter with finite
word length (FWL). The efficiency and performance of
the filter are directly influenced by selecting its state-
space filter structure. When designing a transfer func-
tion with infinite accuracy coefficients so as to meet
the filter specification requirements, and implementing
it by a state-space model with a finite binary represen-
tation, the coefficients in the state-space model must
be truncated or rounded to fit the FWL constraints.
This coefficient quantization usually alters the charac-
teristics of the filter and may change a stable filter to
an unstable one. This motivates the study of the coeffi-
cient sensitivity minimization problem. In [1]-[10], two
main classes of techniques have been proposed for con-
structing state-space digital filters that minimize the
coefficient sensitivity, that is, L1/L2-sensitivity min-
imization [1]-[5] and L2-sensitivity minimization [6]-
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[10]. It has been argued that the sensitivity measure
based on the L2 norm is more natural and reasonable
relative to that based on the L1/L2-sensitivity mini-
mization [6]-[10]. For 2-D state-space digital filters,
the L1/L2-mixed sensitivity minimization problem [11]-
[15] and L2-sensitivity minimization problem [10],[16]-
[19] have also been investigated. However, to our best
knowledge, little has been done for the minimization of
L2-sensitivity subject to the L2-norm dynamic-range
scaling constraints for state-space digital filters [20], al-
though it has been known that the use of scaling con-
straints can be beneficial for suppressing overflow oscil-
lations [21],[22].

This paper investigates the problem of minimizing
an L2-sensitivity measure subject to L2-norm dynamic-
range scaling constraints for a class of 2-D state-space
digital filters [23]. To this end, we introduce an ex-
pression for evaluating the L2-sensitivity and formu-
late the L2-sensitivity minimization problem subject to
the L2-norm dynamic-range scaling constraints. Next,
the constrained optimization problem is converted into
an unconstrained optimization problem by using linear-
algebraic techniques. The unconstrained optimization
problem is then solved using an efficient quasi-Newton
algorithm [24]. A numerical example is presented to
demonstrate that the proposed algorithm offers much
reduced L2-sensitivity.

Throughout In denotes the identity matrix of dimen-
sion n × n. The transpose (conjugate transpose) of a
matrix A and trace of a square matrix A are denoted
by AT (A∗) and tr[A], respectively. The ith diagonal
element of a square matrix A are denoted by (A)ii.

2. L2-SENSITIVITY ANALYSIS

Consider a local state-space model (A1,A2, b, c1, c2, d)n

for a class of 2-D recursive digital filters which is stable,
locally controllable and locally observable [23][
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y(i, j)

]
=
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][
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[
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u(i, j) (1)
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where x(i, j) is an n × 1 local state vector, u(i, j)
is a scalar input, y(i, j) is a scalar output, and
A1,A2, b, c1, c2 and d are real constant matrices of ap-
propriate dimensions. The transfer function of (1) is
given by

H(z1, z2) = (z−1
1 c1 + z−1

2 c2)

·
(
In − z−1

1 A1 − z−1
2 A2

)−1
b + d.

(2)
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Fig. 1 A LSS model for 2-D filters.

A block diagram of the local state-space (LSS) model
in (1) is shown in Fig. 1. It is interesting to note that

HT (z1, z2) = bT
(
In − z−1

1 AT
1 − z−1

2 AT
2

)−1

·
(
z−1
1 cT

1 + z−1
2 cT

2

)
+ d

(3)

can be viewed as a transfer function of the Fornasini-
Marchesini second LSS model [25]. Since H(z1, z2) =
HT (z1, z2), the LSS model in (1) corresponds to a
transposed structure of the Fornasini-Marchesini sec-
ond LSS model.

Suppose that the LSS model in (1) is implemented
by FWL fixed-point arithmetic with a B bit fractional
representation, and is realized with coefficient matrices

Ã1 = A1 + ∆A1, Ã2 = A2 + ∆A2

b̃ = b + ∆b, d̃ = d + ∆d

c̃1 = c1 + ∆c1, c̃2 = c2 + ∆c2

(4)

where ∆A1, ∆A2, ∆b, ∆c1, ∆c2, and ∆d stand for the
quantization errors of the coefficient matrices. Then,
the transfer function of the FWL realization is ex-
pressed as

H̃(z1, z2) = (z−1
1 c̃1 + z−1

2 c̃2)

·
(
In − z−1

1 Ã1 − z−1
2 Ã2

)−1

b̃ + d̃.
(5)

