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Digital Filters Using Joint Optimization of
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Abstract— The joint optimization problem of error feedback
and realization for two-dimensional (2-D) state-space digital
filters to minimize the effects of roundoff noise at the filter
output subject to L2-norm dynamic-range scaling constraints is
investigated. It is shown that the problem can be converted into
an unconstrained optimization problem by using linear-algebraic
techniques. The unconstrained optimization problem at hand
is then solved iteratively by applying an efficient quasi-Newton
algorithm with closed-form formulas for key gradient evaluation.
Analytical details are given as to how the proposed technique
can be applied to the cases where the error-feedback matrix is
a general, block-diagonal, diagonal, or block-scalar matrix. A
case study is presented to illustrate the utility of the proposed
technique.

Index Terms— 2-D digital filters, roundoff noise minimization,
joint optimization, error feedback, state-space realization,L2-
scaling constraints.

I. INTRODUCTION

When implementing recursive digital filters in fixed-point
arithmetic, the problem of reducing the effects of roundoff
noise at the filter output is of critical importance. Error
feedback (EF) is a useful tool for the reduction of finite-
word-length (FWL) effects in recursive digital filters. Many EF
techniques have been reported in the past for one-dimensional
(1-D) recursive digital filters [1]-[10], and more recently for
2-D recursive digital filters [11]-[15]. The roundoff noise can
also be reduced by introducing a delta operator to recursive
digital filters [16]-[18] or by applying a new structure based
on the concept of polynomial operators for digital filter
implementation [19]. Another useful approach is to construct
the state-space filter structure for the roundoff noise gain to
be minimized by applying a linear transformation to state-
space coordinates subject toL2-norm dynamic-range scal-
ing constraints [20]-[23]. The problem of synthesizing such
a state-space filter structure with minimum roundoff noise
has been explored for 2-D state-space digital filters [24]-
[27]. As a natural extension of the aforementioned methods,
efforts have been made to develop new methods that combine
EF and realization, for achieving better performance [28]-
[30]. Separately-optimized analytical algorithms have been
proposed for either 1-D [28] or 2-D [29] state-space digital
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filters. In [28] and [29], jointly-optimized iterative algorithms
have also been considered for filters with a general or scalar EF
matrix. In [30], a jointly-optimized iterative algorithm has been
developed for 1-D state-space digital filters with a general,
diagonal, or scalar EF matrix by applying a quasi-Newton
method.

This paper investigates the problem of jointly optimizing EF
and realization for 2-D state-space digital filters to minimize
the roundoff noise subject toL2-norm dynamic-range scaling
constraints. To this end, an iterative technique which relies
on an efficient quasi-Newton algorithm [31] is developed. It
is shown that the constrained optimization problem can be
converted into an unconstrained optimization problem by using
linear-algebraic techniques. The proposed technique can be
applied to the cases where the EF matrix is a general, block-
diagonal, diagonal, or block-scalar matrix. A case study is pre-
sented to illustrate the algorithm proposed and to demonstrate
its performance.

Throughout the paper,In stands for the identity matrix
of dimensionn × n, ⊕ is used to denote the direct sum
of matrices, the transpose (conjugate transpose) of a matrix
A is indicated byAT (A∗), and the trace andith diagonal
element of a square matrixA are denoted by tr[A] and(A)ii,
respectively.

II. 2-D STATE-SPACE DIGITAL FILTERS WITH
ERROR FEEDBACK

Suppose that a local state-space (LSS) model(A, b, c, d)m,n

for 2-D recursive digital filters is described by [32]

x11(i, j) = Ax(i, j) + bu(i, j)

y(i, j) = cx(i, j) + du(i, j),
(1)

where

x11(i, j) =
[

xh(i + 1, j)
xv(i, j + 1)

]
, x(i, j) =

[
xh(i, j)
xv(i, j)

]
,

A =
[

A1 A2

A3 A4

]
, b =

[
b1

b2

]
, c =

[
c1 c2

]
,

with anm×1 horizontal state vectorxh(i, j), ann×1 vertical
state vectorx v(i, j), a scalar inputu(i, j), a scalar output
y(i, j), and real constant matricesA1, A2, A3, A4, b1, b2,
c1, c2 andd of appropriate dimensions. The LSS model in (1)
is assumed to be BIBO stable, separately locally controllable
and separately locally observable [33].

