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Abstract— Peak-to-average power-ratio (PAPR) reduction for
OFDM systems is investigated in a probabilistic framework. A
new constellation extension technique is developed whereby the
data for each subcarrier are represented either by points in
the original constellation or by extended points. An optimal
representation of the OFDM signal is achieved by using a
de-randomization algorithm where the conditional probability
involved is handled by using the Chernoff bound and the
evaluation of the many hyperbolic cosine functions involved
is replaced by a tight upper bound for these functions. The
proposed algorithm can be used by itself or be combined with a
selective rotation technique described in the paper and with other
known algorithms such as the coordinate descent optimization
and selective mapping algorithms to achieve further performance
enhancements at the cost of a slight increase in the computational
complexity. When compared with other existing PAPR-reduction
algorithms, the enhanced algorithm offers improved PAPR-
reduction performance and improved computational complexity
although the transmit power is increased somewhat.

Index Terms— OFDM, peak-to-average power-ratio reduction,
constellation extension, de-randomization.

I. INTRODUCTION

The demand for high data-rate services over wireless net-
works has been increasing very rapidly in recent years. These
services require reliable data transmission over band-limited
wireless channels which are subjected to many degradations
such as noise, multipath fading, and interference. A transmis-
sion technique that offers robustness with respect to multipath
fading and resistance to narrowband interference is orthogonal
frequency-division multiplexing (OFDM) [1]-[3]. Because of
its many advantages, OFDM has gained much popularity and
has been used widely in a variety of communication systems.
Well-known examples include digital audio broadcasting [4],
digital video broadcasting [5], and the IEEE 802.11a and
802.11g standards for wireless local area networks [6].

A major drawback associated with OFDM is its large peak-
to-average power-ratio (PAPR) which makes system perfor-
mance very sensitive to distortion introduced by nonlinear
devices such as power amplifiers (PAs) [1]-[3][7][8]. In an
attempt to reduce the nonlinear distortion caused by the
PAs, several techniques have been proposed that can reduce
the PAPR of the OFDM signal before it enters a PA. A
straightforward technique would be to limit the signal strength
at the transmitter to a desired level through clipping but this
technique degrades the bit-error-rate (BER) of the system
and increases the out-of-band radiation [9][10] due to the
increased harmonic content. Coding and bandpass filtering can

reduce these effects but, unfortunately, they would increase
the cost of the system [11]. A more efficient approach for
the reduction of nonlinear distortion is through the use of
PAPR-reduction algorithms and a variety of such algorithms
have been described in the literature [12]-[28]. In [12]-[17],
algorithms are described which combine PAPR reduction with
error-control coding. Very low PAPR can be achieved by these
algorithms but at the cost of a significant reduction in the data
transmission rate. Moreover, these algorithms require large
look-up tables and, therefore, are more suitable for OFDM
systems with a small number of subcarriers. A multiple signal
representation approach has been proposed in [18][19] where
a set of OFDM signals are generated at the OFDM transmitter
and the transmit signal with the lowest peak power is selected.
This approach is computationally efficient but it requires the
transmission of a small amount of side information. The use
of the selective mapping (SM) algorithm [18] together with
other PAPR-reduction algorithms has been proposed in [20].
In [21]-[22], PAPR reduction has been achieved by using trellis
shaping at the cost of an increase in the decoding complex-
ity of the receiver. In [23]-[28], reduced PAPR is achieved
by extending the modulation constellation. These algorithms
offer distortionless PAPR reduction and do not require the
transmission of any side information. The algorithms differ
from one another in the way they modify the modulation
constellation. In [23], a tone reservation algorithm has been
developed where several subcarriers are set aside for PAPR
reduction. Since the subcarriers are orthogonal, the additive
signal on unused subcarriers causes no distortion to the data-
bearing subcarriers. In [24], a tone injection algorithm has
been developed where the constellation points in a number
of subcarriers are modified to achieve PAPR reduction at
the cost of a slight increase in transmit power. In [25][26],
an active set extension (ASE) algorithm has been proposed
where PAPR reduction is achieved by modifying the exterior
modulation constellation over active subcarriers in a way that
will not degrade the BER performance. In [27], a symmetric
constellation extension (SCE) algorithm has been proposed for
PAPR reduction whereby the subsymbols for each subcarrier
are represented by two symmetric constellation points and
an optimal representation has been derived by using a de-
randomization algorithm. Since there is one bit that is not
used to transmit any information for each constellation point,
the transmit power of OFDM systems using constellation
extension is much larger than that of OFDM systems with no
constellation extension. In [28], PAPR-reduction algorithms
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have been proposed whereby the exterior points of the mod-
ulation constellation are modified using linear programming
to reduce the peak power of the transmit signal. Due to the
constellation extension, these algorithms require an increase
in the transmit power and computation complexity at the
transmitter.