Let {pi} be the set of the ideal parameters of a real-
ization and let {p̃i} be its FWL version where p̃i =

pi +∆pi, and ∆pi indicates the corresponding parame-
ter perturbation. If this realization has N parameters,
then the first-order approximation of the Taylor series
expansion yields

∆H(z1, z2) = H̃(z1, z2) − H(z1, z2)

=
N∑

i=1

∂H(z1, z2)
∂pi

∆pi.
(6)

It is obvious that the smaller ∂H(z1, z2)/∂pi for
i = 1, 2, · · · , N yields the smaller transfer-function er-
ror ∆H(z1, z2). For a fixed-point implementation of B
bits, the parameter perturbations can be considered to
be independent random-variables uniformly distributed
within the range [−2−B−1, 2−B−1]. Then a measure of
the transfer function error can statistically be defined
by

σ2
∆H =

1
(2πj)2

∮
|z1|=1

∮
|z2|=1

E[|∆H(z1, z2)|2]
dz1dz2

z1z2

=
1

(2π)2

∫ 2π

0

∫ 2π

0

E[|∆H(ejω1 , ejω2)|2]dω1dω2 (7)

where E(·) denotes the ensemble-average operation.
Since {∆pi} are independent random variables uni-
formly distributed, it follows that

E[|∆H(z1, z2)|2] =
N∑

i=1

∣∣∣∣∂H(z1, z2)
∂pi

∣∣∣∣2 σ2 (8)

where

σ2 = E[(∆pi)2] =
1
12

2−2B .

Definition 1 : Let X be an m×n real matrix and let
f(X) be a scalar complex function of X, differentiable
with respect to all the entries of X. The sensitivity
function of f with respect to X is defined as

SX =
∂f

∂X
, (SX )ij =

∂f

∂xij
(9)

where xij denotes the (i, j)th entry of matrix X.
From (2) and Definition 1, it can easily be shown that

∂H(z1, z2)
∂Ak

= z−1
k [F (z1, z2)G(z1, z2)]T

∂H(z1, z2)
∂b

= GT (z1, z2)

∂H(z1, z2)
∂cT

k

= z−1
k F (z1, z2), k = 1, 2

(10)

where

F (z1, z2) =
(
In − z−1

1 A1 − z−1
2 A2

)−1
b

G(z1, z2) = (z−1
1 c1 + z−1

2 c2)
·
(
In − z−1

1 A1 − z−1
2 A2

)−1
.
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The term d in (2) and its sensitivity are independent of
the coordinate and therefore they are neglected here.

Definition 2 : Let X(z1, z2) be an m × n complex
matrix valued function of the complex variables z1 and
z2. The L2 norm of X(z1, z2) is defined as

||X(z1, z2)||2

=

[
1

(2π)2

∫ 2π

0

∫ 2π

0

m∑
p=1

n∑
q=1

∣∣xpq(ejω1 , ejω2)
∣∣2 dω1dω2

] 1
2

=
(

tr
[

1
(2πj)2

∮
Γ1

∮
Γ2

X(z1, z2)X∗(z1, z2)
dz1dz2

z1z2

]) 1
2

where Γi = {zi : |zi| = 1} for i = 1, 2.
From (10) and Definition 2, the overall L2-sensitivity

measure for the LSS model in (1) is evaluated by

S = σ2
∆H/σ2

=
2∑

k=1

∥∥∥∥∂H(z1, z2)
∂Ak

∥∥∥∥2

2

+
∥∥∥∥∂H(z1, z2)

∂b

∥∥∥∥2

2

+
2∑

k=1

∥∥∥∥∂H(z1, z2)
∂cT

k

∥∥∥∥2

2

= 2
∥∥[F (z1, z2)G(z1, z2)]T

∥∥2

2

+
∥∥∥GT (z1, z2)

∥∥∥2

2
+ 2 ‖F (z1, z2)‖2

2 .

(11)

The L2-sensitivity measure in (11) can be written as

S = 2 tr[M ] + tr[W o] + 2 tr[Kc] (12)

where

M =
1

(2πj)2

∮
Γ1

∮
Γ2

[F (z1, z2)G(z1, z2)]T

·F (z−1
1 , z−1

2 )G(z−1
1 , z−1

2 )
dz1dz2

z1z2

Kc =
1

(2πj)2

∮
Γ1

∮
Γ2

F (z1, z2)F T (z−1
1 , z−1

2 )
dz1dz2

z1z2

W o =
1

(2πj)2

∮
Γ1

∮
Γ2

GT (z1, z2)G(z−1
1 , z−1

2 )
dz1dz2

z1z2
.