Due to finite register sizes, we impose FWL constraints on
the local state vectorx(i, j), the input, the output, and on the
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coefficients in the realization(A, b, c, d)m,n. Assuming that
the quantization is performed before matrix-vector multiplica-
tion, the actual FWL filter of (1) is implemented as

x̃11(i, j) = AQ[x̃(i, j)] + bu(i, j)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j),
(2)

where each component of matricesA, b, c, and d assumes
an exact fractionalBc-bit representation. The FWL local
state vectorx̃(i, j) and the output̃y(i, j) all have aB-bit
fractional representation, while the inputu(i, j) is a(B−Bc)-
bit fraction.

The quantizerQ[·] in (2) rounds theB-bit fraction x̃(i, j)
to (B − Bc) bits after multiplications and additions, where
the sign bit is not counted. In a fixed-point implementation,
the quantization is usually carried out by two’s complement
truncation which discards the lower bits of a double-precision
accumulator. Thus, the quantization error

e(i, j) = x̃(i, j) − Q[x̃(i, j)] (3)

coincides with the residue left in the lower part ofx̃(i, j).
The quantization errore(i, j) is modeled as a zero-mean white
noise of covarianceσ2Im+n with

σ2 =
1
12

2−2(B−Bc).

In order to reduce the filter’s roundoff noise, the quantization
error e(i, j) is fed back to each input of delay operators
through an(m + n) × (m + n) constant matrixD. Under
these circumstances, the filter model can be represented as

x̃11(i, j) = AQ[x̃(i, j)] + bu(i, j) + De(i, j)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j),
(4)

whereD is referred to as the EF matrix. Subtracting (4) from
(1) yields

∆x11(i, j) = A∆x(i, j) + (A − D)e(i, j)

∆y(i, j) = c∆x(i, j) + ce(i, j),
(5)

where
∆x(i, j) = x(i, j) − x̃(i, j)

∆x11(i, j) = x11(i, j) − x̃11(i, j)

∆y(i, j) = y(i, j) − ỹ(i, j).

From (5) it follows that the 2-D transfer function from the
quantization errore(i, j) to the filter output∆y(i, j) is given
by

GD(z1, z2) = c(Z − A)−1(A − D) + c, (6)

whereZ = z1Im ⊕ z2In.
For the 2-D filter in (4) with EF, the noise gainI(D) =

σ2
out/σ2 is evaluated by

I(D) = tr[W D], (7)

whereσ2
out denotes noise variance at the filter output and

W D =
1

(2πj)2

∮
Γ1

∮
Γ2

G∗
D(z1, z2)GD(z1, z2)

dz1dz2

z1z2
,

with Γi = {zi : |zi| = 1} for i = 1, 2. Utilizing the 2-D
Cauchy integral theorem, we can express matrixW D in (7)
in closed form as

W D = (A − D)T W o(A − D) + cT c, (8)

where matrixW o is the local observability Gramian defined
by

W o =
1

(2πj)2

∮
Γ1

∮
Γ2

(Z∗ − AT )−1cT c(Z − A)−1 dz1dz2

z1z2

=
∞∑

i=0

∞∑
j=0

g(i, j)T g(i, j),

(9)
with

g(i, j) = cA(i−1,j)

[
Im 0
0 0

]
+ cA(i,j−1)

[
0 0
0 In

]
A(1,0) =

[
Im 0
0 0

]
A, A(0,1) =

[
0 0
0 In

]
A

A(0,0) = Im+n, A(−i,j) = 0 (i ≥ 1), A(i,−j) = 0 (j ≥ 1)

A(i,j) = A(1,0)A(i−1,j) + A(0,1)A(i,j−1)

= A(i−1,j)A(1,0) + A(i,j−1)A(0,1), (i, j) > (0, 0)
(10)

and the partial ordering for integer pairs(i, j) used in [32,
p.2].

We remark that matrixW o in (9) is referred to as theunit
noise matrixfor the 2-D filter (2), and matrixW D in (8) is
viewed as theunit noise matrixfor the 2-D filter in (4) with
EF specified by the matrixD.

