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Abstract

In this paper, we investigate several efficient interpolation techniques for pilot symbol assisted

channel estimation in OFDM. The interpolation methods studied include two dimensional (2-D) separa-

ble lowpass sinc interpolator with Kaiser window, 2-D separable Deslauriers-Dubuc (DD) interpolation

and 2-D discrete Fourier transform (DFT) based lowpass interpolation. The performances of these

interpolators are compared with those of the well known minimum mean-square error (MMSE) 2-D

separable Wiener filter and the perfect channel state information. It is shown that the Kaiser window

based interpolator and DD interpolation are simple, robust, and outperform the 2-D DFT based lowpass

interpolation as well as several existing interpolation methods proposed in the literature. These two

schemes are suitable candidates for use in 1-D and 2-D channel estimation.

Index Terms

OFDM, pilot symbol assisted channel estimation, Deslauriers-Dubuc (DD) interpolation, sinc inter-

polator, Kaiser window, two-dimensional (2-D) interpolation

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a very promising technology for the

long-term evolution of 3G wireless cellular systems [1] and is currently used in several broadcast

systems (e.g., [2]- [3]). Moreover, it is well known that the performance of an OFDM system

can be greatly influenced by the accuracy of the channel estimation. Consequently, there is,

currently, in the cellular communication industry great interest in channel estimation techniques

that are compatible with OFDM systems. One promising technique is pilot symbol assisted

channel estimation, because of its simple implementation and accurate and robust performance.

This scheme inserts known pilot symbols periodically both in the time and frequency dimension

to track the time variation and frequency selectivity of the channel. At the receiver, the channel

complex gain at the pilot symbol positions can be easily obtained from the received signal

and the known pilot symbols. Interpolation is then applied to derive the estimation of the

channel knowledge at data symbol positions. Pilot patterns and interpolation methods have been
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extensively studied in the literature. Two types of pilot patterns, namely, block pilots [4] and

comb pilots, have been widely used [5] (and the references therein), while other two-dimensional

(2-D) pilot patterns were discussed in [6], [7]. Comb pilots based channel estimation and time

and frequency domain scattered pilots usually perform better than block type pilot pattern in

fast fading channels in tracking the time variation of the channel. Five different pilot patterns

were compared in [8], one of which was a novel channel statistics dependent design that leads

to reduced bit error rate or the number of pilot symbols required.

The minimum mean-square error (MMSE) channel estimation for block pilots was studied

in [4]. The 2-D optimum wiener filtering for pilot symbol assisted OFDM channel estimation

was first derived in [9]. Since the optimum Wiener filter requires the channel statistics, a robust

interpolator was proposed in [7], which is a diamond shape lowpass filter implemented in the

transform domain by 2-D fast Fourier transform (FFT) and inverse FFT (IFFT). A diamond pilot

pattern was used in [7]. It was first proposed in [10] to use discrete Fourier transform (DFT),

zero-padding and inverse DFT (IDFT) for lowpass interpolation in the transform domain. Linear

interpolation, second-order polynomial interpolation, spline, transform domain interpolation and

lowpass interpolation using MATLAB built-in function interp for comb pilots were investigated in

[5]. A novel coded decision directed demodulation of coherent OFDM was proposed in [11] and

an orthogonal coded pilot OFDM with maximum likelihood sequence estimation was investigated

in [12]. Recently, optimum pilot patterns for linear interpolators were derived analytically in

[13], and performance analysis and design of the linear interpolator followed by a 2-D moving

average finite impulse response (MA FIR) filter with rectangular pilot grid was presented in

[14]. Separating smoothing and interpolation in the channel estimation was another approach

addressed in [15] and [16], where comb type pilot sub-carrier arrangement was adopted. A low

rank minimum mean-square error algorithm was employed for smoothing, followed by linear

and second order polynomial interpolation used in [15] while a mismatched Wiener interpolation

filter used in [16].

May 15, 2006 DRAFT



3

In this paper, three new interpolation techniques for OFDM channel estimation are proposed.

These include a Kaiser window based 2-D sinc interpolator, a 2-D Deslauriers-Dubuc (DD)

interpolation method, and a 2-D DFT lowpass interpolation method. Interpolation principle of

each proposed method is also presented along with its relevant properties and implementation

consideration. The rest of the paper is organized as follows. Section II presents the OFDM

system model with pilot symbol assisted channel estimation. Section III concentrates on the

three new interpolation techniques and the 2-D MMSE interpolation filter. Section IV summarizes

simulation results and Section V presents a comparison study on the performance and complexity

of the four interpolation methods. Finally, conclusions are given in Section VI.

II. SYSTEM MODEL

In an OFDM system, information data are transmitted in blocks. Denote the k-th data in the

n-th block by x[n, k], where x[n, k] ∈ M is from a 2-D M -ary signaling set M with average

energy Es in each dimension, 0 ≤ k ≤ K − 1, 0 ≤ n ≤ N − 1, K is the total number of

sub-carriers and N is the total number of data blocks. Denote pilot symbols inserted in both

the time and frequency dimension by x[np, kq]. In this paper, we consider rectangular grid of

the pilot symbols since it is widely used in practical implementation. For a rectangular grid,

np = pdt and kq = qdf , where dt and df are the pilot intervals in terms of number of symbols

in the time and frequency domain, respectively, 0 ≤ p ≤ bN
dt
c − 1, 0 ≤ q ≤ bK

df
c − 1, and b·c is

the floor operator.

