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Two new optimization-based methods are proposed for the design of high-performance quincunx filter banks for the appli-
cation of image coding. These new techniques are used to build linear-phase finite-length-impulse-response (FIR) perfect-
reconstruction (PR) systems with high coding gain, good frequency selectivity, and certain prescribed vanishing-moment prop-
erties. A parametrization of quincunx filter banks based on the lifting framework is employed to structurally impose the PR and
linear-phase conditions. Then, the coding gain is maximized subject to a set of constraints on vanishing moments and frequency
selectivity. Examples of filter banks designed using the newly proposed methods are presented and shown to be highly effective for
image coding. In particular, our new optimal designs are shown to outperform three previously proposed quincunx filter banks in
72% to 95% of our experimental test cases. Moreover, in some limited cases, our optimal designs are even able to outperform the
well-known (separable) 9/7 filter bank (from the JPEG-2000 standard).
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1. INTRODUCTION

Filter banks have proven to be a highly effective tool for im-
age coding applications [1]. In such applications, one typi-
cally desires filter banks to have perfect reconstruction (PR),
linear-phase, high coding gain, good frequency selectivity,
and satisfactory vanishing-moment properties. The PR prop-
erty facilitates the construction of a lossless compression sys-
tem. The linear-phase property is crucial to avoiding phase
distortion. High coding gain leads to filter banks with good
energy compaction capabilities. The presence of vanishing
moments helps to reduce the number of nonzero coefficients
in the highpass subbands and tends to lead to smoother syn-
thesis basis functions. Good frequency selectivity serves to
minimize aliasing in the subband signals. Designing nonsep-
arable two-dimensional (2D) filter banks with all of the pre-
ceding properties is an extremely challenging task.

In the one-dimensional (1D) case, various filter-bank de-
sign techniques have been successfully developed. In the non-
separable 2D case, however, far fewer effective methods have
been proposed. Variable transformation methods are com-
monly used for the design of 2D filter banks. With such
methods, a 1D prototype filter bank is first designed, and
then mapped into a 2D filter bank through a transforma-
tion of variables [2–6]. For example, the McClellan transfor-
mation [7] has been used in numerous design approaches.

Other design techniques have also been proposed where a
transformation is applied to the polyphase components of
the filters instead of the original filter transfer functions [8–
11]. These transformation-based designs have the restriction
that one cannot explicitly control the shape of the 2D fil-
ter frequency responses. Moreover, in some cases, the trans-
formed 2D filter banks can only achieve approximate PR. Di-
rect optimization of the filter coefficients has also been pro-
posed [12–14], but because of the involvement of large num-
bers of variables and nonlinear, nonconvex constraints, such
optimization typically leads to a very complicated system,
which is often difficult to solve. Designs utilizing the lifting
framework [15, 16] have been proposed in [17, 18] for two-
channel 2D filter banks with an arbitrary number of vanish-
ing moments. With these methods, however, only interpo-
lating filter banks are considered (i.e., filter banks with two
lifting steps).

The Cayley transform has been used in the characteriza-
tion and design of multidimensional orthogonal filter banks
[19, 20]. In [21], B-spline filters and the McClellan transfor-
mation are used to construct orthogonal quincunx wavelets
with fractional order of approximation. A technique utiliz-
ing polyharmonic B-splines is proposed in [22] for design-
ing multidimensional/quincunx wavelet bases. Although the
preceding design methods are interesting and certainly wor-
thy of mention, they are not useful for the particular design
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problem considered in our work. This is due to the fact
that we consider the design of nontrivial linear-phase finite-
length-impulse-response (FIR) PR filter banks. In the quin-
cunx case, such filter banks cannot be orthogonal [23]. Fur-
thermore, since we are interested in FIR filter banks, methods
that yield filter banks with infinite-length-impulse-response
(IIR) filters are not helpful either.

Uniform and nonuniform 2D directional filter banks are
proposed in [24] to process images with better directional
selectivity than conventional wavelets. Although we mention
this development here for completeness, it addresses a differ-
ent problem from that considered herein. In our work, we
seek to design filter banks that can be used in a standard
wavelet configuration. For this reason, methods for the de-
sign of directional filter banks, while interesting, are not ap-
plicable to the problem at hand.

In this paper, we propose two new optimization-based
methods for constructing FIR quincunx filter banks with all
of the aforementioned desirable properties (i.e., PR, linear-
phase, high coding gain, good frequency selectivity, and cer-
tain vanishing-moments properties).

The rest of this paper is structured as follows. Section 2
briefly presents the notational conventions used herein.
Then, Section 3 introduces quincunx filter banks, and
Section 4 presents a parametrization of linear-phase PR
quincunx filter banks based on the lifting framework. Opti-
mal design algorithms for quincunx filter banks with two and
more than two lifting steps are proposed in Sections 5 and 6,
respectively. Several design examples are then presented in
Section 7 and their effectiveness for image coding is demon-
strated in Section 8. Finally, Section 9 concludes with a sum-
mary of our work and some closing remarks.

2. NOTATION AND TERMINOLOGY

Before proceeding further, a few comments are in order con-
cerning the notation used herein. In this paper, the sets of in-
tegers and real numbers are denoted as Z and R, respectively.
The symbols Z∗, Z+, Z−, Zo, and Ze denote the sets of non-
negative, positive, negative, odd, and even integers, respec-
tively. For a ∈ R, �a� denotes the largest integer no greater
than a, and �a� denotes the smallest integer no less than a.
For m,n ∈ Z, we define the mod function as mod(m,n) =
m− n�m/n�.

Matrices and vectors are denoted by upper- and lower-
case boldface letters, respectively. The symbols 0, 1, and I are
used to denote a vector/matrix of all zeros, a vector/matrix of
all ones, and an identity matrix, respectively, the dimensions
of which should be clear from the context. For matrix mul-
tiplication, we define the product notation as

∏N
k=M Ak �

ANAN−1 · · ·AM+1AM for N ≥ M. For convenience, a linear
(or polynomial) function of the elements of a vector x is sim-
ply referred to as a linear (or polynomial) function in x.

An element of a sequence x defined on Z2 is denoted ei-
ther as x[n] or as x[n0,n1] (whichever is more convenient),
where n = [n0 n1]T and n0,n1 ∈ Z. Let n = [n0 n1]T

and let z = [z0 z1]T . Then, we define |n| = n0 + n1 and
zn = zn0

0 zn1
1 . Furthermore, for a matrix M = [m0 m1] with

x[n]
H0(z) � M

y0[n]

H1(z) � M
y1[n]

(a)

y0[n]

y1[n]

G0(z)� M

G1(z)� M

xr[n]
+

(b)

Figure 1: The canonical form of a quincunx filter bank: (a) analysis
side, and (b) synthesis side.

mk being the kth column of M, we define zM = [zm0 zm1 ]T .
In the rest of this paper, unless otherwise noted, we will use
M to denote the generating matrix [ 1 1

1 −1 ] of the quincunx
lattice. For convenience, we denote the partial derivative op-
erator with respect to ω = [ω0 ω1]T as

	n = ∂|n|

∂ωn0
0 ∂ωn1

1
, (1)

where n = [n0 n1]T ∈ (Z∗)2.

The Fourier transform of a sequence h is denoted as ĥ.
A (2D) filter H with impulse response h is said to be linear
phase with group delay c if, for some c ∈ (1/2)Z2, h[n] =
h[2c−n] for all n ∈ Z2. In passing, we note that the frequency

response ĥ(ω) of a linear-phase filter with impulse response
h and group delay c can be expressed as

ĥ(ω) = e− jωTc
∑

n∈Z2

h[n] cos
[
ωT(n− c)

]
. (2)

For convenience, in what follows, we define the signed am-

plitude response ĥa(ω) of H as

ĥa(ω) =
∑

n∈Z2

h[n] cos
[
ωT(n− c)

]
(3)

(i.e., the quantity ĥa(ω) is ĥ(ω) without the exponential fac-
tor e− jωTc). Thus, the magnitude response of H is trivially

given by |ĥa(ω)|.
In image coding, the peak-signal-to-noise ratio (PSNR)

is a commonly used measure for distortion. For an original
image x and its reconstructed version xr , the PSNR is defined
as

PSNR = 20 log10

(
2P − 1√

MSE

)

, (4)

where

MSE = 1
N0N1

N0−1∑

n0=0

N1−1∑

n1=0

(
xr

[
n0,n1

]− x
[
n0,n1

])2
, (5)

and each image has dimension N0 ×N1 and P bits/sample.

3. QUINCUNX FILTER BANKS

A quincunx filter bank has the canonical form shown in
Figure 1. The filter bank consists of lowpass and highpass
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x[n]
H0(z) � M H0(z) � M � � � H0(z) � M y0[n]

H1(z) � M y1[n]
...

H1(z) � M yL�1[n]

H1(z) � M yL[n]

(a)

xr[n]+G0(z)� M+G0(z)� M� � �+G0(z)� My0[n]

G1(z)� My1[n]
...