In the case where there is no EF in the 2-D filter, the noise
gain I(D) with D = 0 can be expressed as

I(0) = tr[AT W oA + cT c] = tr[W o]. (11)

It is noted that theL2-norm dynamic-range scaling con-
straints on the local state vectorx(i, j) involves the local
controllability Gramian defined by

Kc =
1

(2πj)2

∮
Γ1

∮
Γ2

(Z − A)−1b bT (Z∗ − AT )−1 dz1dz2

z1z2

=
∞∑

i=0

∞∑
j=0

f(i, j)f(i, j)T ,

(12)
where

f(i, j) = A(i−1,j)

[
b1

0

]
+ A(i,j−1)

[
0
b2

]
.

III. JOINT ERROR-FEEDBACK AND REALIZATION
OPTIMIZATION

A. Probem Statement
The change of coordinates from local state vectorx(i, j)

to x(i, j), defined by a linear transformationx(i, j) =
T −1x(i, j) with T = T 1 ⊕ T 4, transforms the LSS model
(A, b, c, d)m,n in (1) to a new realization(A, b, c, d)m,n with

A = T −1AT , b = T −1b, c = cT . (13)
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The local controllability GramianKc and the local observ-
ability GramianW o in the new realization then satisfy the
relations

Kc = T −1KcT
−T , W o = T T W oT . (14)

If the L2-norm dynamic-range scaling constraints specified by

(Kc)ii = (T −1KcT
−T )ii = 1, i = 1, 2, · · · ,m+n (15)

are imposed on the new realization, then it is known that
[25],[26]

min
T

tr[W o] =
1
m

(
m∑

i=1

σ1i

)2

+
1
n

(
n∑

i=1

σ4i

)2

(16)

whereσ2
1i for i = 1, 2, · · · , m andσ2

4i for i = 1, 2, · · · , n are
the eigenvalues of them×m matrix K1cW 1o and then×n
matrix K4cW 4o, respectively, and

Kc =
[

K1c K2c

K3c K4c

]
, W o =

[
W 1o W 2o

W 3o W 4o

]
.

The LSS model(A, b, c, d)m,n satisfying (15) and (16) si-
multaneously is known as theoptimal realization(which is
sometimes also referred to as theoptimal filter structure). A
method for synthesizing such a filter structure was proposed
in [25],[26].

If a coordinate transformationx(i, j) = T −1x(i, j) with
T = T 1 ⊕ T 4 is applied to the LSS model in (1), then the
2-D filter in (4) with EF can be characterized by

x̃11(i, j) = AQ[x̃(i, j)] + b u(i, j) + De(i, j)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j).
(17)

In this case, the noise gainI(D,T ) can be expressed as a
function of matricesD andT = T 1 ⊕ T 4 in the form

I(D,T ) = tr[W D], (18)

where

W D = (A − D)T W o (A − D) + cT c.

The roundoff noise minimization problem can now be formu-
lated as follows:GivenA, b andc (and hence, W o andKc),
obtain matricesD and T = T 1 ⊕ T 4 which jointly minimize
the noise gain in (18) subject to the scaling constraints in (15).
B. Problem Relaxation and Conversion

In order to reduce solution sensitivity, the objective function
in (18) is modified to

J(D,T ) = tr[(1 − µ)W D + µW o], (19)

where 0 ≤ µ ≤ 1 is a scalar parameter that weights the
importance of reducing tr[W o] relative to reducing tr[W D].
Defining

T̂ = T̂ 1 ⊕ T̂ 4

= (T 1 ⊕ T 4)T (K1c ⊕ K4c)−
1
2 ,

(20)

it follows that

Kc = T̂
−T

[
Im K

− 1
2

1c K2cK
− 1

2
4c

K
− 1

2
4c K3cK

− 1
2

1c In

]
T̂

−1
.