In this paper, a new algorithm for PAPR reduction is in-
vestigated in a probabilistic framework, which consists of two
key ingredients. First, a new constellation extension technique
is developed whereby the data for each subcarrier can be
represented by a point in the original constellation or by an
extended point. Second, a new de-randomization algorithm
is proposed by applying the so-called method of conditional
probability (MCP) [29][30]. The paper also deals with certain
modifications to the algorithm that lead to further performance
enhancements. These include the use of a selective rotation
technique (SR) described in the paper and the application of
the coordinate decent optimization (CDO) and the selective
mapping algorithms [31][18]. Design examples are presented
which demonstrate that the enhanced algorithm offers sig-
nificant improvements in PAPR reduction and computational
complexity over several existing algorithms at the cost of slight
increase in the transmit power.

The paper is organized as follows. In Sec. II, a brief de-
scription of OFDM systems is given. In Sec. III, the proposed
constellation extension scheme is described and the problem
is formulated; then the new PAPR-reduction algorithm for the
solution of the problem are described. In Sec. IV, various
PAPR-reduction algorithms are compared through simulations.
Conclusions are drawn in Sec. V.

II. OFDM SYSTEMS

In an OFDM system, the available bandwidth W is al-
located to N orthogonal subcarriers whose frequencies are
seperated by W/N . A high-rate data stream is split into N
low-rate streams that are transmitted simultaneously through
these subcarriers. Each of the subcarriers is independently
modulated using phase-shift keying (PSK) or quadrature am-
plitude modulation (QAM). The modulated signal for each
subcarrier is transformed by using the inverse discrete Fourier
transform (IDFT) in order to generate the OFDM signal. A
cyclic prefix is inserted at the beginning of each OFDM
symbol before it is transmitted through the channel. A typical
OFDM transmitter is illustrated in Fig. 1 where S/P, P/S,
and DAC represent serial-to-parallel, parallel-to-serial, and
digital-to-analog converter, respectively, and the block labeled
as “Amp.” represents a PA. The information bits Dk and
the modulated symbol Xk are referred to as the data point
and subsymbol for the kth subcarrier, respectively. Vectors
X = [X0 · · · XN−1]

T and x = [x0 · · · xN−1]
T denote

the frequency-domain and the time-domain OFDM symbols,
respectively. The nth element of OFDM symbol x is given by
using the IDFT of X, i.e.,

xn =
1
N

N−1∑

k=0

Xkej2πkn/N for n = 0, . . . , N − 1 (1)

where xn represents the nth element of x. Equation (1) can
be expressed in matrix form as

x = QX (2)

where Q is the IDFT matrix whose elements are qn,k =
(1/N)ej2πkn/N . Since an OFDM signal consists of a number
of independently modulated subcarriers, when the subsymbols
for each subcarrier are added up coherently, the maximum
instantaneous power of the OFDM signal could be much larger
than its average power. The disparity between the maximum
instantaneous power and the average power in OFDM signals
is typically quantified in terms of PAPR. For the system shown
in Fig. 1, the PAPR of signal x is defined as

PAPR =
‖x‖2∞

E [‖x‖22]/N
(3)

where E [·], ‖x‖∞, and ‖x‖2 denote the expectation of [·], the
infinity-norm, and 2-norm of vector x, respectively.

III. PAPR REDUCTION VIA CONSTELLATION EXTENSION

A. Constellation Extension Scheme

For the purpose of illustration, a 16-QAM modulation is
assumed for each subcarrier in which case the constellation
assumes the form shown in Fig. 2a. The constellation extension
scheme for this type of modulation is illustrated in Fig. 2b
where any data point with a value greater than or equal to
4 can be represented by a pair of two possible constellation
points. For example, data point Dk = 15 (or 1111 in binary
form) can be represented either by X0

k = −3 − 3j or by
X1

k = −3+5j where the superscripts of X0
k and X1

k are used
to identify which constellation point is selected to represent
Dk, i.e., X0

k indicates that an exterior point of the conventional
constellation is used to represent Dk; on the other hand,
X1

k indicates that a corresponding extended point is used to
represent Dk. Based on this constellation extension technique,
one seeks to reduce the PAPR of the transmit signals by
selecting the optimal representation of data points by either
the exterior or the extended points. Note that the minimum
Euclidean distance between the extended constellaton point
and any conventional constellation point is guaranteed to be
no less than the minimum distance among the conventional
constellation points. As will be demonstrated later, the increase
of average transmit power due to the constellation extension
is fairly small and, consequently, the BER performance of the
system will not be degraded significantly. Note also that the
above constellation extension scheme can be easily applied to
other modulation constellations without any difficulty.