G1(z)� MyL�1[n]

G1(z)� MyL[n]

(b)

Figure 2: The structure of an L-level octave-band filter bank: (a) analysis side, and (b) synthesis side.

x[n]
H

�

0(z) � ML
y0[n]

� ML G
�

0(z) +
xr[n]

H
�

1(z) � ML
y1[n]

� ML G
�

1(z) +
...

...
...

...
...

...
...

H
�

L�1(z) � M2 yL�1[n]
� M2 G

�

L�1(z) +

H
�

L(z) � M
yL[n]

� M G
�

L(z)

Figure 3: The equivalent nonuniform filter bank associated with
the L-level octave-band filter bank.

analysis filters H0 and H1, lowpass and highpass synthesis fil-
ters G0 and G1, and M-fold downsamplers and upsamplers.

In image coding applications, a quincunx filter bank
is typically applied in a recursive manner, resulting in an
octave-band filter-bank structure as shown in Figure 2. For
an L-level octave-band filter bank generated from a quincunx
filter bank with analysis filters {Hk}, the equivalent nonuni-
form filter bank has L + 1 channels with analysis filters {H′

i }
and synthesis filters {G′i} as shown in Figure 3. The transfer
functions {H′

i (z)} of {H′
i } are given by

H′
i (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1∏

k=0

H0
(

zMk)
, i = 0,

H1
(

zML−i)
L−i−1∏

k=0

H0
(

zMk)
, 1 ≤ i ≤ L− 1,

H1(z), i = L.

(6)

The transfer functions {G′i (z)} of the equivalent synthesis fil-
ters {G′i} can be derived in a similar fashion.

4. LIFTING PARAMETRIZATION OF QUINCUNX
FILTER BANKS

Rather than parameterizing a quincunx filter bank in terms
of its canonical form, shown earlier in Figure 1, we instead
employ the lifting framework [15, 16]. The lifting realization
of a quincunx filter bank has the form shown in Figure 4. Es-
sentially, the filter bank is realized in polyphase form, with
the analysis and synthesis polyphase filtering each being per-
formed by a ladder network consisting of 2λ lifting filters
{Ak}. Without loss of generality, we may assume that none
of the {Ak(z)} are identically zero, except possibly A1(z) and
A2λ(z).

x[n]
� M + � � � + y0[n]

z0 A1(z) A2(z) � � � A2λ�1(z) A2λ(z)

� M + � � � + y1[n]

(a)

� M+� � �

�

+y1[n]

z�1
0A1(z)A2(z)� � �A2λ�1(z)A2λ(z)

xr[n]
+� M

�

+� � �

�

+y0[n]

�

(b)

Figure 4: Lifting realization of a quincunx filter bank: (a) analysis
side, and (b) synthesis side.

Given the lifting filters {Ak}, the corresponding analysis
filter transfer functions H0(z) and H1(z) can be calculated as

[
H0(z)
H1(z)

]

=
[
H0,0

(
zM

)
H0,1

(
zM

)

H1,0
(

zM
)

H1,1
(

zM
)

][
1
z0

]

, (7)

where
[
H0,0(z) H0,1(z)
H1,0(z) H1,1(z)

]

=
λ∏

k=1

([
1 A2k(z)
0 1

][
1 0

A2k−1(z) 1

])

.

(8)

The synthesis filter transfer functions G0(z) and
G1(z) can then be trivially computed as Gk(z) =
(−1)1−kz−1

0 H1−k(−z). Since the synthesis filters are com-
pletely determined by the analysis filters, we need only to
consider the analysis side of the filter bank in what follows.

The use of the above lifting-based parametrization is
helpful in several respects. First, the PR condition is automat-
ically satisfied by such a parametrization. Second, the linear-
phase condition can be imposed with relative ease, as we will
see momentarily. Thus, the need for additional cumbersome
constraints during optimization for PR and linear phase is
eliminated. Lastly, the lifting realization trivially allows for
the construction of reversible integer-to-integer mappings
[25], which are often useful for image coding and are em-
ployed later in this work.
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Now we further consider the linear-phase condition. As
it turns out, the linear-phase condition can be satisfied with
a prudent choice of lifting filters {Ak}. In particular, we have
shown the below result.

Theorem 1 (sufficient condition for linear phase). Consider
a quincunx filter bank constructed from the lifting framework
with 2λ lifting filters as shown in Figure 4(a). If each lifting
filter Ak is symmetric with its group delay ck satisfying

ck = (−1)k
[

1
2

1
2

]T

, (9)

then the analysis filters H0 and H1 are symmetric with group
delays [0 0]T and [−1 0]T , respectively.

A proof of the preceding theorem is provided in the first
author’s thesis [26] but is omitted here for the sake of brevity.
The significance of Theorem 1 is that the linear-phase condi-
tion can be trivially satisfied by choosing the lifting filters to
have certain symmetry properties.

Now, we examine the relationship between the analysis
filter frequency responses and the lifting-filter coefficients.
Since the lifting filter Ak has linear phase with group delay
ck = (−1)k[1/2 1/2]T , the support region of Ak is a rectan-
gle of size 2lk,0× 2lk,1 for some lk,0, lk,1 ∈ Z+, and the number
of independent coefficients of Ak is 2lk,0lk,1. Let ak be a vector
containing the independent coefficients of Ak. Then, there
are 2lk,0lk,1 elements in ak indexed from 0 to 2lk,0lk,1 − 1.

Consider an odd-indexed lifting filter A2k−1. Its support
region can be expressed as {−l2k−1,0,−l2k−1,0 + 1, . . . , l2k−1,0−
1} × {−l2k−1,1,−l2k−1,1 + 1, . . . , l2k−1,1 − 1}. The nth element
of the coefficient vector a2k−1 is defined as a2k−1[n0,n1] with
n0 and n1 given by

n0 =
⌊

n
(
2l2k−1,1

)

⌋

∈ {
0, 1, . . . , l2k−1,0 − 1

}
,

n1 = mod
(
n, 2l2k−1,1

)

− l2k−1,1 ∈
{− l2k−1,1,−l2k−1,1 + 1, . . . , l2k−1,1 − 1

}
.

(10)

Since A2k−1 has linear phase, the frequency response of A2k−1

can be written from (2) as

â2k−1(ω) = e− jωTc2k−1
∑

n∈Z2

a2k−1[n] cos
[
ωT

(
n− c2k−1

)]

= 2e j(1/2)(ω0+ω1)
l2k−1,0−1∑

n0=0

l2k−1,1−1∑

n1=−l2k−1,1

a2k−1
[
n0,n1

]

× cos
[

ω0

(

n0 +
1
2

)

+ ω1

(

n1 +
1
2

)]

.

(11)

In the upsampled domain, â2k−1(MTω) can then be ex-
pressed as

â2k−1
(

MTω
) = 2e jω0

l2k−1,0−1∑

n0=0

l2k−1,1−1∑

n1=−l2k−1,1

a2k−1
[
n0,n1

]

× cos
[
ω0

(
n0 + n1 + 1

)
+ ω1

(
n0 − n1

)]
.
(12)

Thus, â2k−1(MTω) can be compactly written as

â2k−1
(

MTω
) = e jω0 aT2k−1v2k−1, (13)

where v2k−1 is a vector of 2l2k−1,0l2k−1,1 elements indexed
from 0 to 2l2k−1,0l2k−1,1 − 1, and the nth element of v2k−1 is
given by

v2k−1[n] = 2 cos
[
ω0

(
n0 + n1 + 1

)
+ ω1

(
n0 − n1

)]
(14)

with n0 and n1 given by (10).
Now, consider an even-indexed lifting filter A2k. Its sup-

port region is {−l2k,0 + 1,−l2k,0 + 2, . . . , l2k,0} × {−l2k,1 +
1,−l2k,1 + 2, . . . , l2k,1}. The nth element of the coefficient vec-
tor a2k is defined as a2k[n0,n1] with n0 and n1 given by

n0 =
⌊

n
(
2l2k,1

)

⌋

+ 1 ∈ {
1, 2, . . . , l2k,0

}
,

n1 = mod
(
n, 2l2k,1

)

− l2k,1 + 1 ∈ {− l2k,1 + 1,−l2k,1 + 2, . . . , l2k,1
}

,

(15)

respectively. The frequency response â2k(ω) of A2k is com-
puted as

â2k(ω) = 2e− j(1/2)(ω0+ω1)
l2k,0∑

n0=1

l2k,1∑

n1=1−l2k,1

a2k
[
n0,n1

]

× cos
[

ω0

(

n0 − 1
2

)

+ ω1

(

n1 − 1
2

)]

.