(21)

This enables one to reduce the scaling constraints in (15) to

(T̂ 1
−T

T̂ 1
−1

)ii = 1, i = 1, 2, · · · ,m

(T̂ 4
−T

T̂ 4
−1

)kk = 1, k = 1, 2, · · · , n.
(22)

The constraints in (22) simply state that each column in
matricesT̂ 1

−1
and T̂ 4

−1
must be a unity vector. It can be

verified that these constraints are satisfied ifT̂ 1
−1

and T̂ 4
−1

assume the forms

T̂ 1
−1

=
[

t11
||t11||

,
t12

||t12||
, · · · , t1m

||t1m||

]
T̂ 4

−1
=

[
t41

||t41||
,

t42
||t42||

, · · · , t4n

||t4n||

] (23)

wheret1i for i = 1, 2, · · · ,m and t4j for j = 1, 2, · · · , n are
m × 1 and n × 1 real vectors, respectively. In such a case,
matrix W D in (18) can be written as

W D = T̂ [(Â− T̂
T
DT̂

−T
)T Ŵ o(Â− T̂

T
DT̂

−T
) + Ĉ ] T̂

T
,

(24)
whereT̂ = T̂ 1 ⊕ T̂ 4 and

Â = (K1c ⊕ K4c)
− 1

2 A (K1c ⊕ K4c)
1
2

Ĉ = (K1c ⊕ K4c)
1
2 cT c (K1c ⊕ K4c)

1
2

Ŵ o = (K1c ⊕ K4c)
1
2 W o (K1c ⊕ K4c)

1
2 .

Under these circumstances, the objective function in (19)
becomes

J(D, T̂ )

= (1 − µ) tr[(T̂ Â
T
− D T T̂ )Ŵ o(ÂT̂

T
− T̂

T
D)]

+ (1 − µ) tr[T̂ Ĉ T̂
T
] + µ tr[T̂ Ŵ oT̂

T
].

(25)

From the foregoing arguments, the problem of obtaining
matricesD and T = T 1 ⊕ T 4 that minimize (19) subject
to the scaling constraints in (15) is now converted into an
unconstrained optimization problem of obtaining matricesD
andT̂ = T̂ 1⊕T̂ 4 that jointly minimize the noise gain in (25).
C. Optimization Method

Let x be the column vector that collects the variables in
matricesD, [t11, t12, · · · , t1m] and [t41, t42, · · · , t4n]. Then,
J(D, T̂ ) is a function ofx, denoted byJ(x). The proposed
algorithm starts with an initial pointx0 obtained from an initial
assignmentD = T̂ = Im+n. In the kth iteration, a quasi-
Newton algorithm updates the most recent pointxk to point
xk+1 as [31]

xk+1 = xk + αkdk, (26)

where

dk = −Sk∇J(xk)

αk = arg
[
min

α
J(xk + αdk)

]
Sk+1 = Sk +

(
1 + γT

k Skγk

γT
k
δk

)
δkδ

T

k

γT
k
δk

− δkγT
k Sk+Skγkδ

T

k

γT
k
δk

S0 = I, δk = xk+1−xk, γk = ∇J(xk+1)−∇J(xk).
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Here,∇J(x) is the gradient ofJ(x) with respect tox, and
Sk is a positive-definite approximation of the inverse Hessian
matrix of J(x). This iteration process continues until

|J(xk+1) − J(xk)| < ε, (27)

where ε > 0 is a prescribed tolerance. If the iteration is
terminated at stepk, thenxk is deemed as a solution point.

The implementation of (26) requires the gradient ofJ(x).
Now we consider the cases where EF matrix is a general,
block-diagonal, diagonal, or block-scalar matrix. It is noted
that a general EF matrix is often too costly because it requires
as many as(m + n)2 explicit multiplications. The cost can
be reduced, e.g., by constraining EF matrix to be a block-
diagonal or diagonal (block-scalar), which reduces the number
of distinct coefficients tom2 + n2 or m + n.

