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Roundoff Noise Minimization for 2-D State-Space
Digital Filters Using Joint Optimization of
Error Feedback and Realization

Takao Hinamotofellow, IEEE,Hiroaki Ohnishi and Wu-Sheng Lukellow, IEEE

Abstract—The joint optimization problem of error feedback filters. In [28] and [29], jointly-optimized iterative algorithms
and realization for two-dimensional (2-D) state-space digital have also been considered for filters with a general or scalar EF
filters to minimize the effects of roundoff noise at the filter matrix. In [30], a jointly-optimized iterative algorithm has been

output subject to Lo-norm dynamic-range scaling constraints is .. - .
investigated. It is shown that the problem can be converted into developed for 1-D state-space digital filters with a general,

an unconstrained optimization problem by using linear-algebraic diagonal, or scalar EF matrix by applying a quasi-Newton

techniques. The unconstrained optimization problem at hand method.

is then solved iteratively by applying an efficient quasi-Newton  This paper investigates the problem of jointly optimizing EF

algorithm with closed-form formulas for key gradient evaluation. a4 reglization for 2-D state-space digital filters to minimize

Analytical dt_atalls are given as to how the proposed technl_qu_e th doff noi biect thy- d L i

can be applied to the cases where the error-feedback matrix is e roup 0 nOISe. Subjec 2] norm ynam'(_: range _Sca mg

a general, block-diagonal, diagonal, or block-scalar matrix. A constraints. To this end, an iterative technique which relies

case study is presented to illustrate the utility of the proposed on an efficient quasi-Newton algorithm [31] is developed. It

technique. is shown that the constrained optimization problem can be
converted into an unconstrained optimization problem by using

Index Terms— 2-D digital filters, roundoff noise minimization, linear-algebraic techniques. The proposed technique can be
joint optimization, error feedback, state-space realization, Lo-  applied to the cases where the EF matrix is a general, block-
scaling constraints. diagonal, diagonal, or block-scalar matrix. A case study is pre-
| INTRODUCTION _sented to illustrate the algorithm proposed and to demonstrate

its performance.

When implementing recursive digital filters in fixed-point Throughout the paperl,, stands for the identity matrix
arithmetic, the problem of reducing the effects of roundof dimensionn x n, @ is used to denote the direct sum
noise at the filter output is of critical importance. Errobf matrices, the transpose (conjugate transpose) of a matrix
feedback (EF) is a useful tool for the reduction of finite4 is indicated byAT (A*), and the trace anéh diagonal
word-length (FWL) effects in recursive digital filters. Many EFelement of a square matri4 are denoted by ] and (A);;,
techniques have been reported in the past for one-dimensior@pectively.

(1-D) recursive digital filters [1]-[10], and more recently for

2-D recursive digital filters [11]-[15]. The roundoff noise cajé‘ 2-D STATE-SPACE DIGITAL FILTERS WITH

also be reduced by introducing a delta operator to recurs EQROR FEEDBACK

digital filters [16]-[18] or by applying a new structure based Suppose that a local state-space (LSS) modeb, ¢, d),,
on the concept of polynomial operators for digital filtefor 2-D recursive digital filters is described by [32]
implementation [19]. Another useful approach is to construct 2111, 5) = Ax(i, j) + bu(i, j)

the state-space filter structure for the roundoff noise gain to (1)
be minimized by applying a linear transformation to state- y(i,j) = cx(i, j) + du(i, j),

space coordinates subject 1@,-norm dynamic-range scal-\here

ing constraints [20]-[23]. The problem of synthesizing such zh(i +1,5) zh (i, j)

a state-space filter structure with minimum roundoff noiseri1(i,j) = { 20(i j+’1) } . x(i, ) = { w”(i,j) } )

has been explored for 2-D state-space digital filters [24]-
[27]. As a natural extension of the aforementioned methodg, — { Ar A, } b= [ by ] c=|ec e |
efforts have been made to develop hew methods that combine Az Ag |7 by |’ 7
EF and realization, for achieving better performance [28Lith anim x 1 horizontal state vectat” (i, j), ann x 1 vertical
[30]. Separately-optimized analytical algorithms have beeggte vectorz “ (i, j), a scalar inputu(i, j), a scalar output
proposed for either 1-D [28] or 2-D [29] state-space digit@)(i7j), and real constant matrice4;, A,, As, A4, by, bo,
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coefficients in the realizatiofA, b, ¢, d),, . Assuming that with T'; = {z; : || = 1} for ¢ = 1,2. Utilizing the 2-D
the quantization is performed before matrix-vector multiplica&Sauchy integral theorem, we can express mabdy in (7)