B. Problem Formulation

Our objective is to obtain an optimal representation of the
data points such that the PAPR of the OFDM symbol X is
minimized. This PAPR-reduction problem can be addressed by
minimizing the peak power of the transmit signal x. Denoting
the number and index set of subcarriers where constellation
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extension is applied as K and I = {i1, i2, . . . , iK}, respec-
tively, and letting X̄ = [Xi1 · · · XiK ]T , the PAPR-reduction
problem can be formulated as

minimize
X̄

max
0≤n≤N−1

∣∣∣∣∣
N−1∑

k=0

Xke
j2πkn

N

∣∣∣∣∣ (4a)

subject to: Xk ∈ {X0
k , X1

k} for k ∈ I (4b)

If we let

Yk =
X0

k + X1
k

2
and Zk =

X0
k −X1

k

2
for k ∈ I (5a)

then we have

X0
k = Yk + Zk and X1

k = Yk − Zk for k ∈ I (5b)

and the problem in (4) can be reorganized as

minimize
s

max
0≤n≤N−1

∣∣∣∣∣∣

N−1∑

k=0, k/∈I

Xke
j2πkn

N

+
K∑

k=1

Yik
e

j2πikn

N +
K∑

k=1

skZik
e

j2πikn

N

∣∣∣∣∣ (6a)

subject to: sk ∈ {1,−1} for k = 1, . . . , K (6b)

where vector s = [s1 · · · sK ]T is referred to as the
sign vector. The data sets involved in (6) are complex-valued.
If we define

cn =





Re

[
N−1∑

k=0,k/∈I

Xke
j2πkn

N

+
K∑

k=1

Yik
e

j2πikn

N

]
0 ≤ n ≤ N − 1

Im

[
N−1∑

k=0,k/∈I

Xke
j2πk(n−N)

N

+
K∑

k=1

Yik
e

j2πik(n−N)
N

]
N ≤ n ≤ 2N − 1

(7a)

and

dnk =





Re
[
Zik

e
j2πikn

N

]
0 ≤ n ≤ N − 1

Im
[
Zik

e
j2πik(n−N)

N

]
N ≤ n ≤ 2N − 1

(7b)

where Re(·) and Im(·) represent the real and imaginary
components of the variable, respectively, then the objective
function in (6) can be written as

∣∣∣∣∣cn +
K∑

k=1

skdnk + jcn+N + j

K∑

k=1

skdn+N,k

∣∣∣∣∣
and the problem in (6) can be relaxed to

minimize
s

max
0≤n≤2N−1

∣∣∣∣∣cn +
K∑

k=1

skdnk

∣∣∣∣∣ (8a)

subject to: sk ∈ {1,−1} for k = 1, . . . , K (8b)

where the data sets {cn} and {dnk} are real-valued. The
relationship between the solutions of the problems in (6)
and (8) can be described as follows. If s̃ is the solution of

the problem in (6), ñ is the index n at which the maxi-
mum of

∣∣∣cn +
∑K

k=1 s̃kdnk + jcn+N + j
∑K

k=1 s̃kdn+N,k

∣∣∣ is
achieved, s? is the solution of the problem in (8), n? is
the index n at which the maximum of

∣∣∣cn +
∑K

k=1 s?
kdnk

∣∣∣
is achieved, then it can be shown that

∣∣∣∣∣cn? +
K∑

k=1

s?
kdn?k

∣∣∣∣∣

≤
∣∣∣∣∣cn +

K∑

k=1

s̃kdnk + jcn+N + j

K∑

k=1

s̃kdn+N,k

∣∣∣∣∣

≤
√

2

∣∣∣∣∣cn? +
K∑

k=1

s?
kdn?k

∣∣∣∣∣ (9)

It follows from (9) that the solution of the problem in (8) can
be regarded as a good approximation of the solution of the
problem in (6). For this reason, a good suboptimal solution
of the PAPR-reduction problem at hand can be obtained by
solving the problem in (8) instead of that in (6).

C. A PAPR-Reduction Algorithm

The minimax optimization problem in (8) is an integer pro-
gramming problem which can be solved by using the method
of conditional probability [29][30] and a de-randomization
algorithm based on the method of conditional probability will
now be proposed. As will be shown, by applying the Chernoff
bound to estimate the conditional probability involved and then
replacing the many hyperbolic cosine functions produced by
the Chernoff-bound estimate with a tight polynomial upper
bound, a low computational complexity can be achieved.