A key quantity for the implementation of the quasi-Newton
algorithm is the gradient∇J(x). In what follows, we derive
closed-form expressions of∇J(x) for the cases whereD
assumes the form of a general, block-diagonal, diagonal, or
block-scalar matrix.
Case 1: D is a general matrix

From (25), it is evident that the optimal choice ofD is
given by

D = T̂
−T

ÂT̂
T
, (28)

which leads to

J(T̂
−T

ÂT̂
T
, T̂ ) = tr[T̂ {(1 − µ)Ĉ + µŴ o}T̂

T
]. (29)

In this case, the number of elements in vectorx consisting of
T̂ = T̂ 1 ⊕ T̂ 4 is equal tom2 + n2 and the gradient ofJ(x)
is found to be

∂J(x)
∂tij

= lim
∆→0

J(T̂ ij) − J(T̂ )
∆

= 2eT
j T̂ [(1 − µ)Ĉ + µŴ o]T̂

T
T̂ gij

(30)

for either(1, 1) ≤ (i, j) ≤ (m, m) or (m+1,m+1) ≤ (i, j) ≤
(m+n,m+n) whereT̂ ij is the matrix obtained from̂T with
a perturbed(i, j)th component, which is given by [34, p.655]

T̂ ij = T̂ +
∆T̂ gije

T
j T̂

1 − ∆eT
j T̂ gij

,

andgij is computed using

gij = ∂

{
tj

||tj ||

}
/∂tij =

1
||tj ||3

(tijtj − ||tj ||2ei),

with

[t1, t2, · · · , tm+n] = [t11, t12, · · · , t1m] ⊕ [t41, t42, · · · , t4n].

Case 2: D is a block-diagonal matrix
Matrix D in this case assumes the form

D = D1 ⊕ D4, (31)

whereD1 andD4 arem×m andn×n matrices, respectively.
The gradient ofJ(x) can be derived as follows:

∂J(x)
∂tij

= 2β1 + 2(1 − µ)(β2 − β3)

∂J(x)
∂dij

= 2(1 − µ)eT
i T̂ Ŵ o(T̂

T
D − ÂT̂

T
)ej ,

(32)

where

β1 = eT
j T̂ [ (1 − µ)(Â

T
Ŵ oÂ + Ĉ) + µŴ o]T̂

T
T̂ gij

β2 = eT
j T̂ Ŵ oT̂

T
DDT T̂ gij

β3 = eT
j T̂ (Â

T
Ŵ oT̂

T
D + Ŵ oÂT̂

T
DT )T̂ gij ,

with gij defined in (30). In (32),dij ∈ D1 ⊕D4 is meant to
be dij ∈ D1 for (1, 1) ≤ (i, j) ≤ (m,m) and dij ∈ D4 for
(m + 1,m + 1) ≤ (i, j) ≤ (m + n,m + n).
Case 3: D is a diagonal matrix

Here, matrixD assumes the form

D = diag{d11, d22, · · · , dm+n,m+n}. (33)

In this case,∂J(x)/∂dij can be obtained using (32) as

∂J(x)
∂dii

= 2(1 − µ)eT
i T̂ Ŵ o(T̂

T
D − ÂT̂

T
)ei, (34)

where1 ≤ i ≤ m + n, and∂J(x)/∂tij is also given by (32).
Case 4: D is a block-scalar matrix

It is assumed here thatD1 = αIm and D4 = βIn with
scalarsα andβ. The gradient ofJ(x) can then be calculated
using

∂J(x)
∂α

= 2(1 − µ)
m∑

i=1

eT
i T̂ Ŵ o(T̂

T
D − ÂT̂

T
)ei

∂J(x)
∂β

= 2(1 − µ)
n∑

i=1

eT
m+iT̂ Ŵ o(T̂

T
D − ÂT̂

T
)em+i

(35)
and∂J(x)/∂tij is computed using (32).

IV. A CASE STUDY

In this section, we present a case study to illustrate the
effectiveness of the proposed algorithm. Consider a 2-D BIBO
stable, separately locally controllable, and separately locally
observable state-space digital filter(Ao, bo, co, d)2,2 of order
(2,2) where

Ao =


1.88899 −0.91219 −1.00000 0.00000
1.00000 0.00000 0.00000 0.00000
0.02771 −0.02580 1.88899 1.00000

−0.02580 0.02431 −0.91219 0.00000


bo =

[
0.219089 0.000000 −0.028889 0.091219

]T

co =
[

0.028889 −0.091219 −0.219089 0.000000
]

d = 0.08900.