Matrices M , Kc and W o are the 2-D Gramians and
can be derived from

M =
∞∑

i=0

∞∑
j=0

H T (i, j)H(i, j)

Kc =
∞∑

i=0

∞∑
j=0

f(i, j) f T (i, j)

W o =
∞∑

i=0

∞∑
j=0

gT (i, j) g(i, j)

(13)

where

f(i, j) = A(i,j)b

g(i, j) = c1A
(i−1,j) + c2A

(i,j−1)

A(0,0) = In, A(i,j) = 0, i < 0 or j < 0

A(i,j) = A1A
(i−1,j) + A2A

(i,j−1)

= A(i−1,j)A1 + A(i,j−1)A2, (i, j) > (0, 0)

H(i, j) =
∑∑

(0,0)≤(k,r)<(i,j)

f(k, r) g(i − k, j − r)

with the partial ordering for integer pairs (i, j) used in
[26, p.2].

We remark that in practice the infinite sums in (13)
are approximated with finite sums by truncation. The
number of terms that should be used in each of the
finite sums depends on how fast the associated series
converges which is in turn dependent upon the stability
margin of the filter involved. In principle it is advisable
that, as long as the available computing resources per-
mit, sufficiently many terms should be utilized in the
evaluation so that the error introduced by the trunca-
tion becomes negligible.

3. L2-SENSITIVITY MINIMIZATION

If a coordinate transformation defined by

x(i, j) = T −1x(i, j) (14)

is applied to the LSS model in (1), we obtain a new
realization (A1, A2, b, c1, c2, d)n characterized by

A1 = T −1A1T , A2 = T −1A2T

b = T −1b, c1 = c1T , c2 = c2T

Kc = T−1KcT
−T , W o = T T W oT .

(15)

The coordinate transformation in (14) transforms the
L2-sensitivity measure in (12) to

S(T ) = 2 tr[M(T )] + tr[W o] + 2 tr[Kc] (16)

where

M(T )=T T

 ∞∑
i=0

∞∑
j=0

H T (i, j)T−T T−1H(i, j)

T .

Moreover, if L2-norm dynamic-range scaling con-
straints are imposed on the local state vector x(i, j),
then

(Kc)ii = (T −1KcT
−T )ii = 1 (17)

is required for i = 1, 2, · · · , n.
The problem considered here is as follows: Given A1,

A2, b, c1 and c2, obtain an n × n nonsingular matrix
T which minimizes S(T ) in (16) subject to the scaling
constraints in (17).
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When the LSS model in (1) is assumed to be sta-
ble and locally controllable, the local controllability
Gramian Kc is symmetric and positive-definite [15].
This implies that K1/2

c satisfying Kc = K1/2
c K1/2

c is
also symmetric and positive-definite. Defining

T̂ = T T K
− 1

2
c , (18)

the scaling constraints in (17) can be expressed as

(T̂
−T

T̂
−1

)ii = 1, i = 1, 2, · · · , n. (19)

The constraints in (19) simply state that each column in
T̂

−1
must be a unity vector. If matrix T̂

−1
is assumed

to have the form

T̂
−1

=

[
t1

||t1||
,

t2
||t2||

, · · · , tn

||tn||

]
, (20)

then (19) is always satisfied. From (18), it follows that
(16) is changed to

Jo(T̂ ) = 2 tr[T̂

 ∞∑
i=0

∞∑
j=0

Ĥ
T
(i, j)T̂

−1
T̂

−T
Ĥ(i, j)

T̂
T
]

+tr[ T̂ Ŵ oT̂
T
] + 2 tr[ T̂

−T
T̂

−1
]

(21)

where

Ĥ(i, j) = K
− 1

2
c H(i, j)K

1
2
c , Ŵ o = K

1
2
c W oK

1
2
c .

From the foregoing arguments, the problem of obtain-
ing an n × n nonsingular matrix T which minimizes
S(T ) in (16) subject to the scaling constraints in (17)
can be converted into an unconstrained optimization
problem of obtaining an n × n nonsingular matrix T̂
which minimizes Jo(T̂ ) in (21).