The pilot inserted OFDM symbol block is then passed through an inverse Fast Fourier

transform, parallel to serially converted and added with a guard interval in the form of cyclic

prefix (CP) before transmitting to a wireless channel. Consider a time varying frequency selective

channel h(t, τ) given by

h(t, τ) =
L∑

i=1

αi(t)δ(τ − τi) (1)

where αi(t) and τi are the time varying fading gain and delay of the i-th path, respectively. The

path amplitude αi(t) is a wide sense stationary complex random process and is modeled as a zero
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mean complex Gaussian process in this paper. The fading gains at different paths are assumed

independent. Parameter L is the total number of resolvable multi-paths of the channel. Assume

that the channel fading at each path is constant within one OFDM symbol with block length

T but changes from block to block. The autocorrelation function of each path depends on the

normalized maximum Doppler frequency fDT . For 2-D isotropic scattering, the autocorrelation

function of the i-th path can be expressed as

ri(∆t) = E[α∗i (t)αi(t + ∆t)] = σ2
i J0(2πfD∆t) = σ2

i rt(∆t) (2)

where σ2
i is the variance of the path amplitude and J0(·) is the zero-th order Bessel function of

the first kind. Without loss of generality, we assume
∑L

i=1 σ2
i = 1.

The channel frequency response at time t is given by

H(t, f) =

∫ ∞

−∞
h(t, τ)e−j2πfτdτ =

L∑
i=1

αi(t)e
−j2πfτi . (3)

Sampling (3) at t = nT and f = k∆f where ∆f = 1
T

is the tone spacing, we have the channel

frequency response at the k-th tone of the n-th OFDM block given by

H[n, k] := H(nT, k∆f) =
L∑

i=1

αi(nT )e−j2πk∆fτi . (4)

Therefore, the auto-correlation function of the frequency response at different blocks and tones

is given by [7]

rH(m, l) := E{H[n + m, k + l]H∗[n, k]} = rt(mT )rf (l∆f) (5)

where rt(mT ) = J0(2πmfDT ) is the time correlation as given in (2) and

rf (l∆f) =
L∑

i=1

σ2
i e
−j2πl∆fτi . (6)

The received signal at the k-th tone of the n-th OFDM block after cyclic prefix removal and

fast Fourier transform can be expressed as

y[n, k] = H[n, k]x[n, k] + z[n, k] (7)
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where z[n, k] is the zero-mean complex additive white Gaussian noise (AWGN) sample at the

k-th tone of the n-th block with variance N0 in its real and imaginary part, respectively. In order

to estimate H[n, k], we first obtain the channel estimate at pilot positions by

H̃p[p, q] =
y[np, kq]

x[np, kq]
= H[np, kq] +

z[np, kq]

x[np, kq]
. (8)

Since the time varying frequency-selective fading channel is bandlimited to the maximum Doppler

frequency fDT and has a maximum normalized path delay of τL∆f , the pilot symbol insertion

rate 1/dt in the time dimension should satisfy 1/dt ≥ 2fDT . Similarly, the pilot insertion rate in

the frequency domain should follow 1/df ≥ 2τL∆f . The channel frequency response at non-pilot

positions is now estimated by interpolating the channel estimates at neighboring pilot symbol

positions and can be generally expressed as

Ĥ[n, k] =
∑

p

∑
q

w[n, p; k, q]H̃p[p, q] (9)

where w[n, p; k, q] is a weighting function associated with the particular interpolation method

used. Once the complex channel gains at the k-th tone of the n-th block is estimated, the decision

variable is obtained as

D[n, k] = y[n, k]/Ĥ[n, k] (10)

and D[n, k] is decided as one symbol in the M -ary signaling set using the minimum Euclidean

distance rule.

III. INTERPOLATION METHODS

A number of interpolation methods have been proposed in the literature. The optimum 2-D

Wiener filtering was derived in [9] and it was indicated that the cascade of two 1-D Wiener

filters achieves performance similar to that of the 2-D Wiener filter with negligible degradation

and reduced implementation complexity. A robust interpolator that implements lowpass filtering

in the transform domain using 2-D FFT and IFFT was presented in [7]. Other interpolation

methods, such as linear, quadratic, and spline interpolation [5], linear interpolation plus 2-D

May 15, 2006 DRAFT



6

moving average [14], have also been investigated. In this paper, we propose 2-D lowpass filter

using sinc interpolator with Kaiser window, 2-D Deslauriers-Dubuc interpolation and lowpass

filter using 2-D DFT and IDFT.

A. Lowpass Sinc Interpolator with Kaiser Window

The 1-D sinc interpolator with Kaiser window was extensively studied in [17] for pilot symbol

assisted modulation in frequency flat fading channels. It was shown in [17] that the improved

performance using Kaiser window over fixed window design is due to the flexible window shape

offered by the family of Kaiser window. A detailed procedure on how to determine the various

parameters associated with Kaiser window was given. This 1-D design can be extended to the

2-D sinc interpolator with Kaiser window in a straightforward manner.