1) Chernoff-Bound Based De-Randomization Algorithm: In
this subsection, the main results of the Chernoff-bound based
de-randomization algorithm proposed in [32] are sketched.
Consider sign vector s = [s1 · · · sK ] where s1, . . . , sK are
treated as random variables that can assume the values of
1 or −1 with equal probability. Let Aλ

n be the event that∣∣∣cn +
∑K

k=1 dnksk

∣∣∣ ≥ λ and Pr
(
Aλ

n

)
be the probability that

event Aλ
n occurs. Let us assume that λ is chosen such that

2N−1∑
n=0

Pr
(
Aλ

n

)
< 1 (10)

If the first component of the optimal sign vector is taken to
be s?

1 = 1,1 then a suboptimal sign vector s? can be obtained
sequentially as

s?
j = arg

[
min

sj∈{1,−1}

2N−1∑
n=0

Pr
(
Aλ

n|s?
1, . . . , s?

j−1, sj

)
]

(11)

for j = 2, . . . , K. It can be shown that the sign vector s? =
[s?

1 · · · s?
K ] obtained using (11) can be regarded as a suboptimal

solution for which the objective function in the problem in (8)
is guaranteed to be smaller than λ.

1Strictly speaking, the value of s1 must be chosen from the set of
{-1,1}. Different values of s1 yield different sign vectors that result in
different performance. However, simulations show that the results achieved
with different values of s1 are very close to one another. Therefore, s1 is
assumed to be equal to one hereafter.
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Since numerical evaluation of the conditional probability
is often difficult, an upper bound Un (λ, s1, . . . , sj) was
introduced in [32] for the conditional probability, known as
pessimistic estimator [30], such that

Pr
(
Aλ

n|s1, . . . , sj

) ≤ Un (λ, s1, . . . , sj) (12a)

for j = 1, . . . , K, where the conditions

min
sj∈{1,−1}

2N−1∑
n=0

Un (λ, s1, . . . , sj−1, sj)

≤
2N−1∑
n=0

Un (λ, s1, . . . , sj−1) (12b)

and
2N−1∑
n=0

Un (λ) < 1 (12c)

are satisfied. In effect, working with a pessimistic estimator
Un (λ, s1, . . . , sj) satisfying the conditions in (12a)-(12c), a
suboptimal sign vector s? can be determined sequentially as

s?
j = −sign

[
2N−1∑
n=0

Un

(
λ, s?

1, . . . , s?
j−1, 1

)

−
2N−1∑
n=0

Un

(
λ, s?

1, . . . , s?
j−1, −1

)
]

(13)

for j = 2, . . . , K.
By applying the Chernoff bound [33]

Pr(Y ≥ δ) ≤ e−γδE(eγY ) (14)

to the conditional probability

Pr

(∣∣∣∣∣cn +
K∑

k=1

skdnk

∣∣∣∣∣ ≥ λ | s1, . . . , sj

)

= Pr




K∑

k=j+1

skdnk ≥ λ− cn −
j∑

k=1

skdnk




+Pr


−

K∑

k=j+1

skdnk ≥ λ + cn +
j∑

k=1

skdnk


 (15)

we obtain

Pr

(∣∣∣∣∣cn +
K∑

k=1

skdnk

∣∣∣∣∣ ≥ λ | s1, . . . , sj

)
≤ 2e−γλ

cosh

(
γcn + γ

j∑

k=1

skdnk

)
N∏

k=j+1

cosh(γdnk) (16)

Based on the above analysis, a pessimistic estimator can be
derived as

Un (λ?, s1, . . . , sj) = 2e−γ?λ?

cosh

(
γ?cn + γ?

j∑

k=1

skdnk

)
N∏

k=j+1

cosh (γ?dnk) (17a)

for j = 1, . . . , K, where

ε = max
0≤n≤2N−1

(
c2
n +

K∑

k=1

d2
nk

)
, λ? =

√
2ε log(4N),

γ? = λ?/ε (17b)

2) Polynomial Bound for Hyperbolic Cosine: The most
computation-intensive operation in the evaluation of upper
bound Up (λ?, s1, . . . , sj) in (17a) is the evaluation of the
hyperbolic cosine functions involved. In what follows, we
derive a polynomial upper bound for the hyperbolic cosine
function on a given interval that will eventually lead to a
polynomial-bound based pessimistic estimator.