Now we apply a quasi-Newton algorithm [24] to min-
imize Jo(T̂ ) in (21) with respect to matrix T̂ given
by (20). Let x be the column vector that collects the
variables in matrix T̂ , that is, x = [tT

1 , tT
2 , · · · , tT

n ]T .
Then Jo(T̂ ) is a function of x and denoted by J(x).
The proposed algorithm starts with an initial point x0

obtained from an initial assignment T̂ = In. Then, in
the kth iteration a quasi-Newton algorithm updates the
most recent point xk to point xk+1 as

xk+1 = xk + αkdk (22)

where
dk = −Sk∇J(xk)

αk = arg
[
min

α
J(xk + αdk)

]
Sk+1 = Sk +

(
1 + γT

k Skγk

γT
k
δk

)
δkδ

T

k

γT
k
δk

−δkγT
k Sk+Skγkδ

T

k

γT
k
δk

S0 = I, δk = xk+1 − xk

γk = ∇J(xk+1) −∇J(xk).

Here, ∇J(x) is the gradient of J(x) with respect to
x, and Sk is a positive-definite approximation of the
inverse Hessian matrix of J(x). This iteration process
continues until

|J(xk+1) − J(xk)| < ε (23)

where ε > 0 is a prescribed tolerance. If the iteration
is terminated at step k, then xk is viewed as a solution
point.

The implementation of (22) requires the gradient of
J(x). Closed-form expressions for ∇J(x) are given be-
low.

∂J(T̂ )
∂tpq

= lim
∆→0

J(T̂ pq) − J(T̂ )
∆

= 4β1 − 4β2 + 2β3

(24)

where T̂ pq is the matrix obtained from T̂ with its
(p, q)th component perturbed by ∆:

T̂ pq = T̂ +
∆T̂ gpqe

T
q T̂

1 − ∆eT
q T̂ gpq

β1 = eT
q T̂

 ∞∑
i=0

∞∑
j=0

Ĥ
T
(i, j)T̂

−1
T̂

−T
Ĥ(i, j)

T̂
T
T̂ gpq

β2 = eT
q T̂

−T

 ∞∑
i=0

∞∑
j=0

Ĥ(i, j)T̂
T
T̂ Ĥ

T
(i, j)

gpq

β3 = eT
q T̂ Ŵ oT̂

T
T̂ gpq

gpq = ∂

{
tq

||tq||

}
/∂tpq =

1
||tq||3

(tpqtq − ||tq||2ep)

where ep denotes an n×1 unit vector whose pth element
equals unity.

4. NUMERICAL EXAMPLE

Let the LSS model (Ao
1,A

o
2, b

o, co
1, c

o
2, d)4 in (1) for a

class of 2-D digital filters be specified by

Ao
1 =


0 1 0 0
0 0 1 0
0 0 0 1

−0.00411 0.08007 −0.42458 1.04460



Ao
2 =


−0.22608 1.61428 0.10054 −0.00723
−0.40594 1.61040 −0.60615 0.24580
−0.30955 1.02336 −0.45322 0.38668
−0.14469 0.43872 −0.31019 0.56289


bo =

[
0 0 0 1

]T

co
1 =

[
−0.01452 0.01234 0.02054 0.04762

]
co
2 =

[
0.01189 0.02351 −0.00637 0.02094

]
d = 0.00943.



HINAMOTO et al.: OPTIMAL SYNTHESIS OF A CLASS OF 2-D DIGITAL FILTERS WITH MINIMUM L2-SENSITIVITY
5

In this case, it follows from (13) that the Grammians
Ko

c , W o
o, and Mo are computed as

Ko
c =

103


1.525163 0.724615 0.352442 0.166126
0.724615 0.353199 0.176074 0.084130
0.352442 0.176074 0.092003 0.046055
0.166126 0.084130 0.046055 0.025386



W o
o =


0.008767 −0.017767 0.005057 −0.028288

−0.017767 0.046357 −0.023819 0.060846
0.005057 −0.023819 0.230707 −0.453548

−0.028288 0.060846 −0.453548 1.052716


Mo =

104


0.036099 −0.078957 0.088707 −0.261463

−0.078957 0.184748 −0.237832 0.633957
0.088707 −0.237832 1.316013 −2.769028

−0.261463 0.633957 −2.769028 6.163177


where the infinite sums in (13) were truncated with
(i, j) = (100, 100). The L2-sensitivity measure is then
derived from (12) as

S = 1.579936 × 105

To perform the scaling such that (17) is satisfied, we
apply the coordinate transformation matrix given by