If pilot symbols are inserted at higher than Nyquist rate of the channel in both the time

and frequency dimension, an ideal 2-D brick-wall lowpass filter in the transform domain will

reconstruct H[n, k] at non-pilot positions perfectly, if ignoring the noise in the received pilot

symbols. Such ideal lowpass filter would require a sinc interpolator with infinite length in both

time and frequency dimensions. Simply truncating the sinc interpolator to finite length, i.e.,

applying a 2-D rectangular window, introduces large passband and stopband fluctuation. The

sharpness of the transition band is controlled by the interpolator length. Flexible windows such

as Kaiser window provide better performance than fixed window. As detailed in [17], the idea

of the Kaiser window design is to push the transition region of the lowpass filter into the zero

interval of the channel folded power spectrum and lower the passband and stopband fluctuation

in order to minimize the interpolation error caused by the non-ideal lowpass filter. Suppose the

2-D interpolation filter wsk[n, k] has finite number of taps determined by the parameters Mt and

Mf , i.e., −Mtdt ≤ n ≤ Mtdt, −Mfdf ≤ k ≤ Mfdf . For a symbol position [n, k] and given
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pilot insertion rates of dt and df , the channel estimation at symbol [n, k] can be written as

Ĥ[n, k] =
It+Mt∑

p=It−Mt

If+Mf∑
q=If−Mf

wsk[n− np, k − kq]H̃p[p, q]

=
Mtdt∑

u=−Mtdt

Mf df∑

v=−Mf df

wsk[u, v]Ĥp[n− u, k − v], (11a)

Ĥp[n, k] =





H̃p[p, q], n = pdt, k = qdf

0, otherwise
(11b)

where It = b n
dt
c and If = b k

df
c, and Ĥp[n, k] is formed by the channel estimation at pilot

positions and zero padded at non-pilot positions. The 2-D separable sinc interpolator is given by

wsk[n− np, k − kq] = g[n− pdt, k − qdf ]
dtdf

HtHf

sinc
(

n− pdt

Ht

)
sinc

(
k − qdf

Hf

)
(12)

where

dt ≤ Ht ≤ 1

2fDT

df ≤ Hf ≤ 1

2∆fτL

(13)

is a result of the Nyquist sampling theorem. Parameters Ht and Hf determine the sinc lowpass

filter cut-off frequencies as fct = 1
2HtT

and fcf = 1
2Hf∆f

, respectively [17]. Given dt, df , Mt,

Mf , Ht and Hf , the 2-D Kaiser window function g[n, k] is given by

g[n, k] =

I0

(
βt

√
1−

(
n
αt

)2
)

I0(βt)
·
I0

(
βf

√
1−

(
k

αf

)2
)

I0(βf )
, −αt ≤ n ≤ αt,−αf ≤ k ≤ αf (14)

where αt = Mtdt, αf = Mfdf and the window size is 2Mtdt + 1 by 2Mfdf + 1. The shape

factors βt and βf are functions of the passband/stopband peak fluctuations At and Af as given

by [17, eq. (19)]. Kaiser window with a different shape factor allows the tradeoff among the

interpolation order Mt, the transition bandwidth, and the passband/stopband peak fluctuation At,

given the pilot interval dt. The same flexibility exists in the frequency dimension interpolation.

Here the peak fluctuations At and Af are chosen to yield the transition band falling into the
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zero interval of the channel folded power spectrum for given filter lengths, in order to minimize

the interpolation error. Following the steps in [17, eqs. (17)-(20)], we have

At =
2.285 · 2π(1− 2fDTHt)2Mtdt

Ht

+ 8

Af =
2.285 · 2π(1− 2∆fτLHf )2Mfdf

Hf

+ 8. (15)

Note that larger Ht and Hf lead to smaller cutoff frequencies, and as a result, more noise

will be filtered out. This mainly improves the performance in the low to medium range of

signal-to-noise ratio (SNR). On the other hand, a smaller cutoff frequency means less transition

band allowed, and to meet such requirement, higher interpolation order Mt and Mf would be

needed. Otherwise the designed Kaiser window will have larger peak fluctuation At and Af and

hence more interpolation error that leads to error floors at high SNRs. The relationship between

parameters Mt (or Mf ) and Ht (or Hf ) can be best explained by [17, Fig. 2].

The 2-D separable lowpass sinc interpolator is essentially the cascade of two 1-D sinc in-

terpolators. Its most efficient implementation is to perform the interpolation of the channel

estimation at pilot positions in one dimension and then interpolate in the other dimension. The

sinc interpolator is a real time algorithm, which means when one additional pilot symbol is

received, a rectangle of dt × df data symbols is interpolated. In an OFDM receiver where an

OFDM symbol block is processed as a whole, the interpolation in the frequency dimension can

be operated on the total available pilot symbols in that block.

The mean-squared error (MSE) of the 2-D linear interpolator is derived in the Appendix.

B. Deslauriers-Dubuc Interpolation

1) One-dimensional DD interpolation: Deslauriers and Dubuc introduced a multi-scale refine-

ment technique for smooth interpolation of a given set of uniformly spaced data in [18], [19].

The algorithm first finds the midpoint value of each interval by fitting a low order (D = 2L+1)

local polynomial using D+1 closest data (L+1 data to the left of the midpoint to be interpolated

and L + 1 data to the right), where D = 3, 5, 7, . . . is always an odd integer. By repeating this
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algorithm again and again, each time doubling the number of data points or nodes by midpoint

interpolation, eventually a dense set of interpolated data points are obtained. As can be seen from

this procedure, the number of interpolated data between two originally given data is 2J−1, where

J denotes the interpolation density. Since the interpolation of one midpoint involves only D +1

closest data from the previous iteration, DD interpolation is a local algorithm that leads to smooth

results.