(16)

In the upsampled domain, â2k(MTω) can be expressed as

â2k
(

MTω
) = e− jω0 aT2kv2k, (17)

where v2k is a vector of 2l2k,0l2k,1 elements indexed from 0 to
2l2k,0l2k,1 − 1, and the nth element of v2k is defined as

v2k[n] = 2 cos
[
ω0

(
n0 + n1 − 1

)
+ ω1

(
n0 − n1

)]
(18)

with n0 and n1 given by (15).
Rewriting (7) and (8) in the Fourier domain, we have
[
ĥ0(ω)

ĥ1(ω)

]

=
[
ĥ0,0

(
MTω

)
ĥ0,1

(
MTω

)

ĥ1,0
(

MTω
)

ĥ1,1
(

MTω
)

][
1

e jω0

]

, (19)

[
ĥ0,0(ω) ĥ0,1(ω)

ĥ1,0(ω) ĥ1,1(ω)

]

=
λ∏

k=1

([
1 â2k(ω)
0 1

][
1 0

â2k−1(ω) 1

])

,

(20)

respectively. Substituting (13), (17), and (20) into (19), we
obtain the frequency responses of the analysis filters as

[
ĥ0(ω)

ĥ1(ω)

]

=
( λ∏

k=1

([
1 e− jω0 aT2kv2k

0 1

]

×
[

1 0
e jω0 aT2k−1v2k−1 1

]))[
1

e jω0

]

.

(21)

We further define a vector x containing all of the inde-
pendent coefficients {ak} of the lifting filters {Ak} as

x =
[

aT1 aT2 · · · aT2λ
]T

. (22)
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Thus, x has lx = 2
∑2λ

i=1 li,0li,1 elements. Clearly, each vector
ak can be expressed in terms of x as

ak =
[

02lk,0lk,1×α0 I2lk,0lk,1 02lk,0lk,1×β0

]

︸ ︷︷ ︸
Ek

x = Ekx, (23)

where α0 = 2
∑k−1

i=1 li,0li,1 and β0 = 2
∑2λ

i=k+1 li,0li,1. Substitut-
ing (23) into (21), we have

[
ĥ0(ω)

ĥ1(ω)

]

=
( λ∏

k=1

([
1 e− jω0 xTET

2kv2k

0 1

]

×
[

1 0
e jω0 xTET

2k−1v2k−1 1

]))[
1

e jω0

]

.

(24)

By expanding the preceding equation, each of the analysis fil-
ter frequency responses can be viewed as a polynomial in x,
the order of which depends on the number of lifting steps.

5. DESIGN OF FILTER BANKS WITH TWO
LIFTING STEPS

Consider a quincunx filter bank as shown in Figure 4(a)
with two lifting steps (i.e., λ = 1). As explained earlier, for
image coding applications, we seek a filter bank with PR,
linear-phase, high coding gain, good frequency selectivity,
and certain vanishing-moment properties. To satisfy both
the PR and linear-phase conditions, we use the lifting-based
parametrization from Theorem 1. Having elected the use of a
lifting-based parametrization for optimization purposes, we
must now determine the relationships between the lifting-
filter coefficients and the other desirable properties (such
as high coding gain, good frequency selectivity, and certain
vanishing-moment properties). In the sections that follow,
these relationships are examined in more detail.

5.1. Coding gain

We begin by considering the relationship between the lifting-
filter coefficients and coding gain. Coding gain is a measure
of the energy compaction ability of a filter bank, and is de-
fined as the ratio between the reconstruction error variance
obtained by quantizing a signal directly to that obtained by
quantizing the corresponding subband coefficients using an
optimal bit allocation strategy. For an L-level octave-band
quincunx filter bank, the coding gain GSBC [27] is computed
as

GSBC =
L∏

k=0

(
αk

AkBk

)αk

, (25)

where

Ak =
∑

m∈Z2

∑

n∈Z2

h′k[m]h′k[n]r[m− n],

Bk = αk
∑

n∈Z2

g
′2
k [n],

αk =
⎧
⎨

⎩

2−L for k = 0,

2−(L+1−k) for k = 1, 2, . . . ,L,

(26)

h′k[n] and g′k[n] are the impulse responses of the equivalent
analysis and synthesis filtersH′

k andG′k (given by (6)), respec-
tively, and r is the normalized autocorrelation of the input.
Depending on the source image model, r is given by

r
[
n0,n1

] =
⎧
⎨

⎩

ρ|n0|+|n1| for separable model,

ρ
√

n2
0+n2

1 for isotropic model,
(27)

where ρ is the correlation coefficient (typically, 0.90 ≤ ρ ≤
0.95). Due to the relationship between {h′k[n]}, {g′k[n]}, and
the lifting-filter coefficient vector x, the coding gain is a non-
linear function of x.

5.2. Vanishing moments

Now, let us consider the relationship between the lifting-filter
coefficients and vanishing moments. For a quincunx filter
bank, the number of vanishing moments is equivalent to the
order of zero at [0 0]T or [π π]T in the highpass or lowpass
filter frequency response, respectively. For a linear-phase fil-

ter H with group delay d ∈ Z2, its frequency response ĥ(ω)
can be computed by (2). The mth-order partial derivative of

its signed amplitude response ĥa(ω) defined in (3) is then
given by

	mĥa(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)|m|/2
∑

n∈Z2

h[n](n− d)m

× cos
[
ωT(n− d)

]
for |m| ∈ Ze,

(−1)(|m|+1)/2
∑

n∈Z2

h[n](n− d)m

× sin
[
ωT(n− d)

]
otherwise,

(28)

where m = [m0 m1]T . From the above equation, it fol-
lows that when |m| ∈ Zo, the mth-order partial derivative

of ĥa(ω) is automatically zero at [0 0]T and [π π]T . There-
fore, in order to have an Nth-order zero at ω = [0 0]T , the
filter coefficients need only satisfy

∑

n∈Z2

h[n](n− d)m = 0 ∀|m| ∈ Ze such that |m| < N.

(29)

Similarly, in order to have an Nth-order zero at ω = [π π]T ,
the filter coefficients need only satisfy

∑

n∈Z2

(−1)|n−d|h[n](n− d)m

= 0 ∀|m| ∈ Ze such that |m| < N.
(30)

Since we only need to consider the case with |m| ∈ Ze in (29)
and (30), the number of linear equations is �N/2�2. Thus,
for a filter bank to have Ñ dual and N primal vanishing mo-
ments, the analysis filter coefficients are required to satisfy
equations like those shown in (29) and (30). Since we use
a lifting-based parametrization, the relationships need to be
expressed in terms of the lifting-filter coefficients.
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For a quincunx filter bank constructed with two lifting
filters A1 and A2 as shown in Figure 4(a) with λ = 1, the
constraints on vanishing moments form a linear system of
equations in the lifting-filter coefficients. In order for this fil-
ter bank to have Ñ dual and N primal vanishing moments,
the impulse responses a1[n] and a2[n] of the lifting filters A1

and A2, respectively, should satisfy

∑

n∈Z2

a1[n](−n)m = −τm
1 , ∀m ∈ (Z∗)2 with |m| < Ñ ,

(31)
∑

n∈Z2

a2[n](−n)m = 1
2
τm

2 , ∀m ∈ (Z∗)2 with |m| < N ,

(32)

where τ1 = [1/2 1/2]T and τ2 = −τ1 = [−1/2 −1/2]T [18].
The total number of equations in (31) and (32) combined is
( Ñ+1

2 ) + ( N+1
2 ) = ((Ñ + 1)Ñ + (N + 1)N)/2.

The above results on vanishing moments can be applied
to the filter banks from Theorem 1, where the lifting filters
have linear phase. The support region of A1 is {−l1,0,−l1,0 +
1, . . . , l1,0−1}×{−l1,1,−l1,1+1, . . . , l1,1−1} for some l1,0, l1,1 ∈
Z. Then, (31) can be rewritten as

∑

n∈{0,...,l1,0−1}
×{−l1,1,...,l1,1−1}

a1[n]
[
(n + 1)m + (−n)m] = −2−|m|, (33)

for m ∈ (Z∗)2 and |m| < Ñ . As previously discussed, we
only need to consider the case with |m| ∈ Ze. Therefore, the
number of equations in (33) can be reduced to �Ñ/2�2. If we
use a1 to denote the independent coefficients of A1, the set of
linear equations in (33) can be expressed in a more compact
form as

A1a1 = b1, (34)

where A1 is an M0 × M1 matrix with M0 = �Ñ/2�2 and
M1 = 2l1,0l1,1, and b1 is a vector with �Ñ/2�2 elements. Each
element of A1 assumes the form (n + 1)m + (−n)m, and each
element of b1 assumes the form −2−|m|.

Similarly, because of the linear-phase property of the sec-
ond lifting filter A2, (32) becomes

∑

n∈{1,...,l2,0}
×{−l2,1+1,...,l2,1}

a2[n]
[
(n− 1)m + (−n)m] = −(−2)−|m|−1,

(35)

for m ∈ (Z∗)2, |m| ∈ Ze, and |m| < N . With a2 denoting the
2l2,0l2,1 independent coefficients of A2, (35) can be rewritten
as

A2a2 = b2, (36)

where A2 is an M0 × M1 matrix with M0 = �N/2�2 and
M1 = 2l2,0l2,1, and b2 is a vector with �N/2�2 elements. El-
ements of A2 and b2 assume the forms of (n − 1)m + (−n)m

and −(−2)−|m|−1, respectively.