T s = diag{39.053334, 18.793573, 9.591835, 5.038463}

to the above original realization and obtain a scaled
realization characterized by (A1,A2, b, c1, c2, d)4 with

A1 =


0 0.481228 0 0
0 0 0.510378 0
0 0 0 0.525287

−0.031857 0.298663 −0.808282 1.044600



A2 =


−0.226080 0.776837 0.024693 −0.000933
−0.843550 1.610400 −0.309366 0.065898
−1.260339 2.005100 −0.453220 0.203118
−1.121498 1.636435 −0.590516 0.562890


b =

[
0 0 0 0.198473

]T

c1 =
[
−0.567054 0.231913 0.197016 0.239932

]
c2 =

[
0.464344 0.441837 −0.061100 0.105505

]
d = 0.00943.

This scaled realization (A1,A2, b, c1, c2, d)4 will be
used as the starting point in the simulations. For the
scaled realization, it follows from (13) that the Gram-
mians Kc, W o, and M are calculated as

Kc =


1.000000 0.987279 0.940868 0.844274
0.987279 1.000000 0.976755 0.888478
0.940868 0.976755 1.000000 0.952963
0.844274 0.888478 0.952963 1.000000


W o =

10


1.337108 −1.304050 0.189462 −0.556646

−1.304050 1.637345 −0.429399 0.576183
0.189462 −0.429399 2.122604 −2.191942

−0.556646 0.576183 −2.191942 2.672484


M =

103


1.043052 −1.097577 0.637299 −0.982714

−1.097577 1.238937 −0.830495 1.153558
0.637299 −0.830495 2.324302 −2.574574

−0.982714 1.153558 −2.574574 3.019844


by trancating the infinite sums in (13) with (i, j) =
(100, 100). Then the L2-sensitivity measure in (12) is
computed as

S = 1.533797 × 104.

Choosing T̂ = In as the initial assignment, Jo(In) =
5.601499 × 102 was computed from (21). Applying the
quasi-Newton algorithm in (22) for the minimization of
Jo(T̂ ) in (21), it took 30 iterations to converge to the
solution

T̂ =


1.236271 −0.693521 −0.153525 −0.306992
0.026339 1.274328 −0.447779 −0.256231
0.359964 −0.434998 1.126999 −0.142857
1.255885 0.180785 0.005688 0.573318


which yields

T =


0.282749 0.429995 0.428701 1.113378
0.070152 0.442238 0.441342 0.989134

−0.065510 0.248649 0.532508 0.893925
−0.152303 0.070079 0.400554 0.889667

 .

In this case, the new realization (A1, A2, b, c1, c2, d)4
in (15) is constructed as

A1 =


0.318221 0.363292 −0.214913 −0.146352

−0.014377 0.137344 0.565138 −0.073837
−0.081823 −0.077103 0.167820 0.186979
−0.013435 0.075530 −0.037542 0.421215



A2 =


0.537741 −0.043781 0.150393 0.212192
0.088487 0.384327 0.015711 0.009448

−0.224833 0.361068 0.119172 −0.070477
−0.093959 −0.049634 0.142214 0.452750


b =

[
−0.381083 −0.363714 −0.778565 0.537030

]T

c1 =
[
−0.193514 −0.075468 0.060275 −0.012374

]
c2 =

[
0.150222 0.387265 0.403791 0.993274

]
d = 0.00943
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Fig. 2 L2-sensitivity performance.

which yields

Kc =


1.000000 0.412457 −0.000234 −0.669182
0.412457 1.000000 0.546814 −0.408864

−0.000234 0.546814 1.000000 −0.185690
−0.669182 −0.408864 −0.185690 1.000000



W o =


1.231416 0.433200 −0.206292 −0.537717
0.433200 0.877046 0.499273 0.360230

−0.206292 0.499273 0.640216 0.820198
−0.537717 0.360230 0.820198 2.412811


M(T ) =

10


6.141820 2.122331 −1.144342 −3.890787
2.122331 3.507444 1.791768 −0.662469

−1.144342 1.791768 2.314498 1.729572
−3.890787 −0.662469 1.729572 6.016978

 .

The L2-sensitivity measure in (16) is then minimized
subject to the L2-scaling constraints in (17) to

S(T ) = 372.776303997204.