tion, the actual FWL filter of (1) is implemented as in closed form as
T11(i,j) = AQ[E(i, j)] + bu(i, j) @ Wp=(A-D)'W,(A-D)+c'c, (8)
§(i,j) = eQ[z(i, )] + du(i, j), where matrixW , is the local observability Gramian defined
where each component of matrices, b, c, and d assumes by
an exact fractionalB.-bit representation. The FWL local 1 7{ % Te(Z — A)! dz1dz
state vectorz(i,j) and the outputy(i,j) all have aB-bit (22 Jr, Jr, 2122
fractional representation, while the inputz, j) is a(B — B..)-
bit fraction. _ _ _ _ = g(i, ]) g(i,7),
The quantizeQ[-] in (2) rounds theB-bit fraction (i, j) i=0 j=0
0 (B — B.) bits after multiplications and additions, where )
the sign bit is not counted. In a fixed-point implementatiorWith
the quantization is usually carried out by two's complement 1) [ Im O Gj-n [0 0
truncation which discards the lower bits of a double-precisiorg(m =cA o | tcA o I,
accumulator. Thus, the quantization error I o o o
S A<1’°>[ " }A, A<0>1>{ ]A
C(Z,j) = :B(Z?j) - Q[:E(Z,])] (3) 0 0 0 In

coincides with the residue left in the lower part fi,j). A®? =TI, AT =0 (i>1), AP =0(j>1)
The quantization errag(z, ) is modeled as a zero-mean white AGD — ALO) 4G-15) | 401) (5=
noise of covariance?1,,, with
) = AULD A0 1 AGI=1 4O (5 5y 5 (0,0)
o2 = 9~AB-Eo), (10)
12 and the partial ordering for integer pai(s j) used in [32,
In order to reduce the filter's roundoff noise, the quantizatiqn?].
error e(4,7) is fed back to each input of delay operators We remark that matrid¥,, in (9) is referred to as thanit
through an(m + n) x (m + n) constant matrixD. Under noise matrixfor the 2-D filter (2), and matrix¥¥ p, in (8) is
these circumstances, the filter model can be represented agewed as theunit noise matrixfor the 2-D filter in (4) with

. . L. . EF ified by th trixD.
#11(i,7) = AQ&(i, )] + bu(i, j) + De(i, ) spectiied By the matr

4) In the case where there is no EF in the 2-D filter, the noise
(i, 5) = eQlz(3,7)] + du(i, j), gain I(D) with D = 0 can be expressed as
where D is referred to as the EF matrix. Subtracting (4) from 1(0) = trfA"W,A + T ] = tr{W,]. (12)

(1) yields . : .
It is noted that theLs-norm dynamic-range scaling con-

Azy1(i,j) = AAz(i,j) + (A — D)e(i,j) straints on the local state vectar(i,j) involves the local
Ay(i,j) = cAx(i, j) + ce(i, j), controllability Gramian defined by

where 1 dz1dz
Aali, J f (Z— A)'bbT (2 — A7) 10102
@(i, ) = @(i,3) = &(i ) (277.7) Iy JTy < 2 Z1%2
Az (i, ) = ®11(i, ) — 113, 5) s oo
Ay(i. ) = y(i.5) — (i J). =22 101
=0 j=
From (5) it follows that the 2-D transfer function from the (12)
quantization erroe(i, 5) to the filter outputAy(s, j) is given Wwhere
by o[ o
i) = AG—LJ) 1 (4,5—1)
Gp(e1,22) =¢(Z~ A (A-D)+ec,  (6) fi.) =4 [ 0 ]*A [bJ'
where Z = 2,1, & 21, IIl. JOINT ERROR-FEEDBACK AND REALIZATION
For the 2-D filter in (4) with EF, the noise gaiD) = OPTIMIZATION
o5 /0% is evaluated by A. Probem Statement
[(D) = tr[W p] @) The change of coordinates from local state vectoi, j)

to z(i,j), defined by a linear transformatio®(i,j) =

wherec?,, denotes noise variance at the filter output and T ~'x(i,j) with T = T; © T, transforms the LSS model
(A,b,c,d)m.n in (1) to a new realizatiofA, b, ¢, d),, ,, with
— ; G* ( )G ( )d21d2'2 ’ )
D= e o, Jp, PV REDEL ST A=T'AT, b=T"'5, c=cT. (13)
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The local controllability GramiankK . and the local observ- This enables one to reduce the scaling constraints in (15) to
ability Gramian W, in the new realization then satisfy the R
relations (T, T )u=1, i=1,2,---,m