It follows from (16) that

Pr

(
γ

∣∣∣∣∣cn +
K∑

k=1

skdnk

∣∣∣∣∣ ≥ γλ

)
≤ 2e−γλ

max
n=0, ..., 2N−1

[
cosh (γcn)

K∏

k=1

cosh(γdnk)

]
(18)

For example, for N = 64 we have γ = 20 and γλ = 11. In
such a case, (18) becomes

Pr

(
γ

∣∣∣∣∣cn +
K∑

k=1

skdnk

∣∣∣∣∣ ≥ γλ

)
≤ Pn (19a)

where

Pn = 2e−11 max
n=0, ..., 2N−1

[
cosh (γcn)

K∏

k=1

cosh(γdnk)

]

= 0.0025 (19b)

We stress that the bound derived in (19) is not tight and com-
puter simulations have indicated that the actual interval into
which the value of γ

∣∣∣cn +
∑K

k=1 skdnk

∣∣∣ falls is considerably
smaller than [0, 11]. Based on these observations, we seek a
polynomial upper bound g(x) = 1+ k1x

2 + k2x
4 for cosh(x)

with 0 ≤ x ≤ M , i.e.,

cosh(x) ≤ 1 + k1x
2 + k2x

4 for 0 ≤ x ≤ M (20)

If we define

Gn (λ, s1, . . . , sj) = 2e−γλg

(
γcn + γ

j∑

k=1

skdnk

)

K∏

k=j+1

g (γdnk) (21)

then (17), (20), and (21) imply that

Pr
(
Aλ

n|s1, . . . , sj

) ≤ Gn (λ, s1, . . . , sj) (22)

which is the condition in (12a) for Gn (λ, s1, . . . , sj). In
addition, if the polynomial g(x) satisfies the inequality

g(a)g(b) ≥ g(a + b) + g(a− b)
2

(23)
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for any a and b, then we have
2N−1∑
n=0

Gn (λ, s1, . . . , sj−1)

≥ min
sj∈{1,−1}

2N−1∑
n=0

Gn (λ, s1, . . . , sj−1, sj) (24)

which is the condition in (12b) for Gn (λ, s1, . . . , sj). It can
be verified that polynomial bound g(x) satisfies (23) if its
coefficients are chosen such that

k2
1 − 6k2 ≥ 0 (25)

To identify the optimal values of parameters k1 and k2, we
introduce an upper bound for the difference g(x) − cosh(x)
as

g(x)− cosh(x) ≤ δ for 0 ≤ x ≤ M (26)

and k1 and k2 are determined by minimizing δ subject to the
constraints in (20), (25), (26), and k1 ≥ 0, k2 ≥ 0. The non-
linear constraint in (25) in conjunction with the nonnegativity
constraints k1 ≥ 0 and k2 ≥ 0 defines the shaded region in
Fig. 3. This nonconvex region can be approximated by the
triangular region defined by a tangent line of the parabola
k2 = k2

1/6 and the k1-axis where the triangular region is
convex and can be described by the constraint

ck1

3
− k2 − c2

6
≥ 0 (27)

Replacing the nonlinear constraint in (26) by the linear
constraint in (27), the optimal parameters k1 and k2 for
polynomial g(x) can be determined by solving the linear
programming (LP) problem

minimize δ (28a)
subject to: k1 ≥ 0, k2 ≥ 0, (28b)

ck1

3
− k2 − c2

6
≥ 0 (28c)

k1x
2 + k2x

4 − cosh(x) + 1 ≥ 0
for 0 ≤ x ≤ M (28d)

−k1x
2 − k2x

4 + cosh(x)− 1− δ ≥ 0
for 0 ≤ x ≤ M (28e)

where the parameter vector of the LP problem is [δ k1 k2]
T

and variable x assumes values in interval [0,M ]. For example,
with M = 6 and c = 0.88, solving the LP problem in (28)
gives k1 = 0.8844 and k2 = 0.1303.

For M = 6, it can be shown that if the values of γ and λ
in (21) are chosen such that

ε = max
0≤n≤2N−1

K∑

k=1

(
c2
n + d2

nk

)
, λ? =

√
3.538ε log(4N),

γ? = 0.565λ?/ε (29)

then

Gn (λ?, s1, . . . , sj) = 2e−γ?λ?

g

(
γ?cn + γ?

j∑

k=1

skdnk

)

K∏

k=j+1

g (γ?dnk) (30)

satisfies the condition in (12c) and, therefore,
Gn (λ?, s1, . . . , sj) can be used as a pessimistic estimator.