Denote a given data set {f(k∆x)} by {fk}, where ∆x is the uniform distance between data,

k ∈ Z . Without loss of generality, we treat the input data set {fk} as defined at integers.

Suppose we want to interpolate 2J points for each interval, i.e., to insert 2J − 1 points between

two successive data. The interpolated data are at positions k + n/2J , n = 1, . . . , 2J − 1. The

aforementioned iterative process can be implemented in a simple form by the interpolating

function as [20]

f̃(x) =
∑

k∈Z
fkφD(x− k) (16)

where φD(x) is called the fundamental function or interpolating function of the DD interpolation

scheme. Eq. (16) is simply a linear combination of the weighted and shifted fundamental function.

In DD interpolation, the fundamental function φD(x) is defined iteratively at any rational

number whose denominator is an integer power of base b. Here the subscript D indicates the

degree of the local polynomial used in the iteration process. For practical purposes, the most

useful base is b = 2 [20], which is used in our problem formulation. In this case, the generation

of the D-th order local polynomial based fundamental function φD(x) with density J starts with

the Kronecker sequence {φD(k), k ∈ Z}, which assumes φD(0) = 1 and φD(k) = 0 for all

nonzero integer k. The DD refinement then proceeds iteratively as follows: Let j = 0, D be an

odd positive integer, and L be the integer such that D = 2L + 1. Given the values of φD(x) at

{(k − L)/2j, . . . , (k + L + 1)/2j}, the values of φD(x) at (k + 0.5)/2j is determined by fitting

a D-th order polynomial to the above data set. The iteration is supposed to be carried out for

all integers k. However, since the iteration starts with the Kronecker sequence, one needs to do
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no more than L + 1 polynomial fittings. In the next iteration with j = 1, the above steps are

repeated for all integers k, but again only a limited number of polynomial fittings are needed

because only finite number of nonzero φD(k/2j) exist. The iteration continues until j reaches

the given value J . Example plots of the fundamental function φD(x) with different order D and

interpolation density J are given in Fig. 1.

The DD interpolation process defines a unique, uniformly continuous function that actually

belongs to function class Cα with α = α(D) a monotonically increasing function of D [18],

[19]. An important property of the fundamental function φD(x) is that its region of support is

finite and is within the interval [−D, D]. This property becomes transparent when one realizes

that φD(x) may be regarded as the autocorrelation function of the orthogonal Daubechies scaling

function sD(x) of length D + 1 [23]. Since sD(x) is known to have a region support on [0, D],

its autocorrelation function has a region of support on [−D,D]. From this property it follows

that the value of f̃(x) at a given point x depends only on the data samples {fk} that are near

by the point x, and it is the value of D that controls how local this dependence will be.

2) Implementation of DD interpolation: Let φD(x) in (16) be the fundamental function

generated by the DD algorithm using D-th order local polynomial with density J . Denote the

2J − 1 interpolated samples on interval (i− 1, i) by f
(J)
(i−1,i) and the 2J − 1 samples of φD(x) on

interval (k − 1, k) by φ
(J)
D,k. It follows from (16) and the finite region of support property that

the entire block of interpolated data f
(J)
(i−1,i) can be generated as a weighted sum of 2D blocks of

known data {φ(J)
D,k,−D +1 ≤ k ≤ D} with the known signal samples {fi−k,−D +1 ≤ k ≤ D}

as the weights:

f
(J)
(i−1,i) =

D∑

k=−D+1

fi−kφ
(J)
D,k. (17)

Fig. 2 illustrates the formula in (17) with i = 3 and D = 3. If we view each φ
(J)
D,k in (17) as a

column vector with 2J − 1 components, and f
(J)
(i−1,i) as a column vector of the same dimension,

then (17) can be expressed as

f
(J)
(i−1,i) = Φ

(J)
D fD,i (18)
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where matrix Φ
(J)
D = [φ

(J)
D,−D+1,φ

(J)
D,−D+2, · · · ,φ

(J)
D,D] and fD,i = [fi+D−1, fi+D−2, · · · , fi−D]T .

Note that matrix Φ
(J)
D can be readily constructed from φD(x) by dividing it over its region of

support [−D,D] into 2D equal parts (excluding its values at integer points) and put them together

as 2D column vectors. For a given degree D and density J , this data array can be pre-calculated

and stored, and formula (18) in this case serves as the basis for an efficient implementation

scheme that produces interpolated samples block by block as the incoming data sample updates

vector fD,i with index i representing the current time or frequency.

Alternatively, the interpolation can be achieved by inserting 2J − 1 zeros between every two

successive data samples and then convolving the zero-inserted data sequence with φD(x) of

density J .