Combining (34) and (36), we have the linear system of
equations involving the lifting-filter coefficient vector x given
by

Ax = b, (37)

where A = [ A1 0
0 A2

], x = [ a1
a2 ], and b = [ b1

b2
]. The number of

equations in (37) is �Ñ/2�2 + �N/2�2.
It is worth noting that for a linear-phase filter bank with

two lifting steps, the analysis filter frequency responses have
some special properties if this filter bank has at least one dual
vanishing moment. In particular, we have the result below.

Theorem 2 (filter banks with two lifting steps). Consider
a filter bank with two lifting steps satisfying Theorem 1. Let

ĥ0(ω) and ĥ1(ω) be the frequency responses of the lowpass and
highpass analysis filters H0 and H1, respectively. If this filter
bank has at least one dual vanishing moment, then

ĥ0(0, 0) = 1, (38a)

ĥ1(π,π) = −2 (38b)

(i.e., the DC gain of the lowpass analysis filter H0 is one and the
Nyquist gain of the highpass analysis filter H1 is two).

A proof of the above theorem is omitted here, but again
can be found in the first author’s thesis [26].

In the preceding discussion for filter banks with two lift-
ing steps, it is assumed that the number of dual vanish-
ing moments is no less than that of the primal ones (i.e.,
Ñ ≥ N). This is desirable in the case of image coding, as the
dual vanishing moments are more important than the pri-
mal ones for reducing the number of nonzero coefficients in
the highpass subbands by annihilating polynomials. Further-
more, the presence of dual vanishing moments usually leads
to smoother synthesis scaling and wavelet functions, which
help to improve the subjective quality of the reconstructed
images.

5.3. Frequency response

For image coding, we desire analysis filters with good fre-
quency selectivity. Since a lifting-based parametrization of
quincunx filter banks is employed, we consider the relation-
ship between analysis filter frequency selectivity and the lift-
ing filter coefficients.

To quantify the frequency selectivity of the filter bank,
we measure the deviation in frequency response between an
analysis filter H and an ideal filter Hd. In particular, we define
the weighted frequency response error function eh of H as

eh =
∫

[−π,π)2
W(ω)

∣
∣ĥa(ω)−Dĥd(ω)

∣
∣2
dω, (39)

where W(ω) is a weighting function defined on [−π,π)2,

ĥa(ω) is the signed amplitude response of H as defined by

(3), ĥd(ω) is the frequency response of the ideal filter Hd, and
D is a scaling factor. In order for the filter H to approximate
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Figure 5: Ideal frequency responses of quincunx filter banks for the
(a) lowpass filters and (b) highpass filters, where the shaded and
unshaded areas represent the passband and stopband, respectively.

the ideal filter, the frequency response error function eh is re-
quired to satisfy

eh ≤ δh, (40)

where δh is a prescribed upper bound on the error.
For a quincunx filter bank with sampling matrix M =

[ 1 1
1 −1 ], the shape of filter passband is not unique [3, 17].

Herein, in order to match the human visual system, we use
diamond-shaped ideal passband/stopband for the analysis
and synthesis filters [28]. Figure 5(a) illustrates the ideal low-
pass filter frequency response given by

ĥ0d(ω) =
⎧
⎨

⎩

1 for
∣
∣ω0 ± ω1

∣
∣ ≤ π,

0 otherwise,
(41)

and Figure 5(b) depicts the ideal highpass filter frequency re-
sponse given by

ĥ1d(ω) =
⎧
⎨

⎩

1 for
∣
∣ω0 ± ω1

∣
∣ ≥ π, ω0,ω1 ∈ [−π,π),

0 otherwise.
(42)

The weighting function W(ω) is used to control the rel-
ative importance of the passband and stopband. For a quin-
cunx highpass filter with a diamond-shaped stopband, W(ω)
is defined as

W(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 for passband
∣
∣ω0 ± ω1

∣
∣ ≥ π + ωp,

ω0,ω1 ∈ [−π,π),

γ for stopband
∣
∣ω0 ± ω1

∣
∣ ≤ ωs,

0 otherwise (i.e., transition band),

(43)

where γ ≥ 0. By adjusting the value of γ, we can control the
filter’s performance in the stopband relative to the passband.
In the case of highpass filters, for example, the weighting
function is as depicted in Figure 6. The weighting function
for a quincunx lowpass filter is defined in a similar way (i.e.,
with the roles of passband and stopband reversed in (43)).

�π

�π

0 ωp ωs
π

ωs

ωp

ω1

π

ω0

Transition band

Passband

Stopband

Figure 6: Weighting function for a highpass filter with diamond-
shaped stopband.

Consider a filter bank as shown in Figure 4 with two lift-
ing filters A1 and A2 satisfying Theorem 1. From (24), we ob-
tain the frequency responses of the analysis filters as

[
ĥ0(ω)

ĥ1(ω)

]

=
[

1 e− jω0 xTET
2 v2

0 1

][
1 0

e jω0 xTET
1 v1 1

][
1

e jω0

]

=
[

1 + xTET
2 v2 + xTET

2 v2vT
1 E1x

e jω0
(
1 + xTET

1 v1
)

]

.

(44)

Then, the signed amplitude response ĥ1a(ω) of H1 is

ĥ1a(ω) = 1 + xTET
1 v1. (45)

The frequency response error function of the highpass anal-
ysis filter H1 is computed as

eh1 =
∫

[−π,π)2
W(ω)

∣
∣ĥ1a(ω)−Dĥ1d(ω)

∣
∣2
dω, (46)

where W(ω) is the weighting function defined in (43),

ĥ1d(ω) is the ideal frequency response of a quincunx highpass
filter defined in (42), and the scaling factor D is chosen to be
D = 2 in accordance with (38b). The frequency response er-
ror function in (46) can be expressed as the quadratic in the
lifting-filter coefficient vector x given by

eh1 = xTHxx + xTsx + cx, (47)

where

Hx =
∫

[−π,π)2
W(ω)ET

1 v1vT
1 E1 dω,

sx =
∫

[−π,π)2
2W(ω)ET

1 v1
[
1− 2ĥ1d(ω)

]
dω,

cx =
∫

[−π,π)2
W(ω)

[
1− 2ĥ1d(ω)

]2
dω,

(48)

and Hx is a positive semidefinite matrix. Substituting (47)
into the constraint on the frequency response (40), we obtain
a quadratic inequality involving x as

xTHxx + xTsx + cx − δh ≤ 0. (49)
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5.4. Design problem formulation

Consider a filter bank as shown in Figure 4(a) with two lift-
ing steps. The design of such a filter bank with all of the de-
sirable properties (i.e., PR, linear-phase, high coding gain,
good frequency selectivity, and certain vanishing-moment
properties) can be formulated as a constrained optimization
problem. We employ the lifting-based parametrization intro-
duced in Theorem 1. In this way, the PR and linear-phase
conditions are automatically satisfied. We then maximize the
coding gain subject to a set of constraints, which are chosen
to ensure that the desired vanishing moment and frequency
selectivity conditions are met. In what follows, we will show
more precisely how this design problem can be formulated as
a second-order cone programming (SOCP) problem.

In an SOCP problem, a linear function is minimized sub-
ject to a set of second-order cone constraints [29]. In other
words, we have a problem of the following form:

minimize fTx

subject to
∥
∥FT

i x + ci
∥
∥ ≤ fTi x + di for i = 1, . . . , q,

(50)

where x ∈ Rn is the design vector containing n free variables,
and f ∈ Rn, Fi ∈ Rn×mi , ci ∈ Rmi , fi ∈ Rn, and di ∈ R. The
constraint ‖FT

i x +ci‖ ≤ fTi x +di is called a second-order cone
constraint.

Consider a filter bank satisfying Theorem 1 with two lift-
ing filters A1 and A2, having support sizes of 2l1,0 × 2l1,1 and
2l2,0 × 2l2,1, respectively. We use x to denote the vector con-
sisting of the 2l1,0l1,1 + 2l2,0l2,1 independent lifting-filter co-
efficients defined in (22). As explained previously, in terms
of the lifting-filter coefficient vector x, the constraint on van-
ishing moments is linear and the constraint on the frequency
response of the highpass analysis filter is quadratic.

From Section 5.2, we know that in order for a filter bank
to have N primal and Ñ dual vanishing moments, x needs to
be the solution of a system of �Ñ/2�2 + �N/2�2 linear equa-
tions given by

Ax = b. (51)

In (51), A ∈ Rm×n with rank r and b ∈ Rm×1, where
m = �Ñ/2�2 + �N/2�2, n = 2l1,0l1,1 + 2l2,0l2,1, and r ≤
min{m,n}. The system is underdetermined when there are
enough lifting-filter coefficients such that m < n. In what fol-
lows, we assume that the system is underdetermined so that
our eventual optimization problem will have a feasible re-
gion containing more than one point. Let the singular value
decomposition (SVD) of A be A = USVT . All of the solutions
to (51) can be parameterized as

x = A+b︸ ︷︷ ︸
xs

+Vrφ = xs + Vrφ, (52)

where A+ is the Moore-Penrose pseudoinverse of A, Vr =
[vr+1vr+2 · · · vn] is a matrix composed of the last n − r
columns of V, and φ is an arbitrary (n− r)-dimensional vec-
tor. Henceforth, we will use φ as the design vector instead
of x. Thus, the vanishing-moment condition is automatically

satisfied for any choice of φ and the number of free variables
involved is reduced from n to n− r.