The polynomial-bound based pessimistic estimator in (30)
can be used in conjunction with (13) to obtain a suboptimal
solution s? for problem (8). Using (30), Eq. (13) becomes

s?
j = −sign

[
2N−1∑
n=0

Gn

(
λ?, s?

1, . . . , s?
j−1, 1

)

−
2N−1∑
n=0

Gn

(
λ?, s?

1, . . . , s?
j−1, −1

)
]

(31)

for j = 2, . . . , K. Using (5b) and (31), the optimized OFDM
symbol X? can be obtained as

X?
k =

{
Xk for k /∈ I
Yk + s?

l Zk for k ∈ I
(32)

where l is the index of element k in set I in the case that
k ∈ I . From (4), (8), and (9), we can write

max
0≤n≤N−1

∣∣∣∣∣
N−1∑

k=0

X?
ke

j2πkn
N

∣∣∣∣∣

2

< 2λ?2

In other words, the peak power of optimized OFDM symbol
X? is guaranteed to be smaller than 2λ?2. An algorithm based
on the above solution method is summarized in Table 1.

3) Computational Complexity: The computation required
by (31) in the proposed algorithm entails 12NK real mul-
tiplications, 6NK real additions, and K sign function eval-
uations. Note that most of the multiplications involved in
these algorithms entail multiplication by a constant, which can
be carried out efficiently [34]-[35]. Consequently, the actual
computational efficiency of the proposed algorithms is much
better than the above numbers would suggest, which makes a
fair comparison with other algorithms a somewhat complicated
matter. To avoid this difficulty, the computational complexity
of the various PAPR algorithms was measured in terms of the
CPU time required by the simulations described in Sec. IV.

D. Enhancement for the Proposed Algorithms

The performance of the proposed algorithm can be improved
further through several enhancement techniques as described
below.

1) Selective Rotations: The objective function in (6a) re-
mains unchanged if all complex-valued terms are rotated by
an angle θ since
∣∣∣∣∣∣

N−1∑

k=0,k/∈I

Xke
j2πkn

N +
K∑

k=1

(Yik
+ skZik

) e
j2πikn

N

∣∣∣∣∣∣

=

∣∣∣∣∣∣
ejθ




N−1∑

k=0,k/∈I

Xke
j2πkn

N +
K∑

k=1

(Yik
+ skZik

) e
j2πikn

N




∣∣∣∣∣∣
On the other hand, this rotation leads to a different set of
dnk which can be obtained using (7) with Xk, Yik

, and Zik

replaced by ejθXk, ejθYik
, and ejθZik

, respectively. If we
use the parameters dnk generated by R different rotation
angles θ0, θ1, . . . , θR−1 with θ0 = 0, then we can obtain



6

R suboptimal sign vectors s?
0, s?

1, . . . , s?
R−1 from which

the best sign vector can be identified by comparing the
performance of the corresponding suboptimal solutions. Since
the set of rotation angles includes θ = 0, the suboptimal
solution obtained using the SR algorithm is always superior
to the suboptimal solution of the de-randomization algorithm
described in Table 1. Note that for any given sign vector, the
transmit signal for each subcarrier satisfies the constellation
extension scheme in Fig. 2b and, therefore, no side information
needs to be transmitted along with the useful information.

2) Coordinate Descent Optimization: If we define

f(s) = max
0≤n≤2N−1

fn(s) (33a)

where

fn(s) =

∣∣∣∣∣cn +
K∑

k=1

skdnk

∣∣∣∣∣ for n = 0, . . . , 2N − 1 (33b)

with s = [s1 · · · sK ] and sk ∈ [1,−1] for k = 1, . . . , K, then
the idea of coordinate descent optimization [36] can be applied
to reduce the value of f(s) iteratively as follows. Suppose only
one element of the sign vector s is allowed to switch at each
iteration. First, the value of fn(s) after the sign switch of
element skc can be obtained as

fn(s, kc) =

∣∣∣∣∣∣
cn +

K∑

k=1,k 6=kc

skdnk − skcdnkc

∣∣∣∣∣∣
(34)

for n = 0, . . . , 2N − 1 and kc = 1, . . . , K. Next, the change
in the value of f can be obtained as

∆f (kc) = f(s)− max
0≤n≤2N−1

fn(s, kc) (35)

for kc = 1, . . . , K. If we define

k̂c = arg
[

max
1≤kc≤K

∆f (kc)
]

(36)

and ∆f (k̂c) ≤ ε, where ε is a predefined tolerance, then a local
minimum of function f (s) is achieved and the algorithm ter-
minates. Otherwise, the steepest descent direction for function
f(s) can be found as −sk̂c

. Therefore, the sign vector can be
updated as s = [s1 · · · sk̂c−1 − sk̂c

sk̂c+1 · · · sK ]. Since
the value of f(s) is constantly reduced at each iteration, the
CDO technique can be applied to enhance the performance
of the de-randomization algorithm proposed in Sec. III. C.3.
A step-by-step description of the CDO algorithm is given in
Table 2.