K. =T'k.T ", W,=T"W,T. (14) (T Ty e =1, k=12 .n.
If the Lo-norm dynamic-range scaling constraints specified byhe constraints in (22) simply state that each column in

(K= (T 'K1T 1), =1, i=1,2,---,m+n (15) matricesT'; - andT,; must be a unity vector It can be

V?I’Ifled that these constraints are satisfiedif and T, -
assume the forms

(22)

are imposed on the new realization, then it is known th

[25],[26]
n 2 A [ tin  t tim
1 N e T -
mip (3 (ZQL) L (Z"“) (15) Full Teal ™ Toalll g
=1 A4—1 _ [ tyn  tp  tay }
whereo?; for i = 1,2,---,m ando?, fori =1,2,.--,n are NEarll N1tazll” 7 ||tanl]

the eigenvalues of thew x m matrix K. W, and then x n

i ) wheretq; fori =1,2,---,m andty; for j =1,2,---,n are
matrix K 4.W 4,, respectively, and 1 47 O

m x 1 andn x 1 real vectors, respectively. In such a case,

K. Kj Wi, Way, matrix W p in (18) can be written as
K.= W, = :
K3c K4c W3o W4o _ ~ ~ ~ T A,TT ~ ~ ~ ~—T A . AT
Wp=T[A-T DT ) W,A- T DT HY+C|T,
The LSS model(A,b,€,d),,.,, satisfying (15) and (16) si- (24)
multaneously is known as theptimal realization(which is whereT =T @ T4 and
sometimes also referred to as tbptimal filter structurg. A St 1
method for synthesizing such a filter structure was proposed A= (K ®Ki) ?AK®Ky)?
in [25],[26]. , , C = (K1c€BK4c)%CTC(K10@K4c)%
If a coordinate transformatio®(i, j) = T ~'x(i,j) with X ) )
T =T, ® T, is applied to the LSS model in (1), then the W,=(Ki:®Ks.)2 W, (K. D Ky.)?

2-D filter in (4) with EF can be characterized by Under these circumstances, the objective function in (19)

Z11(i,7) = AQ[&(i, 5)] + bu(i, j) + De(i, j) (17 becomes
9(i,5) = €Q[z(i, )] + du(i, j). J(D,T)
In this case, the noise gaiR(D,T') can be expressed as a
function of matricesD andT =T ® T4 in the form

A o~ AT A A ~ T
I(D,T) = tt[Wp], (18) +(1—p)tr[TCT |+ ptrTW,T .
where From the foregoing arguments, the problem of obtaining
_ _ R e matricesD andT = T, & T4 that minimize (19) subject
Wp=(A-D) W,(A-D)+cec to the scaling constraints in (15) is now converted into an
The roundoff noise minimization problem can now be formw{nconstrained optimization problem of obtaining matrides
lated as followsGiven A, b andc (and henceW', and K,), andT =T, & T that jointly minimize the noise gain in (25).

obtain matricesD and T' = T & T4 which jointly minimize €. Optimization Method _ _
the noise gain in (18) subject to the scaling constraints in.(15) Let  be the column vector that collects the variables in

—(1-pt[(TA"— DTTYW, (AT  —T'D)] (25)

B. Problem Relaxation and Conversion matrices D, [ti1,t12,- -+, t1,m] @nd [ty tas, - -+, tan]. Then,
In order to reduce solution sensitivity, the objective functiod (D, T') is a function ofz, denoted byJ(x). The proposed
in (18) is modified to algorithm starts with an initial point, obtained from an initial
— — assignmentD = T = I,,4,. In the kth iteration, a quasi-
J(D,T) = [l = p)Wp + uW,, (19) Newton algorithm updates the most recent paiptto point
where0 < p < 1 is a scalar parameter that weights thex;1 as [31]
importance of reducing W] relative to reducing {W p]. Tpt1 = T + apdy, (26)
Defining
. . . where
T=T,¢T,

(20) di, = =SV J(zr)