The design objective is to maximize the coding gain GSBC

of an L-level octave-band quincunx filter bank, which is com-
puted by (25) and can be expressed as a nonlinear function
of the design vector φ. Let G = −10 log10 GSBC. Then, the
problem of maximizing GSBC is equivalent to minimizing G.
Although taking the logarithm helps to improve the numer-
ical stability of the optimization algorithm and reduces the
nonlinearity in G, the direct minimization of G remains a
very difficult task. Our design strategy is that, for a given
parameter vector φ, we seek a small perturbation δφ such
that G(φ + δφ) is reduced relative to G(φ). Because ‖δφ‖ is
small, we can write the quadratic and linear approximations
of G(φ + δφ), respectively, as

G
(
φ + δφ

) ≈ G(φ) + gTδφ +
1
2
δTφQδφ, (53)

G
(
φ + δφ

) ≈ G(φ) + gTδφ, (54)

where g and Q are, respectively, the gradient and the Hessian
of G(φ) at the point φ. Having obtained such a δφ (subject
to some additional constraints to be described shortly), the
parameter vector φ is updated to φ+δφ. This iterative process
continues until the reduction in G (i.e., |G(φ + δφ)−G(φ)|)
becomes less than a prescribed tolerance ε.

Now, consider the constraint on the frequency response.
In Section 5.3, we showed that for filter banks constructed
with two lifting steps, the frequency response error function
eh1 of the highpass analysis filter H1 is a quadratic polynomial
in x as given by (47). Substituting (52) into (47), we have

eh1 = φTHφφ + φTsφ + cφ, (55)

where

Hφ = VT
r HxVr ,

sφ = VT
r

(
Hx + HT

x

)
xs + VT

r sx,

cφ = xT
s Hxxs + xT

s sx + cx,

(56)

and Hx, sx, and cx are given in (48). Moreover, it follows from
the fact that Hx is positive semidefinite that Hφ is also posi-
tive semidefinite. Now, let us replace φ by φk + δφ and let the
SVD of Hφ be given by

Hφ = UHΣVT
H. (57)

Then, (55) can also be written as

eh1 =
∥
∥H̃kδφ + s̃k

∥
∥2

+ c̃k, (58)

and the constraint (40) becomes the second-order cone con-
straint

∥
∥H̃kδφ + s̃k

∥
∥2 ≤ δh1 − c̃k, (59)

where

H̃k = Σ1/2UT
H ,

s̃k = 1
2

H̃−T(
2Hφφk + sφ

)
,

c̃k = φT
k Hφφk + φT

k sφ + cφ −
∥
∥s̃k

∥
∥2
.

(60)
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This iterative algorithm consists of the following steps (where
k denotes the iteration number indexed from zero).

Step (1)
Compute A and b in (37) for the desired numbers of

vanishing moments, and calculate Hφ, sφ, and cφ in (55).
Then, select an initial point φ0. This point can be chosen

randomly, or chosen to be a quincunx filter bank proposed in
[18]. The vanishing-moment condition is satisfied, and

because of the way in which we choose the upper bound δh1

for the frequency response error function (to be discussed
later), φ0 will not violate the frequency response constraint.

In this way, the initial point is in the feasible region.
Step (2)

For the kth iteration, at the point φk , compute the gradient g
of G(φ) in (54), and calculate H̃k , s̃k , and c̃k in (59). Then,

solve the SOCP problem given by:

minimize gTδφ

subject to
∥
∥H̃kδφ + s̃k

∥
∥ ≤

√
δh1 − c̃k ,

∥
∥δφ

∥
∥ ≤ β,

(p1)

where β is a given small value used to ensure that the solution
is within the vicinity of φk . Then, update φk by

φk+1 = φk + γδφ, where γ is either chosen as one or
determined by a line search explained in more detail later. A
number of software packages are available for solving SOCP
problems. In our work, for example, we use SeDuMi [30].

Step (3)
If |G(φk+1)−G(φk)| < ε, output φ∗ = φk+1, compute
x∗ = xs + Vrφ

∗, and stop. Otherwise, go to Step (2).

Algorithm 1: Two-lifting-step case.

Based on the preceding discussions, we now show how to
employ the SOCP technique to solve the problem of maxi-
mizing the coding gain GSBC, or equivalently minimizing G,
with the vanishing-moment constraint Ax = b as in (51) and
the frequency response constraint eh1 ≤ δh1 as in (40). This
problem can be solved via Algorithm 1.

The vector x∗ output by Algorithm 1 is then the opti-
mal solution to this problem. The filter bank constructed
from the lifting-filter coefficient vector x∗ has high coding
gain, good frequency selectivity, and the desired vanishing-
moment properties (as well as PR and linear phase).

Two additional comments are now in order concerning
the SOCP problem (p1) in the second step of the iterative al-
gorithm (Algorithm 1). In particular, the choice of β is criti-
cal to the success of the algorithm. It should be chosen such
that

gTδ ≈ G(φ + δ)−G(φ) for ‖δ‖ = β. (61)

If β is too large, the linear approximation (54) is less accu-
rate, resulting in the linear term gTδφ not correctly reflect-
ing the actual reduction in G. If β is too small, in the kth
iteration, the solution is restricted to an unnecessarily small
region around φk, causing points outside this region which
may provide a greater reduction in G to be excluded. For this
reason, we incorporate a line search in Step (2) to find a bet-

ter solution along the direction of δφ. We first evaluate G at
N0 equally spaced points between φk and φk + αδφ along the
direction of δφ for some α ≥ 1, including the point φk + δφ.
Then, we use the point φ∗k corresponding to the minimal G
to select γ. By including a line search, in each iteration the
reduction in G is as large as the reduction obtained without
the line search. This makes the algorithm converges with less
iterations. The choice of α depends on the choice of β. When
β is large, we can choose α = 1. When β is small, we can
choose α ≥ 1. Note that a greater value of α may imply more
evaluations of the coding gain function G in each iteration.

The second comment about Step (2) concerns the choice
of the upper bound δh1 of the frequency response error func-
tion in the SOCP problem (p1). If δh1 is too small, the feasible
region of the SOCP problem may be an empty set, especially
for designs starting from a random initial point. Therefore,
for the kth iteration, we choose δh1 to be a scaled version of
the error function eh1 evaluated at φk. That is, we select

δh1 = d
(
φT
k Hφφk + φT

k sφ + cφ
)
, (62)

where 0 < d ≤ 1 is a scaling factor. In this way, the error eh1

is reduced after each iteration, and the frequency response of
the highpass analysis filter H1 improves gradually with each
iteration.

5.5. Design algorithm with Hessian

In Algorithm 1, a linear approximation (54) of the coding
gain function G is employed. This necessitates that the per-
turbation δφ be located in a small region. For this design
problem, we can instead use the quadratic approximation
in (53). In this way, the approximation accuracy can be im-
proved, and the solution can be sought in a larger region.
Algorithm 1 can be adapted to utilize the quadratic approx-
imation with some minor changes to the SOCP problem in
each iteration. In Step (2), we minimize gTδφ + (1/2)δTφQδφ
instead of gTδφ in (p1). That is, we seek a solution to the
following problem:

minimize gTδφ +
1
2
δTφQδφ

subject to
∥
∥H̃δφ + s̃

∥
∥ ≤

√
δh1 − c̃,

∥
∥δφ

∥
∥ ≤ β.

(63)

Let the SVD of (1/2)Q be (1/2)Q = UQΣQVT
Q. When Q is

positive semidefinite, we can rewrite the objective function
as

gTδφ +
1
2
δTφQδφ =

∥
∥Q̃δφ + s̃Q

∥
∥2

+ c̃Q, (64)

where

Q̃ = Σ1/2
Q UT

Q, s̃Q = 1
2

Q̃−Tg, c̃Q = −s̃TQs̃Q. (65)
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Table 1: Comparison of algorithms with linear and quadratic ap-
proximations.

Filter bank EX1 EX2

Approximation Linear Quadratic

One-level isotropic coding gain (dB) 6.86 6.86

Number of evaluations of G per iteration 10 65

Average time per iteration 0.4 1.0

Number of iterations 41 5

Total time (seconds) 20.1 5.1

If we further define δ̃φ = [η δφ]T and f = [1 0 · · · 0]T ,
then (63) becomes the SOCP problem,

minimize fT δ̃φ

subject to
∥
∥ ˜̃Qδ̃φ + s̃Q

∥
∥ ≤ fT δ̃φ,

∥
∥ ˜̃Hδ̃φ + s̃

∥
∥ ≤

√
δh1 − c̃,

∥
∥Ĩδ̃φ

∥
∥ ≤ β,

(66)

where ˜̃Q = [0 Q̃], ˜̃H = [0 H̃], and Ĩ = [0 I].
Note that (64) holds only when Q is positive semidefinite

and Q need not always be positive semidefinite. When Q is
not positive semidefinite, however, we can simply revert to
using a linear approximation.