Note that the CDO algorithm can be generalized by allowing
multiple elements of the sign vector s to change in each
iteration. This technique tends to improve the performance at
the cost of an increased computational complexity.

3) Improved Performance Using the SM Algorithm: In
the proposed algorithm, only one data set has been utilized
for PAPR reduction. The performance can be improved by
combining the proposed algorithm with the SM algorithm as
illustrated in Fig. 4. First, multiple candidate data sets are
generated at the transmitter. Second, for each of the data sets
the proposed de-randomization algorithm is applied and the
one with the least PAPR is selected. Third, the proposed SR

and CDO algorithms are applied to the data set selected in the
second stage for further PAPR reduction.

IV. SIMULATIONS

The proposed algorithm was applied to a system with 64
subcarriers and the PAPR-reduction performance was eval-
uated and compared with that of the SM and SCE algo-
rithms proposed in [18] and [27], respectively. The signal
was oversampled by a factor of 2 using zero padding in
the frequency domain before the application of the PAPR-
reduction algorithms. In order to approximate the analog signal
accurately [37]-[32], the sampling rate was further increased
by a factor of 4 by using a root-raised cosine (RRC) filter
with a rolloff factor of 0.12. The performance was evaluated
by measuring the output signal of the RRC filter. For the SM
algorithm, the number of candidate sequences is denoted as
U . For the proposed SR algorithm, the number of rotations
is denoted as R. The rotation angle θ was set to the values
0, π/R, . . . , (R−2)π/R, (R−1)π/R. For the proposed CDO
algorithm, the number of elements of the sign vector that can
be changed at each optimization iteration is denoted as Bit.
Example 1: The constellation extension scheme adopted for the
proposed algorithm is shown in Fig. 2b where only exterior
points are used for PAPR reduction. Satistically, the number of
subcarriers where constellation extenstion is applicable is three
quarters the number of subcarriers, namely, K

.= 3
4N . The

clipping probabilities versus various power threshold values
are plotted as the solid curves in Fig. 5. For the SM algo-
rithm, a 16-QAM constellation was adopted. For the sake of
comparison, the clipping probabilities obtained using the SM
algorithm and for the OFDM signal with no PAPR reduction
are plotted in the same figure as dot-dashed curves. First, it
can be observed from Fig. 5 that by combining the proposed
algorithm with the SR algorithm, a significant PAPR reduction
can be achieved. For example, for a clipping probability of
10−3, a 1.4- and 2.8-dB improvement can be obtained by using
the proposed algorithm with R = 1 and R = 4, respectively,
over the OFDM signal with no PAPR reduction. Note that
the power increase associated with the proposed algorithm is
approximately 0.41 dB above the average power of the OFDM
signal with no PAPR reduction. Second, it can be observed
from Fig. 6 that by combining the proposed algorithm with
the CDO algorithm, significant performance improvement can
be achieved relative to that achieved with the SM algorithm.
For example, by using the proposed algorithm with CDO and
assuming a clipping probability of 10−3, an improvement of
0.9 dB can be achieved relative to the performance achieved
with the SM algorithm with U = 16. Note that, in such a
case, the power increase with respect to the average power is
approximately 0.64 dB. Third, it can be observed from Fig. 7
that the performance can be further improved by combining
the proposed algorithm with the SM algorithm. For example,
by using the combined algorithm with U = 4, R = 2, Bit = 1,
a 1.4-dB improvement can be achieved over the SM algorithm
with U = 16.
Example 2: The performance of the algorithms using various
constellation extension schemes was compared and the results
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are plotted in Fig. 8. The clipping probabilities for systems
using the schemes in Fig. 2b and Fig. 9 [27] versus various
power threshold values are plotted in Fig. 8 as dashed and
solid curves, respectively. It can be observed that significant
improvement can be achieved by using the proposed algorithm
with the scheme in Fig. 2b over the SCE algorithms with the
scheme in Fig. 9.

The proposed and the SCE algorithms apply constellation
extension as illustrated in Figs. 2(b) and 9, respectively, to
reduce the PAPR. As can be seen in Figs. 9 and 2(a), the
size of the constellation in Fig. 9 is twice that of the 16-
QAM constellation in Fig. 2(a). For both of the constellation
extension schemes shown in Figs. 2(b) and 9, one constellation
point represents 4 information bits. Therefore, an OFDM
system using the proposed algorithm with the constellation in
Fig. 2(b) has the same effective transmission rate as a system
using the SCE algorithm with the constellation in Fig. 9, that
is, 4 bits per subcarrier.