3) 2-D DD interpolation: The 2-D counterpart of (16) is given by

f̃(t, f) =
∑

k,l∈Z2

fk,lφ2(t− k, f − l) (19)

where {fk,l, (k, l) ∈ Z2} is a 2-D array of data samples and φ2(t, f) is a 2-D fundamental

function satisfying

φ2(t, f) =





1 for(t, f) = (0, 0)

0 for(t, f) = integer pair not equal to (0,0).
(20)

For the sake of implementation efficiency, we consider the separable φ2(t, f) which assumes the

form

φ2(t, f) = φ
(Jt)
Dt

(t)φ
(Jf )
Df

(f) (21)

where φ
(Jt)
Dt

(t) and φ
(Jf )
Df

(f) are 1-D fundamental functions obtained by the DD algorithm with Dt-

th and Df -th local polynomials with density Jt and Jf , respectively. Note that (21) in conjunction

with the finite region of support for the 1-D DD fundamental function implies that φ2(t, f) in (21)

has the finite region of support [−Dt, Dt] × [−Df , Df ]. Applying the 2-D DD interpolation to

the 2-D OFDM channel estimation problem, the channel’s transfer function at the [n, k] position
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is estimated as

Ĥ[n, k] =

If+Df∑
q=If−Df+1

It+Dt∑
p=It−Dt+1

H̃p[p, q]φDt(n/dt − p)φDf
(k/df − q) (22)

where for notation simplicity φDt(t) and φDf
(f) denote φ

(Jt)
Dt

(t) and φ
(Jf )
Df

(f), respectively, and Dt

and Df are the order of the DD interpolation in the time and frequency dimension, respectively.

Note that DD interpolation requires dt = 2Jt and df = 2Jf , where Jt ∈ Z , Jf ∈ Z .

We remark that when the orders Dt and Df and/or density Jt and Jf are different, the two

implementations of (22), i.e.,

Ĥ[n, k] =

If+Df∑
q=If−Df+1

(
It+Dt∑

p=It−Dt+1

H̃p[p, q]φDt(n/dt − p)

)
φDf

(k/df − q) (23)

and

Ĥ[n, k] =
It+Dt∑

p=It−Dt+1




If+Df∑
q=If−Df+1

H̃p[p, q]φDf
(k/df − q)


 φDt(n/dt − p) (24)

will have different complexity. The number of multiplications for producing one interpolating

sample in these two implementations are found to be approximately equal to 2Dt(1 + 4Df/df )

and 2Df (1 + 4Dt/dt), respectively, based on which an efficient implementation scheme can be

chosen.

For true 2-D DD interpolations, the fundamental function φ2(t, f) cannot be separated as the

product of two 1-D fundamental functions. Our derived 2-D non-separable fundamental function

is found to have negligible difference relative to the 2-D separable fundamental function and

the resulting interpolation and error performance are almost identical to that of the separable

2-D interpolation. However, 2-D non-separable DD has much higher complexity. Therefore, 2-D

separable DD interpolation implemented as the cascade of two 1-D interpolation should be used

in practical systems.

C. 2-D DFT Based Lowpass Interpolation

Application of 1-D DFT based lowpass interpolation to the comb pilot case was first investi-

gated in [10]. This technique involves the insertion of a fixed number of zeros into the centre
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of the DFT of the data sequence, followed by inverse DFT of the modified DFT sequence and

scaling. It is essentially a process of zero-padding plus ideal lowpass filtering, and see Sec. 10.3

of [21] for detailed elaboration of this technique.

In an effort to extend the technique to the 2-D case, it is realized that the zero insertion

should be such that pushes the data away from the centre in both dimensions. The proposed

extension can be described as follows. Suppose there are Np ×Kq pilot channel estimates H̃p.

Denote the 2-D DFT of H̃p by V. Now cut V into four blocks: V11 = V(1 : Np+1

2
, 1 : Kq+1

2
),

V12 = V(1 : Np+1

2
, Kq+1

2
+ 1 : Kq), V21 = V(Np+1

2
+ 1 : Np, 1 : Kq+1

2
) and V22 = V(Np+1

2
+ 1 :

Np,
Kq+1

2
+ 1 : Kq), and put these four blocks at the four corners of a dtNp × dfKq matrix

Vy where the rest of the entries are all zero. Finally, take the inverse DFT of Vy to obtain the

interpolated data. The above assumes Np and Kq are odd numbers. If this is not the case, slight

modifications as in the 1-D case detailed in [21] should be adopted. The cut-off frequencies of

this 2-D interpolation are fct = 1
2dtT

and fcf = 1
2df∆f

, respectively.

D. Minimum Mean-Square Error Interpolation

The optimum MMSE interpolation has been well studied in the literature [9], [7]. It was

concluded in [9] that two 1-D Wiener filters, i.e., 2-D separable Wiener filter, achieves neg-

ligible performance degradation to the optimum 2-D non-separable Wiener filter, with much

reduced complexity. The 1-D Wiener filter for interpolating the k-th sub-carrier channel from

its neighboring pilot sub-carriers in the np-th OFDM block is given by

wf [k] = (Rf
HH +

N0

Es

I)−1rf
Hk (25)

where I is the identity matrix, Rf
HH = E[HpkH

H
pk] is the auto-correlation matrix of channel

fadings at pilot sub-carriers with window length M f
s , and the superscript H indicates Hermitian

transpose. The vector rf
Hk = E [HpkH

∗[np, k]] is the cross-correlation between the current symbol

and the channel fadings at pilot sub-carriers. The pilot symbol channel vector Hpk is

Hpk =
[
H[np, (If −M f

1 )df ], H[np, (If −M f
1 + 1)df ], . . . , H[np, (If + M f

2 )df ]
]T

(26)
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where If = b k
df
c, M f