When a quadratic approximation is employed, the algo-
rithm reaches an optimal solution with fewer iterations than
in the linear case, but takes longer for each iteration as the
coding gain is evaluated many more times when comput-
ing the Hessian. To demonstrate this difference in behavior,
we designed two filter banks, EX1 and EX2, using the origi-
nal Algorithm 1 and the revised algorithm with the Hessian,
respectively. Each optimization used the same initial point.
This led to the results shown in Table 1. Clearly, very simi-
lar optimization results are obtained for these two designs in
terms of the coding gain. For the design with the quadratic
approximation, the time used for each iteration is increased
compared to the linear-approximation case, but the number
of iterations is reduced greatly, resulting in a much shorter
overall time.

6. DESIGN OF FILTER BANKS WITH MORE THAN
TWO LIFTING STEPS

Although Algorithm 1 only works for the two-lifting-step
case, this algorithm can be generalized to design filter banks
with more than two lifting steps. When more lifting filters are
involved, however, the relationships between the filter-bank
characteristics (i.e., coding gain, vanishing-moment proper-
ties, and frequency selectivity) and the lifting-filter coeffi-
cients become more complicated. In this section, we consider
how to formulate the design as an SOCP problem based on
these relationships.

The computation of the coding gain in this case is ba-
sically the same as the two-lifting-step case discussed in
Section 5.1. For an L-level octave-band quincunx filter bank,
the coding gain GSBC is computed by (25), and GSBC is a non-
linear function of the lifting-filter coefficients.

6.1. Vanishing moments

Compared to the two-lifting-step case, the vanishing-mo-
ments condition changes considerably for a filter bank as
shown in Figure 4(a) with at least three lifting steps (i.e.,
λ ≥ 2). The condition is no longer linear with respect to the
lifting-filter coefficient vector x. With the notations ak, vk,
x, and Ek introduced in Section 4, the frequency responses

{ĥk(ω)} of the analysis filters are given by (24), and {ĥk(ω)}
can each be expressed as a polynomial in x.

In order for this filter bank to have Ñ dual vanishing mo-

ments, the frequency response ĥ1(ω) of the highpass analysis
filter should have an Ñth-order zero at [0 0]T . Therefore,

	mĥ1a(0, 0) = 0 for all m ∈ (Z∗)2 such that |m| ∈ Ze and
|m| < Ñ , where ĥ1a(ω) is the signed amplitude response of

H1 as defined in (3). As H1 has linear phase and ĥ1(ω) can be

viewed as a polynomial in x, ĥ1a(ω), and thus ĥ(m)
1a (0, 0) can

also be viewed as polynomials in x. In this way, in order to
have Ñ dual vanishing moments, the lifting-filter coefficients
in x need to satisfy �Ñ/2�2 polynomial equations. Similarly,
in order to have N primal vanishing moments, the frequency

response ĥ(m)
0 (ω) of the lowpass analysis filter H0 should sat-

isfy 	mĥ0a(π,π) = 0 for all m ∈ (Z∗)2 such that |m| ∈ Ze
and |m| < N . It follows that x needs to satisfy �N/2�2 poly-
nomial equations.

6.2. Frequency responses

Recall that in the two-lifting-step case, the frequency re-
sponse constraint is defined in (39) and (40), and the con-
straint on the highpass analysis filter is a second-order cone.
For filter banks with more than two lifting steps, we define
the frequency response constraint in a similar way. The fre-
quency response error functions of the lowpass and highpass
analysis filters, however, are at least fourth-order polynomi-
als in the lifting-filter coefficients. This is because the fre-
quency responses of the analysis filters H0 and H1 are at least
quadratic polynomials in the lifting-filter coefficient vector x
when more than two lifting filters are involved.

6.3. Design problem formulation

In the two-lifting-step case, we saw that in terms of the
lifting-filter coefficients, the vanishing-moment condition is
a linear system of equations and the frequency response con-
straint is a second-order cone. For filter banks with more
than two lifting steps, the design problem becomes increas-
ingly complicated as the constraints on vanishing moments
and frequency responses become higher-order polynomials
in the lifting-filter coefficients. In order to use the SOCP
technique, the constraints on vanishing moments and the
frequency response must be approximated by linear and
quadratic constraints, respectively.
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We deal with the coding gainGSBC(x) with the same strat-
egy as in the two-lifting-step case. The linear approximation
of G with G(x) = −10 log10 GSBC(x) is given by

G
(

x + δx
) ≈ G(x) + gTδx, (67)

where g is the gradient of G at point x. We iteratively seek
a small perturbation δx in x such that G(x + δx) is reduced
relative to G(x) until the difference between G(x + δx) and
G(x) is less than a prescribed tolerance.

As discussed in Section 6.1, the constraint on vanishing
moments is a set of polynomial equations in x. We substitute
x with xk +δx. Provided that ‖δx‖ is small, the quadratic and
higher-order terms in δx can be neglected, and these polyno-
mial equations can be approximated by the linear system

Akδx = bk. (68)

In this way, the filter bank constructed with lifting-filter coef-
ficients xk +δx has the desired vanishing-moment properties.
Due to the problem formulation, the moments of interest are
only guaranteed to be small, but not exactly zero. In practice,
however, the moments are typically very close to zero, as will
be illustrated later via our design examples.

Now we consider the frequency response of the highpass
analysis filter H1. The weighted error function eh1 is defined
in (39). In order to have good frequency selectivity, the func-

tion eh1 must satisfy the constraint (40). From (8), ĥ1a(ω)
has at least a second-order term in x. Therefore, eh1 is at least
a fourth-order polynomial in x. Using a similar approach as

above, we replace x by xk+δx in ĥ1a(ω) with ‖δx‖ being small,
and neglect the second- and higher-order terms in δx. Now,

ĥ1a(ω) is approximated by a linear function of δx. Using (39),
a quadratic approximation of eh1 is obtained as

eh1 = δTx Hkδx + δTx sk + ck, (69)

where Hk is a symmetric positive semidefinite matrix, and
Hk, sk, and ck are dependent on xk. Therefore, the constraint
eh1 ≤ δh1 can be expressed in the form of a second-order cone
constraint as

∥
∥H̃kδx + s̃k

∥
∥2 ≤ δh1 − c̃k. (70)

Note that the approximation is not applied to eh1 , but to

ĥ1a(ω). In this way, the matrix Hk is guaranteed to be posi-
tive semidefinite, which allows for the form of a second-order
cone as in (70).

Based on the preceding approximation methods of the
vanishing-moment condition and frequency response con-
straint, the design of filter banks with more than two lift-
ing steps can be formulated as an iterative SOCP problem.
To solve this design problem, we use a scheme similar to
Algorithm 1. Let K be the number of lifting steps. The mod-
ified algorithm (Algorithm 2) is given.

Upon termination of Algorithm 2, the output x∗ will cor-
respond to a filter bank with all of the desired properties. In

This iterative algorithm consists of the following steps (where
k denotes the iteration number indexed from zero).
Step (1)
Select an initial point x0 such that the resulting filter bank has
the desired number of vanishing moments. We can choose
the first two lifting filters using the method proposed for the
two-lifting-step case, and then set the coefficients of the other
K − 2 lifting filters to be all zeros. Alternatively, we can
randomly select the coefficients of the first K − 2 filters, and
then use the last two lifting filters to provide dual and primal
vanishing moments. In this way, the filter bank constructed
with the initial point x0 has the desired number of vanishing
moments. Moreover, since the upper bound δh1 for the
frequency response error function is chosen in the same way
as in Algorithm 1, the frequency response constraint will not
be violated. Therefore, x0 is inside the feasible region.
Step (2)
For the kth iteration, at the point xk , compute the gradient g
of G(x), Ak and bk in (68), and H̃k , s̃k , and c̃k in (70). Then,
solve the SOCP problem:

minimize gTδx

subject to Akδx = bk ,
∥
∥H̃kδx + s̃k

∥
∥ ≤

√
δh1 − c̃k ,

∥
∥δx

∥
∥ ≤ β.

(p2)

The linear constraint Akδx = bk can be parameterized as in
Algorithm 1 to reduce the number of design variables, or be
approximated by the second-order cone ‖Akδx − bk‖ ≤ εδ
with εδ being a prescribed tolerance. Then, we can use the
optimal solution δx to update xk by xk+1 = xk + δx. We can
also optionally incorporate a line search into this process to
improve the efficiency of the algorithm.
Step (3)
If |G(xk+1)−G(xk)| < ε, then output x∗ = xk+1 and stop.
Otherwise, go to Step (2).

Algorithm 2: More-than-two lifting-step case.

Step (2), we deal with the constant δh1 in the same way as in
Algorithm 1 (i.e., δh1 is chosen to be a scaled version of the
error function evaluated at the point xk). We use a variable
scaling factorD in the frequency response error function (39)
since the Nyquist gain of H1 is dependent on the lifting-filter
coefficients in this case. For the kth iteration, we choose D
to be the Nyquist gain of the highpass analysis filter obtained

from the previous iteration (i.e., D = ĥ1a(π,π) with ĥ1a(ω)
being the signed amplitude response of H1 obtained from the
(k − 1)th iteration).