-

- (Tl @T4)T(ch SY K4c)_§7

it follows that ar = arg [m'” (@ + O‘d’“)}

1 1
_ 3 3| S . 6,YE S +8:v, 67
Kc _ T T N Im B ch2 K26K4c2 T 1' Sk—i—l — Sk 4 < =+ ’VI:‘YTS’YIC) gl}%k Yk k;‘(skk’Yk

K402 K3CK102 I, *

(21) So = I, 6k = Tr+1— Lk, Vi = VJ(:L‘]H_l)—VJ(.CBk).
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Here, VJ () is the gradient of/(«) with respect tox, and whereD; and D, arem x m andn x n matrices, respectively.
S is a positive-definite approximation of the inverse Hessiarhe gradient of/(x) can be derived as follows:

matrix of J(x). This iteration process continues until aJ(x)
T 261 +2(1 — p)(B2 — Bs)
| (@r41) — J ()| <e, 27) i (32)
oJ(x)

A A ~ T ~ AT
wherez > 0 is a prescribed tolerance. If the iteration is 5, = 20— p)e] TW,(T D — AT ey,
terminated at step, thenx; is deemed as a solution point. “

The implementation of (26) requires the gradient/gfc).
Now we consider the cases where EF matrix is a general, 3, — 77 [(1 — WA W,A+€) +MWO]TTT9U
block-diagonal, diagonal, or block-scalar matrix. It is noted . .
that a general EF matrix is often too costly because it requires 32 = e;‘-FT w,T DDTTgij
as many agm + n)? explicit multiplications. The cost can AT a AT s aaT o
be reduced, e.g., by constraining EF matrix to be a block- B = e;"FT(A W,T D+W,AT D )Tg;,
diagonal or diagonal (block-scalar), which reduces the numhgiinh g;; defined in (30). In (32)d;; € Dy @ D, is meant to
of distinct coefficients tan? 4 n2 or m + n. bed;; € Dy for (1,1) < (i,5) < (m,m) andd;; € D, for

A key quantity for the implementation of the quasi-Newtony, + 1,m + 1) < (i,5) < (m +n,m +n).
algorithm is the gradien¥.J(x). In what follows, we derive Case 3 D is a diagonal matrix

closed-form expressions &V.J(x) for the cases wherd Here, matrixD assumes the form
assumes the form of a general, block-diagonal, diagonal, or ,
block-scalar matrix. D = diag{di1, 2, -+, dm-+n,m-+n}- (33)
Case 1 D is a general matrix In this cased.J(xz)/dd;; can be obtained using (32) as
From (25), it is evident that the optimal choice & is 0J () o o
given by e 2(1 — ) el TW (T D — AT )e;, (34)
D=T "AT" (28) B

wherel < i <m+mn, anddJ(x)/0t;; is also given by (32).
Case 4 D is a block-scalar matrix

It is assumed here thdD, = «fl,, and D, = gI,, with
JA AT T = [T {(1 — )€ + W, IT']. (29) scalarsa and3. The gradient of/(z) can then be calculated

which leads to

using
In this case, the number of elements in vectoronsisting of m
T=T,T,i 2 2 ; 0J(x) Trm<ar T N T
=T; ®T, is equal tom* + n* and the gradient off (x) =2(1—p) Zei TW,(T D - AT )e;
is found to be O i1
oJ(x) o oaea, T N AT
. N =2(1 - i T Wo(T D — AT et
0J(@) _ . J(Ty) = J(D) a8 A-n ); * ( Jems
Oti; A—0 A (30) (35)

T ) T andoJ(x)/0t;; is computed using (32).

=2eTT[(1—p)C+uW, T Tg,.
T = WO uWolT Ty, IV. A CASE STUDY

for either(1,1) < (i,§) < (m,m) or (m+1,m+1) < (i,5) <

(m+n,m+n) whereT';; is the matrix obtained frorfl” with

a perturbed(, j)th component, which is given by [34, p.655]

In this section, we present a case study to illustrate the
effectiveness of the proposed algorithm. Consider a 2-D BIBO
stable, separately locally controllable, and separately locally

- T observable state-space digital filed”, b°, ¢°, d)2 o of order
ATgye; T (2,2) where

_ TTqg..
1 Ae] Tq;; 1.88899 —0.91219 —1.00000  0.00000
andgij is Computed using A° — 1.00000 0.00000 0.00000  0.00000
0.02771 —0.02580  1.88899  1.00000
—0.02580  0.02431 —0.91219  0.00000

Ti; =T+

t; 1
gij - 8{ J }/8tij == 3 (tijtj — ||tj\|2ei),

121 il b° = [ 0.219089  0.000000 —0.028889 0.091219]"
with c® =[0.028889 —0.091219 —0.219089  0.000000 ]
[t1, 82, tmgn] = [B11, t12, -+ tim]) B [tar, taz, - - -, tan). d = 0.08900.