1 = bMf
s −1
2
c and M f

2 = bMf
s

2
c. From (5) and (6), the (u, v)-th element of

Rf
HH is given by

Rf
HH [u, v] =

L∑
i=1

σ2
i e
−j2π(u−v)df∆fτi , 0 ≤ u ≤ M f

s − 1, 0 ≤ v ≤ M f
s − 1 (27)

which is independent of np and k, and

rf
Hk[u] =

L∑
i=1

σ2
i e
−j2π((If−Mf

1 +u)df−k)∆fτi , 0 ≤ u ≤ M f
s − 1. (28)

The channel estimate at [np, k] is then given by

H̃[np, k] = wH
f [k]H̃pk (29)

where H̃pk =
[
H̃p[np, (If −M f

1 )df ], H̃p[np, (If −M f
1 + 1)df ], . . . , H̃p[np, (If + M f

2 )df ]
]T

. Sim-

ilarly, the 1-D Wiener filter for interpolation at the time dimension is given by

wt[n] = (Rt
HH +

N0

Es

I)−1rt
Hn (30)

where Rt
HH = E[HnkH

H
nk], rf

Hn = E [HnkH
∗[n, k]], and

Hnk =
[
H[(It −M t

1)dt, k], H[(It −M t
1 + 1)dt, k], . . . , H[(It + M t

2)dt, k]
]T

. (31)

Moreover, It = b n
dt
c, M t

1 = bMt
s−1
2
c and M t

2 = bMt
s

2
c. From (5), we have

Rt
HH [u, v] = J0(2π|u− v|dtfDT ), 0 ≤ u ≤ M t

s − 1, 0 ≤ v ≤ M t
s − 1 (32)

and

rt
Hn[u] = J0(2π|(It −M t

1 + u)dt − n|fDT ), 0 ≤ u ≤ M t
s − 1. (33)

Finally, the channel estimate at [n, k] is obtained as

Ĥ[n, k] = wH
t [n]H̃nk (34)

where H̃nk =
[
H̃[(It −M t

1)dt, k], H̃[(It −M t
1 + 1)dt, k], . . . , H̃[(It + M t

2)dt, k]
]T

.
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IV. PERFORMANCE EVALUATION

In this section, the four types of interpolation techniques discussed in Section III are simulated

for an OFDM system setup summarized in Table I.The effect of different parameters of each

interpolation method on the performance are investigated in this section.

Before we proceed to the simulation results for channel estimation of OFDM systems, the

performance of pilot symbol assisted 64-QAM in frequency flat Rayleigh fading with fDT = 0.03

is first presented for sinc interpolator with Kaiser window and DD interpolation in Figs. 3 and

4. Note that average energy per bit Eb = Es/6 for 64-QAM. The SNR definition in all figures

is the average energy per bit for both pilot and data symbols, not the effective SNR for data

bits only. It can be seen from Fig. 3 that for dt = 4 and dt = 8, DD interpolation achieves the

same performance as a Kaiser window based sinc interpolator with properly chosen parameters.

The number of pilot symbols involved in the DD interpolator D is equal to that of the Kaiser

window interpolation if pilot symbols are inserted frequently, i.e., dt = 4. When dt = 8, the

order of the DD interpolation should be D = 9 and about twice the Kaiser window interpolation

order Mt = 4. As explained in Section III-A, increasing Kaiser window parameter Ht while

satisfying (13) effectively reduces the bandwidth of the lowpass filter and thus has denoising

effect, but leads to higher interpolation error that may be partially compensated by a larger Mt.

Fig. 3 shows that for the same dt = 4, a larger value of Ht = 11 leads to power savings at the

low to medium range of SNR but higher error floors as SNR increases. It is found in our study

that higher order D in DD interpolation or Mt in the sinc interpolator is required when the pilot

symbols are spaced far apart, or the channel is rapidly varying.

Fig. 4 depicts the bit error rate (BER) of pilot symbol assisted modulation (PSAM) 64-QAM

as a function of interpolation order Mt. For a given SNR and Ht, a larger Mt yields lower

BER. However, increasing Mt beyond certain values no longer leads to BER reduction. This is

because passband and stopband fluctuation can not be completely removed with the increase of

Mt. Since Mt determines the filter length and hence implementation complexity, Mt should not
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be chosen larger than necessary.

The channels used for OFDM simulation are ITU Vehicular A channels [24] and COST 259

typical urban channels [25] with mobile speed at 30 km/h and 120 km/h. Fig. 5 depicts the

bit error rate of the OFDM system detailed in Table I using five different interpolators. Fig. 5

shows that both DD and the sinc interpolator with Kaiser window can achieve almost the same

performance as interp and no error floor for the range of SNR simulated. It was shown in

[5] that interp produced the best performance for 1-D comb pilot based channel estimation

among the five interpolation methods studied in that paper. There is less than 1 dB degradation

using DD/Kaiser interpolation relative to perfect channel state information. 2-D DFT lowpass

interpolation is the fastest algorithm but achieves relatively poor performance, especially at high

SNRs with a severe error floor. As expected, MMSE has the best performance that is close to the

perfect channel estimation. The MSEs of the interpolators studied are shown in Fig. 6, indicating

larger performance difference among interpolators.

Fig. 7 shows the effect of various parameters of Kaiser window on the performance. Choosing

Ht = dt = 4 and Hf = df = 4 results in error floor free performance for the SNR range studied.