If a coordinate transformation matrixT o = T o
1⊕T o

4 is chosen
as

T o =
[
−1.373341 9.544965
−3.318699 9.494676

]
⊕

[
0.942406 0.329402

−0.947397 −0.136313

]
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then the above filter is transformed to theoptimal realization
(A, b, c, d)2,2 = (T o−1AoT o,T o−1b, cT o, d)2,2 that satisfies
(15) and (16) simultaneously [25],[26] where

A =


0.923959 −0.115198 −0.480100 −0.167811
0.178310 0.965031 −0.167811 −0.058655
0.045857 0.013210 0.923959 0.178310
0.013210 0.021491 −0.115198 0.965031


b =

[
0.111613 0.039012 −0.142200 0.319129

]T

c =
[

0.263054 −0.590350 −0.206471 −0.072168
]

d = 0.089000

and the local controllability and local observability Gramians
were calculated by truncating the series in (12) and (9) to the
range(0, 0) ≤ (i, j) ≤ (200, 200) as

Kc =


1.000000 0.221999 0.155751 0.036319
0.221999 1.000000 0.184141 0.064066
0.155751 0.184141 1.000000 0.221999
0.036319 0.064066 0.221999 1.000000



W o =


3.422064 0.759695 0.532989 0.630143
0.759695 3.422064 0.124286 0.219239
0.532989 0.124286 3.422064 0.759695
0.630143 0.219239 0.759695 3.422064

 ,

respectively. This gives the noise gainI(0) = tr[W o] =
13.688256. In what follows, EF and state-variable coordinate
transformation are applied to the aboveoptimal realization
(A, b, c, d)2,2 in order to jointly minimize the roundoff noise,
and the results obtained are then compared to their counter-
parts obtained in [29] where the minimization of the roundoff
noise was carried out using EF and state-variable coordinate
transformation, but in aseparatemanner.
Case 1: D is a general matrix

The quasi-Newton algorithm was applied to minimize (29)
with µ = 0.01 and toleranceε = 10−8. It took the algorithm
10 iterations to converge to the solution

T̂ =
[

1.112303 −0.262415
0.768079 0.846247

]
⊕

[
0.977230 −0.434117
0.059862 1.067639

]
or equivalently,

T =
[

1.076031 0.857797
−0.136530 0.926745

]
⊕

[
0.922624 0.178741

−0.322246 1.067644

]
.

This leads to

A =


0.793657 −0.235832 −0.218781 −0.149075
0.181787 1.095333 −0.178900 −0.121901
0.046747 0.047458 0.885610 0.190951
0.024675 0.043593 −0.123522 1.003380


b =

[
0.062793 0.051347 −0.200321 0.238447

]T

c =
[

0.363655 −0.321457 −0.167239 −0.113955
]

Fig. 1. Profile ofJ(T̂
−T

ÂT̂
T
, T̂ ) with µ = 0.01

during the first 12 iterations.

Kc =


1.000000 −0.484097 −0.009234 −0.020689

−0.484097 1.000000 0.190252 0.119536
−0.009234 0.190252 1.000000 0.354179
−0.020689 0.119536 0.354179 1.000000



W o =


3.802789 3.394235 0.304627 0.791440
3.394235 6.664921 0.288432 0.896328
0.304627 0.288432 2.816605 0.091564
0.791440 0.896328 0.091564 4.299965

 .

Using (28) and (29), the optimal EF matrixD and the noise
gain in (18) were found to be

D =


0.793657 −0.235832 −0.218781 −0.149075
0.181787 1.095333 −0.178900 −0.121901
0.046747 0.047458 0.885610 0.190951
0.024675 0.043593 −0.123522 1.003380


and I(D,T ) = 0.276534, respectively. The profile of

J(T̂
−T

ÂT̂
T
, T̂ ) with µ = 0.01 in (29) during the first 12

iterations of the algorithm is depicted in Fig. 1.
Next, the above optimal EF matrixD was rounded to a

power-of-two representation with 3 bits after the binary point,
which resulted in

D3bit =


0.750 −0.250 −0.250 −0.125
0.125 1.125 −0.125 −0.125
0.000 0.000 0.875 0.250
0.000 0.000 −0.125 1.000

 .