The L2-sensitivity performance of 30 iterations in (21)
is shown in Fig. 2, from which it is observed that the
iterative algorithm converges before 30 iterations where
for ε = 10−11, (23) was satisfied at k = 26.

The simulation results of applying the technique in
[27] to this example can be found in Appendix. It is
noted that the most significant 10 digits of the min-
imum L2-sensitivity value S(T ) = 372.776303997204
shown in this section coincides with those of the min-
imum L2-sensitivity value S(P ) = 372.776303987459
shown in Appendix. In addition, the optimal coordi-
nate transformation matrix T in this section, denoted
as T here, which minimizes the L2-sensitivity measure
subject to the L2-scaling constraints is related to the
corresponding optimal matrix T in Appendix, denoted
as T [27], by

T [27] = T hereU

where

U =


0.212855 0.485601 0.833142 0.157347

−0.268700 −0.210930 0.014111 0.939739
−0.292144 −0.736880 0.552713 −0.257229
−0.892830 0.420366 0.013524 −0.161137


and U is an orthogonal matrix satisfying UUT =
UT U = I4. This means that

P = T [27]T
T
[27] = T hereT

T
here

is valid. For these reasons, we can conclude that the
minimum L2-sensitivity value obtained by the proposed
algorithm is practically identical to that of [27].

Concerning the computational complexity of the two
algorithms, the algorithm in [27] took 2762 iterations
and 311.528 seconds of CPU time on the AthlonXP
2500+ with clock 1.83 GHz and memory 480 MB to
converge to the solution, while the identical solution
was obtained by the proposed algorithm with 26 iter-
ations and 94.736 seconds of CPU time on the same
computer.

5. CONCLUSION

We have investigated the problem of minimizing the L2-
sensitivity measure subject to L2-norm dynamic-range
scaling constraints for a class of 2-D state-space digi-
tal filters. It has been shown that the L2-sensitivity
minimization problem subject to L2-norm dynamic-
range scaling constraints can be converted into an un-
constrained optimization problem by using linear al-
gebraic techniques. An efficient quasi-Newton algo-
rithm has then been applied to solve the unconstrained
optimization problem. The coordinate transformation
matrix obtained has allowed us to construct the opti-
mal 2-D state-space filter structure with minimum L2-
sensitivity and no overflow oscillations. Computer sim-
ulation results have demonstrated the effectiveness of
the proposed technique.

It shoud be pointed out that the same problem was
solved recently by relying on a Lagrange function [27].
The technique proposed in this paper can be viewed as
an alternative mehod for soving the L2-sensitivity min-
imization problem subject to L2-scaling constraints.
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Appendix

In the simulations of applying the technique reported
in [27], the same scaled realization (A1,A2, b, c1, c2, d)4
as in Section 4 was used as the starting point. In the
same manner as in Section 4, the L2-sensitivity measure
of the scaled realization was computed as

S = 15337.965477.

It is noted that the previous L2-sensitivity value S =
14424.346809 in [27] was calculated not using H(i, j)
defined in (13), but using

H(i, j) =
∑∑

(0,0)≤(k,r)≤(i−1,j−1)

f(k, r) g(i − k, j − r).

When choosing P 0 = I4 and λ0 = 100 as the initial
estimates in [27], it took the iterative algorithm in [27]
2000 iterations to converge to

P =


1.688238 1.500480 1.311958 1.149324
1.500480 1.373665 1.224597 1.077089
1.311958 1.224597 1.148785 1.035997
1.149324 1.077089 1.035997 0.980059


which yields

T =


−1.174654 0.198729 0.493644 0.158893
−1.115961 0.031366 0.322000 0.153714
−1.034448 −0.100879 0.255344 −0.057664
−0.962590 −0.009915 0.107523 −0.204501


and the L2-sensitivity measure is minimized subject to
the L2-scaling constraints (Kc)ii = (T −1KcT

−T )ii =
1 for i = 1, 2, · · · , n to

S(P ) = 372.776303987459.

The profiles of the L2-sensitivity, parameter λ, as well
as tr[KcP

−1] during the first 2000 iterations of the al-
gorithm are shown in Figs. 3 and 4, respectively, from
which it is observed that the iterative algorithm con-
verges before 2000 iterations. However, for a prescribed
tolerance ε = 10−11,

|J(P i+1, λi+1) − J(P i, λi)| < ε

was satisfied at i = 2762.
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Fig. 3 L2-sensitivity and λ performances.

Fig. 4 tr[KcP −1] performance.
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