The interpolation order Mt = Mf = 2 yields slightly lower BER than Mt = Mf = 10. Therefore,

Mt and Mf should not be selected larger than necessary. Furthermore, increasing Ht and Hf

slightly closes the gap to the ideal channel estimation at low to medium SNR values (≤ 20 dB)

due to its de-noising capability. However, they lead to larger interpolation error and thus higher

error floor at larger SNR values.

Fig. 8 demonstrates the effect of different parameters in DFT based, DD and MMSE inter-

polation on the BER performance in COST 259 typical urban channels with large maximum

Doppler frequency. DFT lowpass filter is sensitive to the block size of the available data for

interpolation. Reducing (Np, Kq) = (128, 64) pilot blocks to (80, 64) degrades the performance.

Large block size, however, requires more storage space and results in larger latency. For DD

interpolation, using a higher order Dt = Df = 7 actually slightly increases the BER compared to
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Dt = Df = 3. Therefore, Dt = Df = 3 is sufficient for the pilot spacing, the channel fading rate

and the channel frequency selectivity studied. For the MMSE channel estimation, the interpolation

coefficients (25) and (30) optimized for each operating SNR has the best performance. Since

this is practically impossible, choosing a fixed SNR operating point at Eb/N0 = 40 dB suffers

little degradation.

Figs. 9 and 10 depict the BER and MSE of the OFDM system with pilot spacing dt = df = 8

in a low mobility typical urban channel respectively. Again, DD interpolation performs equally

well as the Kaiser window based sinc interpolator with suitably chosen parameters. The interp

channel estimator in terms of MSE clearly outperforms the DD and Kaiser interpolators, but the

resulting BERs have less gap. The filter length of the DD and Kaiser interpolators are longer

compared to Fig. 8 as pilot symbols are spaced further apart.

V. COMPLEXITY AND DISCUSSION

The complexity of each interpolator is tabularized in Table II by means of the number of com-

plex multiplication operations required. For 2-D separable interpolators, two complexity numbers

are given depending interpolation is performed on which dimension first. Block processing in

the table refers to the scenario where a whole block of received OFDM symbols is read in each

time for interpolation. Discussion on the properties and suitability of the four interpolators is

presented below.

Lowpass sinc interpolator with Kaiser window and DD interpolation. Properly designed

Kaiser window based lowpass sinc interpolator achieves similar performance to DD interpo-

lation. Both schemes are robust since they do not require channel statistics and are system

operating point independent. In a practical scenario, the useful channel information that guides

the determination of interpolator parameters is the maximum possible Doppler frequency, the

maximum possible multipath delay and the operating SNR range. Note that they are not the exact

operating parameters of the particular channel. If pilot symbol insertion rate is much higher than

the Nyquist rate of the channel in either dimension, Mt and/or Mf of Kaiser window and Dt
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and/or Df of DD interpolator can be rather small. In this case, Kaiser window provides an

additional parameter Ht and/or Hf with denoising capability to improve the BER performance

in the low to medium range of SNR values, together with larger Mt and/or Mf . If pilot insertion

rate is close to the Nyquist rate, the interpolation order of the Kaiser window and DD interpolator

need to be relatively large, and the Ht and/or Hf parameters of Kaiser window should be set the

same as dt and df . Finally, if the operating SNR stretches to a large range, larger interpolation

order will help to lower the error floor at high SNRs. In practice, the interpolation order is often

limited by the hardware resources of the receiver.

In many practical cases, low orders of both interpolators are sufficient, which translates

into low complexity and small latency. DD interpolation is simpler than Kaiser window, with

less parameters to determine. Pre-computation of fundamental functions is also more easily

implementable than Kaiser window because once the density J is fixed, only a small number of

fundamental functions with different order D needs to be calculated. On the other hand, Kaiser

window offers more flexibility in performance tuning and pilot spacing. It is also found that

in some cases larger interpolator order is required for DD to achieve a similar performance to

Kaiser window. Hybrid interpolation methods such as using DD for one dimension and Kaiser

window based sinc interpolator for the other dimension may be employed if pilot spacing in one

dimension is not a power of 2. Furthermore, DD interpolation has no de-noising effect when

there is noise in the given data, despite of its powerful capability in performing interpolation.

One possible solution is to combine DD with de-noising/smoothing algorithms. For example,

the low rank MMSE noise reduction algorithm in [16] can be employed and followed by DD

interpolation.

2-D DFT based lowpass interpolation. Performing lowpass interpolation through 2-D DFT/IDFT

is the most efficient to implement, if the DD and Kaiser window interpolators do not pre-

compute, respectively, the fundamental function and the window function. The 2-D DFT lowpass

interpolation is also robust and does not require channel statistics. The drawback of this method
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is the less desirable performance. Moreover, since a large number of observed data is needed to

obtain good interpolation performance, 2-D DFT method is not real time, incurs large latency

and requires large data storage.

MMSE interpolation. MMSE interpolation provides optimum performance however with

requirement of knowledgement of channel statistics (i.e., channel autocorrelation function) in

both time and frequency dimension and the signal-to-noise ratio that the system is operating at.

Such information may not be available in practice. Furthermore, two 1-D Wiener filters involve

M t
s×M t

s and M f
s ×M f

s matrix inverse that has high complexity O((M t
s)

3/6) and O((M f
s )3/6).