Due to the linear approximation (68), the moments as-
sociated with the desired vanishing-moment conditions are
only guaranteed to be small but not necessarily zero. An ad-
justment step can be applied after Step (3) to further re-
duce the moments in question at the expense of a slight de-
crease in the coding gain. This step is formulated as follows.
Let {Γi(x)} = 0 be the set of polynomial equations that the
lifting-filter coefficient vector x needs to satisfy to achieve N
primal and Ñ dual vanishing moments. When ‖δx‖ is small,
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the linear approximation of Γi(x∗ + δx) is obtained by

Γi
(

x∗ + δx
) = Γi(x∗) + gT

i δx, (71)

where gi is the gradient of Γi at the point x∗. This adjustment
process can then be formulated as the following optimization
problem:

minimize
∑

i

[
Γi(x∗) + gT

i δx
]2

subject to
∥
∥δx

∥
∥ ≤ βa,

(72)

where βa is a prescribed small value. The objective function
of (72) can be rewritten as

∑

i

(
Γi(x∗) + gT

i δx
)2

= δTx

(∑

i

gigT
i

)

δx + δTx

[

2
∑

i

Γi(x∗)gi

]

+
∑

i

Γ2
i (x∗).

(73)

Since
∑

i gigT
i is positive semidefinite, the objective function

can be expressed in the form ‖H̃δδx+s̃δ‖2+c̃δ . If we introduce
another variable η to be the upper bound of the term ‖H̃δδx+
s̃δ‖, the problem in (72) becomes

minimize η

subject to
∥
∥H̃δδx + s̃δ

∥
∥ ≤ η,

∥
∥δx

∥
∥ ≤ βa.

(74)

The above problem is equivalent to the SOCP problem,

minimize fT δ̃x

subject to
∥
∥ ˜̃Hδδx + s̃δ

∥
∥ ≤ fT δ̃x,

∥
∥Ĩδx

∥
∥ ≤ βa,

(75)

where δ̃φ = [η δφ]T , f = [1 0 · · · 0]T , ˜̃Hδ = [0 H̃δ], and

Ĩ = [0 I].
In Algorithm 2, instead of using the linear approximation

(67) of the coding gain function G, we can also employ the
quadratic approximation of G given by

G
(

x + δx
) ≈ G(x) + gTδx +

1
2
δTx Qδx, (76)

where g and Q are the gradient and the Hessian of G(x) at
the point x, respectively. A change similar to that used in
Section 5.5 can be made to the SOCP problem (p2) in Step
(2) of Algorithm 2.

The approximation method for the frequency response
constraint explained previously in this section can also be
used to control the frequency response of the lowpass anal-
ysis filter H0 for filter banks with two or more lifting steps.
For example, in the two-lifting-step case, the analysis lowpass

filter frequency response ĥ0(ω) is a quadratic polynomial in

the design vector φ. We can replace φ by φk +δφ in ĥ0(ω) and
keep only the constant and first-order terms. Then, the er-
ror function eh0 computed with this linear approximation of

ĥ0(ω) becomes a quadratic function of δφ, and the constraint
eh0 ≤ δh0 can be expressed as a second-order cone in δφ.

7. DESIGN EXAMPLES

In order to demonstrate the effectiveness of our proposed
design methods, we now present several examples of filter
banks constructed using Algorithms 1 and 2. In passing, we
note that our software implementation of these algorithms
(written in MATLAB) is available on the Internet [31]. For
all of the design examples in this section, the optimization is
carried out for maximal coding gain assuming an isotropic
image model with correlation coefficient ρ = 0.95 and a six-
level wavelet decomposition.

Using our proposed methods, we designed three filter
banks, henceforth referred to by the names OPT1, OPT3, and
OPT4. The lifting-filter coefficient vectors {ai} (as defined in
(10) and (15)) for these three filter banks are given in Table 2.
For comparison purposes, we also consider four filter banks
produced using methods previously proposed by others, with
three being quincunx and one being separable. The first two
quincunx filter banks are constructed using the technique of
[18], and are henceforth referred to by the names KS1 and
KS2. The third quincunx filter bank is the so-called (6, 2) fil-
ter bank proposed in [9], which we henceforth refer to by the
name G62. The one separable filter bank considered herein
is the well-known 9/7 filter bank employed in the JPEG-2000
standard [1]. Some important characteristics of the various
filter banks are shown in Table 3. The OPT1 filter bank was
designed using Algorithm 1 with two lifting steps. The next
two filter banks, referred to as OPT3 and OPT4, were de-
signed using Algorithm 2 with three or more lifting steps,
and thus, the desired vanishing-moment conditions are only
guaranteed to be met approximately (i.e., the moments in
question are only guaranteed to be close to zero). For each
of these two filter banks, the order of the largest nonzero
moment (of those in question) is shown in the rightmost
column of Table 3. The frequency responses of the analysis
and synthesis lowpass filters are shown in Figures 7, 8, and 9.
Since the highpass filter frequency responses are simply mod-
ulated versions of the lowpass ones, the former have been
omitted here due to space constraints. The primal scaling and
wavelet functions are illustrated in Figures 10, 11, and 12.

From Table 3, clearly, the optimal designs, OPT1, OPT3,
and OPT4, each have a higher isotropic coding gain than
the KS1, KS2, and G62 quincunx filter banks. Furthermore,
the designs with three and four lifting steps also have a
higher isotropic coding gain than the 9/7 filter bank, which
is very impressive considering that the 9/7 filter bank is well
known for its high coding gain. For OPT3 and OPT4, the
zeroth moments are nearly vanishing on the order of 10−10

to 10−12, which is small enough to be considered as zero
for all practical purposes. The first moments are automat-
ically zero due to the linear-phase property as previously
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Table 2: Lifting-filter coefficients for the (a) OPT1, (b) OPT3, and
(c) OPT4 filter banks (where the coefficient vectors {ai} are as de-
fined in (10) and (15))

a1 a2

−0.0159198316 0.0141419383
0.0570315087 −0.0475750610
−0.3319070666 0.1826552865
−0.3336501890 0.1839773572

0.0596966372 −0.0501021101
−0.0177016160 0.0165757568

0 0
−0.0002158944 0.0073072183

0.0584826734 −0.0487234955
0.0590711965 −0.0488388947
−0.0014144431 0.0082567802

0 0
0 0
0 0

−0.0171945340 0.0165064152
−0.0162784411 0.0158188087

0 0
0 0

(a)

a1 a2 a3

0.0121916538 −0.0412467652 0.0312090846
−0.2252324567 0.2230448713 −0.1065049947
−0.2244562781 0.2234323639 −0.1060172665

0.0131716139 −0.0423652185 0.0301113988
0 0 0

0.0123383222 −0.0429058837 0.0289842780
0.0125969226 −0.0419932594 0.0317300494

0 0 0

(b)

a1 a2

0.0634983772 −0.0451377582
−0.1474840240 0.0687594491
−0.2023765008 0.1518386544

0.0294352099 −0.0326419204
0 0

0.0622324334 −0.0460766038
0.0202133422 −0.0240443429

0 0
a3 a4

−0.2321916679 0.2012955400
−0.0651787971 0.0186944256

(c)

discussed in Section 6.1. Lastly, from Figures 7 to 12, we
see that the optimal filter banks have good diamond-shaped
passbands/stopbands and smooth primal scaling and wavelet
functions.

8. IMAGE CODING RESULTS AND ANALYSIS

In order to further demonstrate the utility of our new fil-
ter banks, they were employed in an enhanced version of the

embedded lossy/lossless image codec of [32]. This codec can
be used with either nonseparable or separable filter banks
based on the lifting framework. Some additional information
about the codec is included in the appendix. For test data,
all twenty seven (reasonably sized) grayscale images from the
JPEG-2000 test set [33] were used in our experiments.

Using each of the filter banks listed in Table 3, the test
images were coded in a lossy manner at four compression ra-
tios (i.e., 128, 64, 32, and 16), and then decoded. In each case,
the difference between original and reconstructed images was
measured in terms of PSNR. In the cases of quincunx and
separable filter banks, six and three levels of decomposition
were employed, respectively.

A statistical summary of all of the lossy compression re-
sults (i.e., for the twenty seven test images coded at four com-
pression ratios) obtained with the quincunx filter banks is
provided in Table 4. In particular, the table shows the per-
centage of cases where the OPT1, OPT3, and OPT4 optimal
designs outperform the KS1, KS2, and G62 filter banks. We
can see that our new filter banks outperform KS1 in 70% to
80% of the cases, outperform KS2 in more than 80% of the
cases, and outperform G62 in more than 90% of the cases.
It is worth noting that the KS1 filter bank has the best per-
formance among all of the quincunx filter banks constructed
using the method in [18] with filter supports comparable to
our design examples, and the G62 filter bank has the best per-
formance among the three filter banks in [9]. In other words,
we are comparing our optimal designs to the very best com-
peting quincunx filter banks produced by other methods.