If a coordinate transformation matrik® = TY® T3 is chosen
as

Case 2 D is a block-diagonal matrix
Matrix D in this case assumes the form

TO

| —1.373341 9.544965 0.942406  0.329402
T | —3.318699 9.494676 —0.947397 —0.136313

D =D, & Dy, (31)
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then the above filter is transformed to tbptimal realization
(A,b,c,d)2o = (T TA°T°, T° b, cT?, d), - that satisfies
(15) and (16) simultaneously [25],[26] where

0.923959 —0.115198 —0.480100 —0.167811
0.178310  0.965031 —0.167811 —0.058655
0.045857  0.013210  0.923959  0.178310
0.013210  0.021491 —0.115198  0.965031

b=[ 0111613 0.039012 —0.142200 0.319129]"
c =] 0263054 —0.590350 —0.206471 —0.072168 |
d = 0.089000

and the local controllability and local observability Gramians 0 2 4 6 8 10 12
were calculated by truncating the series in (12) and (9) to the

Fig. 1. Profile of (& "A%" 7 with 4 —
range(0,0) < (i, 7) < (200,200) as ig. 1. Profile of.J( , T') with = 0.01

during the first 12 iterations.

[ 1.000000 0.221999 0.155751 0.036319 ]

K. .= 0.221999  1.000000 0.184141 0064066 [ 1.000000 —0.484097 —0.009234 —0.020689 ]

8(1)22;?; gégiégé (1)(2)(2)(1)888 (1)(2)3(1)883 —0.484097  1.000000  0.190252  0.119536
- ’ ' ' - —0.009234  0.190252  1.000000  0.354179
) ) | —0.020689  0.119536  0.354179  1.000000 |

3.422064 0.759695 0.532989 0.630143 T 3802789  3.394235  0.304627  0.791440 ]

W,= 0.759695 3.422064 0.124286 0.219239 , 3.394235  6.664921  0.288432  0.896328

>
Il

e G Sl 0T Wl e o st oo

L - | 0.791440  0.896328  0.091564  4.299965 |
respectively. This gives the noise gaif0) = tr[W,] = Using (28) and (29), the optimal EF matri® and the noise
13.688256. In what follows, EF and state-variable coordinat@ain in (18) were found to be
transformation are applied to the abowptimal realization 0.793657 —0.235832 —0.218781 —0.149075
(A, b, c, d)2,2 in order to jointly minimize the roundoff noise, 0.181787 1.095333 —0.178900 —0.121901
and the results obtained are then compared to their countef? = 0.046747 0.047458  0.885610 0.190951
parts obtained in [29] where the minimization of the roundoff 0.024675 0.043593 —0.123522  1.003380
noise was carried out using EF and state-variable coordinate ) )
transformation, but in @eparatemanner. ancj _I ADA, FE’;)A = 0.276534, respectively. The profile of
Case 1 D is a general matrix J(T AT | T) with ¢ = 0.01 in (29) during the first 12

}erations of the algorithm is depicted in Fig. 1.

Next, the above optimal EF matri® was rounded to a
power-of-two representation with 3 bits after the binary point,
which resulted in

g [1.112303 —0.262415} [0.977230 —0.434117} 0.750 —0.250 —0.250 —0.125

The quasi-Newton algorithm was applied to minimize (Zd
with 1 = 0.01 and tolerance = 10~8. It took the algorithm
10 iterations to converge to the solution

0.768079  0.846247 0.059862  1.067639 Dorr — 0.125 1.125 —0.125 —0.125
3bit 0.000 0.000 0.875 0.250

or equivalently, 0.000 0.000 —0.125 1.000

The corresponding noise gain was found tolp®3y;;, T') =

] 0.379031. Furthermore, when the optimal EF matd® was
rounded to the integer representatibi,; = diag{1,1,1, 1},
the noise gain was found to W€Dj,, T') = 1.786366.
Case 2 D is a block-diagonal matrix