The BER performance of OFDM systems using the constel-
lation schemes in Figs. (2b) and 9 was investigated assuming
an AWGN channel. In order to achieve comparable BER
performance, the minimum distances between the nearest
constellation points for the constellations in Figs. 2(b) and
9 should be equal. In such a case, the average transmit power
achieved with the SCE algorithm and the constellation in
Fig. 9 is 3 dB higher than that achieved with the 16-QAM
constellation. This increase is much higher than that achieved
with the scheme in Fig. 2b, which is about 0.64 dB.

The computational complexities of the proposed algorithm
is compared with those of existing algorithms in Table 3 where
the performance of each algorithm is quantified in terms of its
PAPR-reduction improvement in dB over the OFDM signal
with no PAPR reduction for a clipping probability of 10−3.
The computational complexity of the algorithms is measured
in terms of the ratio of the CPU time required for each algo-
rithm to that of the SM algorithm with U = 16, for which the
CPU time was normalized to unity. It can be observed that by
combining the proposed algorithm with the SR, CDO, and SM
algorithms, improved performance can be achieved with less
computation with respect to the performance and computation
required by some existing PAPR-reduction algorithms.

From Table 3, the following conclusions can be drawn:

• By combining the proposed algorithm with the SR, CDO,
and SM algorithms, improved performance and reduced
computation can be achieved with respect to those of the
SM algorithm in [18].

• The proposed algorithm offers a tradeoff between per-
formance and computational complexity. For example, if
the computational resources available are very limited,
then the performance offered by the proposed algo-
rithm is marginal; if additional computation resources are
available, then improved performance can be achieved
by using a combination of the proposed algorithm, SR
algorithm, or the CDO algorithm; if additional side infor-
mation is available, then the performance can be further
improved by also using the SM algorithm.

V. CONCLUSIONS

A new PAPR-reduction algorithm for OFDM systems via
constellation extension has been proposed based on a con-
ditional probability method whereby the evaluation of the
hyperbolic cosine functions involved in the Chernoff bound of
the conditional probability is replaced by a tight polynomial
bound that leads to reduced computational complexity. The
performance of the algorithm can be significantly improved by
incorporating the selective rotation technique or by combining
the algorithm with the coordinate descent optimization and
selective mapping algorithms. Simulations have demonstrated
that the enhanced algorithm outperforms the selective mapping
algorithm in [18] and the symmetric constellation extension al-
gorithm in [27] in terms of PAPR reduction and computational
complexity.
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Fig. 1. An OFDM transmitter.

TABLE I
THE PROPOSED ALGORITHM

Step 1
Input the OFDM symbol X = [X1 · · · XN ].

Step 2
For k ∈ I , compute Yk and Zk using (5a).
Compute cn and dnk using (7).
Evaluate parameters ε, λ?, and γ? using (30).

Step 3
Determine the sign vector s? = [s?

1 · · · s?
K ] with s?

1 = 1 using (31).
The optimized OFDM symbol X? can be obtained using (32).
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TABLE II
COORDINATE DESCENT OPTIMIZATION ALGORITHM

Step 1
Set the tolerance ε = 0.01.
Input cn and dnk using (7).
Input the sign vector s = s?, where s? is obtained by using (31).

Step 2
Compute f(s) using (33a).
Compute fn(s, kc) using (34).
Compute ∆f (kc) using (35).
Determine k̂c using (36).

Step 3
If ∆f (k̂c) ≤ ε, then output sign vector s and algorithm terminates.
Otherwise, update sign vector as

s =
[
s1 · · · sk̂c−1 − sk̂c

sk̂c+1 · · · sK

]
and go to Step 2.



9

TABLE III
PERFORMANCE AND COMPLEXITY OF PAPR-REDUCTION ALGORITHMS

Algorithms SM Proposed PAPR-Reduction Algorithm
Algorithm No SM (U = 1) No SM (U = 1) SM (U = 4)

No CDO (Bit = 0) CDO (Bit = 1) CDO (Bit = 1)
U = 16 SR SR SR SR SR SR

(R = 1) (R = 4) (R = 1) (R = 4) (R = 1) (R = 2)
Performance 3.4 1.45 2.85 3.8 4.4 4.8 5
Gain (dB)

Normalized 1 0.10 0.45 0.41 1.65 0.83 1.25
CPU Time
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