The corresponding noise gain was found to beI(D3bit,T ) =
0.379031. Furthermore, when the optimal EF matrixD was
rounded to the integer representationDint = diag{1, 1, 1, 1},
the noise gain was found to beI(Dint,T ) = 1.786366.
Case 2: D is a block-diagonal matrix

Again, the quasi-Newton algorithm was applied to minimize
J(D, T̂ ) in (25) withD = D1⊕D4, µ = 0.01, andε = 10−8.
It took the algorithm 19 iterations to converge to the solution

T̂ =
[

1.075413 −0.290485
0.734598 0.837413

]
⊕

[
1.081669 −1.093278

−0.110922 1.533936

]
D =

[
0.812641 −0.217981
0.174373 1.086382

]
⊕

[
0.720185 0.234829

−0.263724 1.077042

]
.
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Fig. 2. Profile ofJ(D, T̂ ) with µ = 0.01 during
the first 20 iterations.

This leads to

T =
[

1.036236 0.823539
−0.168545 0.914226

]
⊕

[
0.952782 0.061110

−0.965616 1.511947

]

A =


0.805454 −0.228456 −0.170347 −0.163237
0.172688 1.083536 −0.144340 −0.138315
0.045256 0.049009 0.756447 0.269578
0.035561 0.051491 −0.205808 1.132543


b =

[
0.064366 0.054539 −0.156380 0.111198

]T

c =
[

0.372087 −0.323078 −0.127035 −0.121732
]

Kc =


1.000000 −0.440602 −0.007858 −0.016928

−0.440602 1.000000 0.198776 0.171103
−0.007858 0.198776 1.000000 0.759746
−0.016928 0.171103 0.759746 1.000000



W o =


3.506411 3.007275 −0.088578 0.963868
3.007275 6.325040 −0.168173 1.121432

−0.088578 −0.168173 4.899437 −3.747273
0.963868 1.121432 −3.747273 7.975946


and the minimized noise gain was found to beI(D,T ) =
0.993119 from (18). The profile ofJ(D, T̂ ) with µ = 0.01
in (25) during the first 20 iterations of the algorithm is shown
in Fig. 2.

Next, the optimal EF matrixD = D1 ⊕ D4 was rounded
to a power-of-two representation with 3 bits after the binary
point to yield

D3bit =
[

0.875 −0.250
0.125 1.125

]
⊕

[
0.750 0.250

−0.250 1.125

]
,

which leads to a noise gainI(D3bit,T ) = 1.026055. Fur-
thermore, the optimal EF matrixD = D1 ⊕D4 was rounded
to the integer representationDint = diag{1, 1, 1, 1} and the
corresponding noise gain was found to beI(Dint,T ) =
1.779801.
Case 3: D is a diagonal matrix

The quasi-Newton algorithm withµ = 0.0 and ε = 10−8

was applied to minimize (25) for a diagonal EF matrixD. It

took the algorithm 14 iterations to converge to the solution

T̂ =
[

1.001398 −0.305076
0.587614 0.866360

]
⊕

[
0.930738 −0.766589
0.115699 1.200227

]
D = diag{0.959461, 0.979277, 0.896380, 0.950455},

which leads to

T =
[

0.961055 0.680708
−0.191312 0.926574

]
⊕

[
0.839287 0.249038

−0.657829 1.205640

]

A =


0.834922 −0.203220 −0.197375 −0.217164
0.158082 1.054068 −0.151112 −0.166263
0.040783 0.038439 0.829877 0.216040
0.029372 0.044948 −0.153937 1.059113


b =

[
0.075302 0.057652 −0.213419 0.148249

]T

c =
[

0.365751 −0.367940 −0.125814 −0.138428
]

Kc =


1.000000 −0.295774 0.021123 0.003433

−0.295774 1.000000 0.193509 0.161263
0.021123 0.193509 1.000000 0.558757
0.003433 0.161263 0.558757 1.000000



W o =


3.006599 2.209658 0.039163 0.801213
2.209658 5.481950 −0.014649 0.881098
0.039163 −0.014649 3.052508 −1.354534
0.801213 0.881098 −1.354534 5.642635

 ,

and the minimized noise gain was found to beI(D,T ) =
1.608812 from (18). The profile ofJ(D, T̂ ) with µ = 0.0 in
(25) during the first 16 iterations of the algorithm is shown in
Fig. 3.