T— 1.076031 0.857797 0.922624 0.178741
~ | —0.136530 0.926745 —0.322246 1.067644

This leads to

0.793657 —0.235832 —0.218781 —0.149075 Again, the quasi-Newton algorithm was applied to minimize
| 0181787  1.095333 —0.178900 —0.121901 J(D,T)in (25) with D = D1®Dy, pp = 0.01, ande = 107,
| 0.046747 0.047458 0.885610  0.190951 It took the algorithm 19 iterations to converge to the solution

0.024675  0.043593 —0.123522  1.003380 TF'WMB —0.290485} { 1.081669 —1.093278]

0.734598  0.837413 —0.110922  1.533936

}T
0.812641 0‘217981} { 0.720185 0.234829}

5:[ 0.062793  0.051347 —0.200321  0.238447

Ez[ 0.363655 —0.321457 —0.167239 —0.113955] D = {0'174373 1.086382 0263724 1.077042
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24 took the algorithm 14 iterations to converge to the solution

2.2 i 1.001398 —0.305076 o 0.930738 —0.766589
~10.587614  0.866360 0.115699  1.200227

2.0f D = diag{0.959461, 0.979277, 0.896380, 0.950455},

which leads to

|

0.961055 0.680708 & 0.839287 0.249038
—0.191312 0.926574 —0.657829 1.205640

0.834922 —0.203220 —0.197375 —0.217164

1.4f i 0.158082  1.054068 —0.151112 —0.166263
0.040783  0.038439  0.829877  0.216040
1.0 0.029372  0.044948 —0.153937 1.059113
14 16 18 20
k - T
Fig. 2. Profile of. (D, T) with 1 = 0.01 during b= 0075302 0.057652 —0.213419  0.148249]
the first 20 iterations. Cc = [ 0.365751 —0.367940 —0.125814 —0.138428}
1.000000 —0.295774 0.021123 0.003433
—= —0.295774  1.000000 0.193509 0.161263
This leads to Ke=1 0021123 0.193509 1.000000 0.558757
T 1.036236 0.823539} . { 0.952782 0.061110 | 0.003433  0.161263 0.558757 1.000000
| —0.168545 0.914226 —0.965616 1.511947 3.006599  2.209658 0.039163  0.801213
[ 0.805454 —0.228456 —0.170347 —0.163237 W — 2.209658  5.481950 —0.014649  0.881098
— 0.172688  1.083536 —0.144340 —0.138315 ° | 0.039163 —0.014649  3.052508 —1.354534 |’
A= 0.045256  0.049009 0.756447 0.269578 | 0.801213  0.881098 —1.354534  5.642635
[ 0-035561  0.051491 —0.205808  1.132543 and the minimized noise gain was found to beD,T) =
b—=[ 0064366 0.054539 —0.156380 0.111198]"  1.608812 from (18). The profile of/(D, T) with ;= 0.0 in
(25) during the first 16 iterations of the algorithm is shown in
c :[ 0.372087 —0.323078 —0.127035 70.121732} Fig. 3.
1.000000 —0.440602 —0.007858 —0.016928 ] Next, the above optimal diagonal EF matfixwas rounded
_ _0.440602  1.000000 0.198776  0.171103 to a power-of-two representation with 3 bits after the binary
Ke=1_0.007858 0.198776 1.000000 0.759746 | Point to yield Dapj = diag{1.000, 1.000, 0.875, 1.000},
—0.016928 0.171103 0.759746 1.000000 which leads to a noise gaﬁ‘(D3b|t7 T) = 1.631354. Further-
- -~ more, when the optimized diagonal EF matfixwas rounded
3.506411  3.007275 —0.088578  0.963868 | {o the integer representatidi,; = diag{1, 1,1, 1}, the noise
W, — 3.007275  6.325040 —0.168173  1.121432 gain was found to bé(Djny, T) = 1.662735.
°7 | —0.088578 —0.168173  4.899437 —3.747273 | Case 4 D is a block-scalar matrix
| 0.963868  1.121432 —3.747273  7.975946 |

and the minimized noise gain was found to beD,T) =
0.993119 from (18). The profile ofJ(D,T) with 1 = 0.01
in (25) during the first 20 iterations of the algorithm is shown
in Fig. 2.