For illustrative purposes, we now provide a subset of the
lossy coding results, namely those obtained for the test im-
ages sar2 and gold. Information about these two images is
provided in Table 5. The sar2 image is more isotropic (than
separable) in nature, while the gold image is more separa-
ble, as demonstrated by the contour plots of their normalized
autocorrelation functions shown in Figure 13. The lossy cod-
ing results for the sar2 and gold images are shown in Table 6.
Obviously, our three optimal designs (i.e., OPT1, OPT3, and
OPT4) perform very well, consistently outperforming the
KS1, KS2, and G62 quincunx filter banks in all cases. For ex-
ample, in the case of the sar2 image at a compression ratio of
16, our optimal designs outperform the KS1, KS2, and G62
filter banks by margins of 0.12 to 0.23, 0.29 to 0.4, and 0.42
to 0.53 dB, respectively. Moreover, for the isotropic sar2 im-
age, our optimal designs even achieve better results than the
9/7 filter bank in most cases. For example, the OPT3 design
outperforms the 9/7 filter bank at all of the four compression
ratios considered (for the sar2 image). This is quite an en-
couraging result, as the 9/7 filter bank is generally held to be
one of the very best in the literature.1

The reconstructed images associated with the optimal fil-
ter banks also have subjective quality comparable to that of

1 Of course, the idea that nonseparable filter banks can offer improved
performance (over separable ones) for images with nonseparable (e.g.,
isotropic) statistics is not a new one. In fact, it is this very idea that has
inspired much research in the area of nonseparable filter banks. For ex-
ample, this idea has been expressed in [21] as well as in many other works.
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Table 3: Comparison of filter-bank characteristics.

Name
Support of Support of analysis filters Coding gain (dB) Vanishing moments

lifting filters† Lowpass Highpass Isotropic Separable Ñ N Max.

OPT1 6× 6, 6× 6 13× 13 7× 7 12.06 13.59 2 2 —

OPT3 4× 4, 4× 4, 4× 4 9× 9 13× 13 12.23 13.26 2 2 10−12

OPT4 4× 4, 4× 4, 2× 2, 2× 2 13× 13 11× 11 12.21 13.07 2 2 10−10

KS1 6× 6, 6× 6 13× 13 7× 7 11.95 13.64 6 6 —

KS2 8× 8, 4× 4 15× 15 11× 11 11.75 13.92 8 4 —

G62 6× 6, 2× 2 13× 13 11× 11 11.64 12.98 6 2 —

9/7 2, 2, 2, 2 9 7 12.09 14.88 4 4 —

†Support regions are diamond-shaped for OPT1, OPT3, OPT4, KS1, and KS2, and rectangular-shaped for G62.
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Figure 7: Frequency responses of the (a) lowpass analysis and (b)
lowpass synthesis filters of OPT1.

the KS1, KS2, G62, and 9/7 filter banks. As an example, the
lossy reconstructed images for sar2 using these filter banks
are shown in Figure 14. It is apparent from the figures that
the reconstructed images corresponding to OPT1, OPT3,
and OPT4 have good subjective quality.

9. CONCLUSIONS

In this paper, we have proposed two new optimization-based
methods (and variations thereof) for the design of quin-
cunx filter banks for image coding. The proposed design
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Figure 8: Frequency responses of the (a) lowpass analysis and (b)
lowpass synthesis filters of OPT3.

techniques (i.e., Algorithms 1 and 2) yield linear-phase PR
systems with high coding gain, good frequency selectivity,
and certain prescribed vanishing-moment properties.

Using Algorithms 1 and 2, we designed several filter
banks with all of the desirable properties. These optimal fil-
ter banks were employed in an image codec and their cod-
ing performance was compared to that of four previously
proposed filter banks (three quincunx and one separable).
The experimental results show that our new filter banks out-
perform the three previously proposed quincunx filter banks
in 72% to 95% of the test cases. Thus, our design methods
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Figure 9: Frequency responses of the (a) lowpass analysis and (b)
lowpass synthesis filters of OPT4.

(a)

(b)

Figure 10: The (a) primal wavelet and (b) primal scaling functions
for OPT1.

clearly yield superior filter banks compared to other quin-
cunx filter-bank design methods. Moreover, in some cases,
our optimal designs even outperform the (separable) 9/7 fil-
ter bank, which is considered to be one of the very best in the
literature. These results demonstrate the effectiveness of our
new design techniques. Furthermore, through the use of our
design methods, it is possible to develop higher-performance
image codecs based on quincunx filter banks.

(a)

(b)

Figure 11: The (a) primal wavelet and (b) primal scaling functions
for OPT3.

(a)

(b)

Figure 12: The (a) primal wavelet and (b) primal scaling functions
for OPT4.

Table 4: Statistical summary of the lossy compression results for
twenty seven test images, each coded at compression ratios of 128,
64, 32, and 16. Percentage of cases where the OPT1, OPT3, and
OPT4 optimal designs outperform the KS1, KS2, and G62 (quin-
cunx) filter banks.

Filter banks OPT1 OPT3 OPT4

KS1 78% 75% 72%

KS2 83% 82% 81%

G62 95% 94% 93%

Table 5: Small subset of test images.

Image Size bpp Model Description

sar2 800× 800 12 Isotropic
Synthetic aperture

radar

gold 720× 576 8 Separable Houses
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Figure 13: The contour plots of the autocorrelation functions of
the (a) sar2 and (b) gold images.

Table 6: Lossy compression results for the (a) sar2 and (b) gold
images.

CR†
PSNR (dB)

OPT1 OPT3 OPT4 KS1 KS2 G62 9/7

128 22.73 22.77 22.75 22.66 22.56 22.39 22.75

64 23.54 23.60 23.61 23.45 23.34 23.13 23.56

32 24.73 24.82 24.79 24.62 24.49 24.29 24.70

16 26.67 26.78 26.75 26.55 26.38 26.25 26.62

(a)

CR†
PSNR (dB)

OPT1 OPT3 OPT4 KS1 KS2 G62 9/7

128 27.14 27.19 27.12 26.98 26.92 26.72 27.16

64 28.90 28.95 28.95 28.82 28.71 28.47 29.06

32 30.90 30.97 30.95 30.81 30.70 30.50 31.28

16 33.36 33.41 33.35 33.28 33.17 32.97 33.82

(b)

†Compression ratio.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 14: Part of the lossy reconstructions obtained for the sar2
image at a compression ratio of 32 using the (a) OPT1, (b) OPT3,
(c) OPT4, (d) KS1, (e) KS2, (f) G62, and (g) 9/7 filter banks.
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APPENDIX

IMAGE CODEC

The image codec [32] used for collecting experimental re-
sults herein was written in C++ and it supports both lossy
and lossless compression of grayscale images. The codec was
partly inspired by technologies contained in the JPEG-2000
Verification-Model 0.0 software [34]. Although originally de-
veloped in [32], the codec has undergone major changes
since that time in order to improve its coding performance.
The codec employs reversible integer-to-integer versions of
wavelet transforms [25] (which can be trivially constructed
from the lifting realization of a filter bank).

The general structure of the codec is as follows. In the en-
coder, a wavelet transform is first applied to the input data.
Then, a bitplane coder is applied independently to each of the
resulting subband signals. The bitplane coder employs three
coding passes per bitplane (i.e., predicted significant, refine-
ment, and predicted insignificant passes), similar in spirit to
those found in the JPEG-2000 codec [1], for example. The
symbols generated by the bitplane coder are then entropy-
coded using a context-based adaptive arithmetic coder. The
ordering of the data in the codestream is optimized for rate-
distortion performance, and rate control is achieved solely by
the truncation of the embedded codestream. The structure of
the decoder essentially mirrors that of the encoder.
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[23] J. Kovačević and M. Vetterli, “Nonseparable multidimensional
perfect reconstruction filter banks and wavelet bases for Rn,”
IEEE Transactions on Information Theory, vol. 38, no. 2, part 2,
pp. 533–555, 1992.

[24] T. T. Nguyen and S. Oraintara, “Multiresolution direction fil-
terbanks: theory, design, and applications,” IEEE Transactions
on Signal Processing, vol. 53, no. 10, pp. 3895–3905, 2005.

[25] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo,
“Wavelet transforms that map integers to integers,” Applied



18 EURASIP Journal on Advances in Signal Processing

and Computational Harmonic Analysis, vol. 5, no. 3, pp. 332–
369, 1998.

[26] Y. Chen, “Design and application of quincunx filter banks,”
M.S. thesis, Department of Electrical and Computing Engi-
neering, University of Victoria, Victoria, BC, Canada, 2006.

[27] J. Katto and Y. Yasuda, “Performance evaluation of subband
coding and optimization of its filter coefficients,” in Visual
Communications and Image Processing (VCIP ’91), vol. 1605 of
Proceedings of SPIE, pp. 95–106, Boston, Mass, USA, Novem-
ber 1991.
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