Next, the above optimal diagonal EF matrixD was rounded
to a power-of-two representation with 3 bits after the binary
point to yield D3bit = diag{1.000, 1.000, 0.875, 1.000},
which leads to a noise gainI(D3bit,T ) = 1.631354. Further-
more, when the optimized diagonal EF matrixD was rounded
to the integer representationDint = diag{1, 1, 1, 1}, the noise
gain was found to beI(Dint,T ) = 1.662735.
Case 4: D is a block-scalar matrix

Fig. 3. Profile ofJ(D, T̂ ) with µ = 0.0 during
the first 16 iterations.
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Fig. 4. Profile ofJ(D, T̂ ) with µ = 0.0 during
the first 14 iterations.

In this case, the quasi-Newton algorithm withµ = 0.0 and
ε = 10−8 was applied to minimize (25) forD = αI2 ⊕
βI2 with scalarsα and β. The algorithm converges after 12
iterations to the solution

T̂ =
[

1.009533 −0.279518
0.567440 0.880511

]
⊕

[
0.917919 −0.788744
0.134695 1.202726

]
α = 0.972437, β = 0.932446,

which leads to

T =
[

0.971994 0.662241
−0.165006 0.938383

]
⊕

[
0.824073 0.268195

−0.681278 1.210245

]

A =


0.833441 −0.200869 −0.194700 −0.229679
0.161558 1.055549 −0.139020 −0.163997
0.041366 0.037287 0.827306 0.217046
0.030965 0.044882 −0.155969 1.061684


b =

[
0.077249 0.055157 −0.218369 0.140763

]T

c =
[

0.353098 −0.379770 −0.120980 −0.142716
]

Kc =


1.000000 −0.297762 0.026165 0.007977

−0.297762 1.000000 0.190338 0.162372
0.026165 0.190338 1.000000 0.563261
0.007977 0.162372 0.563261 1.000000



W o =


3.082557 2.282800 0.017388 0.830929
2.282800 5.458336 −0.037480 0.879969
0.017388 −0.037480 3.059210 −1.446363
0.830929 0.879969 −1.446363 5.751581

 ,

and the minimized noise gain was found to beI(D,T ) =
1.614538 from (18). The profile ofJ(D, T̂ ) with µ = 0.0 in
(25) during the first 14 iterations of the algorithm is drawn in
Fig. 4.

Next, the optimal EF matrixD = αI2 ⊕ βI2 was
rounded to a power-of-two representation with 3 bits af-
ter the binary point as well as an integer representation.
It was found that these representations were given by
D3bit = diag{1.000, 1.000, 0.875, 0.875} and Dint =
diag{1, 1, 1, 1}, respectively. The corresponding noise gains

were obtained asI(D3bit,T ) = 1.650103 andI(Dint,T ) =
1.661235, respectively. It is interesting to note that for this
particular example the noise gain obtained from the integer
approximation of the optimal matrixD = αIm ⊕ βIn is
smaller than that obtained from the integer approximation of
the optimal diagonal EF matrixD, due to their differentT̂
matrices.

The simulation results described above are summarized us-
ing the noise gainI(D,T ) in (18) in Table I. For comparison
purposes, their counterparts obtained using the method in [29]
are also included in the Table. Specifically, the term “separate”
means that the EF matrix was optimized by applying the
existing method [29] to the optimal realization without EF,
which satisfies (15) and (16) simultaneously [25],[26]. From
the Table, it is observed that the proposed joint optimization
offers greatly reduced roundoff noise gain for all cases of the
matrixD when compared with that obtained by usingseparate
optimization.

V. CONCLUSION

The joint optimization problem of EF and realization to mini-
mize the effects of roundoff noise of 2-D state-space digital fil-
ters subject toL2-norm dynamic-range scaling constraints has
been investigated. It has been shown that the problem at hand
can be converted into an unconstrained optimization problem
by using linear algebraic techniques. Closed-form formulas for
fast evaluation of the gradient of the objective function have
been derived and an efficient quasi-Newton algorithm has been
employed to solve the unconstrained optimization problem.
The proposed technique has been applied to the cases where
the EF matrix is a general, block-diagonal, diagonal, or block-
scalar matrix, and its effectiveness compared with the existing
method [29] has been demonstrated by a case study.
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