Next, the optimal EF matrixd = D, & D, was rounded
to a power-of-two representation with 3 bits after the binary

point to yield
D3pit = [ } S [ ] ;

which leads to a noise gaif(Dgp;;, T) = 1.026055. Fur-
thermore, the optimal EF matri® = D, & D4 was rounded
to the integer representatial;,; = diag{1,1,1,1} and the
corresponding noise gain was found to B€Djn, T) =
1.779801.
Case 3 D is a diagonal matrix

The quasi-Newton algorithm witlhy = 0.0 ande = 1078
was applied to minimize (25) for a diagonal EF matfix It

0.750 0.250
—0.250 1.125

0.875 —0.250
0.125 1.125
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ot
[oo)

Fig. 3. Profile ofJ(D, T) with x = 0.0 during
the first 16 iterations.
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2.1

k
Fig. 4. Profile ofJ(D, T) with 1 = 0.0 during
the first 14 iterations.

In this case, the quasi-Newton algorithm wijth= 0.0 and
e = 10~% was applied to minimize (25) foD = al, @

were obtained ag(Dgp;t, T') = 1.650103 and I (Djpt, T') =
1.661235, respectively. It is interesting to note that for this
particular example the noise gain obtained from the integer
approximation of the optimal matribD = ol,, ® I, is
smaller than that obtained from the integer approximation of
the optimal diagonal EF matriD, due to their differentl’
matrices.

The simulation results described above are summarized us-
ing the noise gaid (D, T') in (18) in Table |. For comparison
purposes, their counterparts obtained using the method in [29]
are also included in the Table. Specifically, the term “separate”
means that the EF matrix was optimized by applying the
existing method [29] to the optimal realization without EF,
which satisfies (15) and (16) simultaneously [25],[26]. From
the Table, it is observed that the proposed joint optimization
offers greatly reduced roundoff noise gain for all cases of the
matrix D when compared with that obtained by usseparate
optimization.

V. CONCLUSION

The joint optimization problem of EF and realization to mini-

GBI, with scalarsa and 3. The algorithm converges after 12mize the effects of roundoff noise of 2-D state-space digital fil-

iterations to the solution

4 [1:009533 —0.279518] [0.917919 —0.788744
= 10.567440  0.880511 | ¥'| 0.134695  1.202726
o = 0.972437, 3 = 0.932446,

which leads to

0.971994 0.662241} {

T= [—0.165006 0.938383

0.824073 0.268195
—0.681278 1.210245

0.833441 —0.200869 —0.194700 —0.229679
| 0161558 1055549 —0.139020 —0.163997
= | 0.041366  0.037287  0.827306  0.217046
0.030965  0.044882 —0.155969  1.061684
b=[ 0077249 0.055157 —0.218369 0.140763]"
¢ = 0353098 —0.379770 —0.120980 —0.142716 ]
1.000000 —0.297762  0.026165 0.007977
& _ |—0-207762  1.000000 0.190338 0.162372
¢~ | 0026165 0.190338 1.000000 0.563261
| 0.007977  0.162372 0.563261 1.000000
[3.082557  2.282800  0.017388  0.830929
T _ | 2:282800 5458336 —0.037480  0.879969
© = | 0.017388 —0.037480  3.059210 —1.446363 |
| 0.830029  0.879969 —1.446363  5.751581

and the minimized noise gain
1.614538 from (18). The profile

was found to beD,T) =
ofJ(D,T) with y = 0.0 in

(25) during the first 14 iterations of the algorithm is drawn in

Fig. 4.
Next, the optimal EF matrixD

aly & I, was

rounded to a power-of-two representation with 3 bits af-
ter the binary point as well as an integer representationg]

It was found that these representations were given
Dgpi¢ = diag{1.000, 1.000, 0.875, 0.875} and Djn¢

diag{1, 1, 1, 1}, respectively. The corresponding noise gains

ters subject td_»-norm dynamic-range scaling constraints has
been investigated. It has been shown that the problem at hand
can be converted into an unconstrained optimization problem
by using linear algebraic techniques. Closed-form formulas for
fast evaluation of the gradient of the objective function have
been derived and an efficient quasi-Newton algorithm has been
employed to solve the unconstrained optimization problem.
The proposed technique has been applied to the cases where
the EF matrix is a general, block-diagonal, diagonal, or block-
scalar matrix, and its effectiveness compared with the existing
method [29] has been demonstrated by a case study.
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