VI. CONCLUSION

DD interpolation and the sinc interpolator with Kaiser window have been proposed and

studied in this paper. It has been shown that both interpolators are robust, system operating

point independent and do not require channel statistics. They are simpler to implement than

Wiener filters that require matrix inverse operation and channel statistics, and provide better

performance than 2-D DFT lowpass interpolation. DD interpolator has even lower complexity

than Kaiser window based sinc interpolator, while the latter offers more flexibility in cases where

DD is not applicable. These two channel estimation techniques are promising for use in future

wireless OFDM communication systems.
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APPENDIX

MSE ANALYSIS OF 2-D LINEAR INTERPOLATOR

Following (11a), a 2-D linear interpolator is given by

Ĥ[n, k] =

U2∑
u=U1

V2∑
v=V1

w[u, v]Ĥp[n− u, k − v], (35)

Ĥp[n, k] =





H̃p[p, q], n = pdt, k = qdf

0, otherwise
(36)

The mean-squared error of this interpolator can be written as

MSE = E{|H[n, k]− Ĥ[n, k]|2}

= E{|H[n, k]|2} − 2<
(
E{H∗[n, k]Ĥ[n, k]}

)
+ E{|Ĥ[n, k]|2}

= 1− 2<
(
E{H∗[n, k]Ĥ[n, k]}

)
+ E{|Ĥ[n, k]|2} (37)

To evaluate the second term in (37), we use (35) to write

E{H∗[n, k]Ĥ[n, k]} =
∑

u

∑
v

w[u, v]E{H∗[n, k]Ĥp[n− u, k − v]} (38)

where, according to (36), Ĥp[n− u, k− v] assumes nonzero values H̃p[p, q] only when n− u is

an integer multiple of dt and k − v is an integer multiple of df . Hence we can write

En,k{H∗[n, k]Ĥp[n− u, k − v]} = En,k{H∗[u + pdt, v + qdf ]Ĥp[pdt, qdf ]}

= ρEp,q{H∗[u + pdt, v + qdf ]H̃p[p, q]}

= ρEp,q{H∗[u + pdt, v + qdf ]H[pdt, qdf ]}

= ρrt(−u)rf (−v) (39)

where ρ = 1
dtdf

denotes the ratio of the number of pilot symbols over the number of total pilot

and data symbols.
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By (35) and an arguement similar to that given above, the third term in (37) can be evaluated

as

En,k{|Ĥ[n, k]|2} = En,k





∣∣∣∣∣
∑

u

∑
v

w[u, v]Ĥp[n− u, k − v]

∣∣∣∣∣

2




=
∑

u

∑
v

∑

u′

∑

v′
w[u, v]w[u′, v′]En,k{Ĥp[pdt + u′ − u, qdf + v′ − v]Ĥ∗

p [pdt, qdf ]}

= ρ2
∑

u

∑
v

∑

u′

∑

v′
w[u, v]w[u′, v′]Ep,q{H[pdt + u′ − u, qdf + v′ − v]H∗[pdt, qdf ]}

+ρ2
∑

u

∑
v

w2[u, v]σ2
n (40)

where u′ − u = p′dt and v′ − v = q′df , p′ ∈ Z, q′ ∈ Z , and σ2
n is the variance of the noise in

the channel estimation at pilot positions assuming all pilot symbols have the same magnitude.

Further simplification leads to

En,k{|Ĥ[n, k]|2} = ρ2
∑

p′

∑

q′

∑
u

∑
v

w[u, v]w[u + p′dt, v + q′df ]rt(p
′dt)rf (q

′df )

+ ρ2σ2
n

∑
u

∑
v

w2[u, v] (41)

Therefore, the mean-squared error of 2-D linear interpolator is given by

MSE = 1− 2

dtdf

<
(

U2∑
u=U1

V2∑
v=V1

w[u, v]rt(−u)rf (−v)

)

+
1

d2
t d

2
f

U2/dt∑

p′=U1/dt

V2/df∑

q′=V1/df

U2∑
u=U1

V2∑
v=V1

w[u, v]w[u + p′dt, v + q′df ]rt(p
′dt)rf (q

′df )

+
σ2

n

d2
t d

2
f

U2∑
u=U1

V2∑
v=V1

w2[u, v] (42)
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TABLE I

PILOT ASSISTED OFDM SYSTEM SIMULATION SETUP

Parameters Values

OFDM symbol duration (T ) 51.2 µs + 1.28 µs (guard interval)

FFT size (K) 256

Total bandwidth 5 MHz

Sub-carrier spacing (∆f ) 19.5313 KHz

Pilot percentage ( 1
dtdf

) 6.25% (dt = df = 4) and 1.56% (dt = df = 8)

Carrier frequency 2 GHz

Maximum Doppler frequency (fD) 222.22 Hz (120 km/h) and 55.56 Hz (30 km/h)

Modulation 64-QAM

Channel fading Rayleigh with 2-D isotropic scattering

Channel model type ITU Vehicular A and COST 259 Typical Urban

TABLE II

COMPLEXITY COMPARISON OF DIFFERENT INTERPOLATORS

Interpolation method Number of complex multiplication per symbol

Sinc interpolator 2Mt +
4MtMf

dt
or 2Mf +

4MtMf

df

with Kaiser window 2Mt +
2Mf

dt
or 2Mf + 2Mt

df
(block processing)

DD interpolation 2Dt +
4DtDf

dt
or 2Df +

4DtDf

df

2Dt +
2Df

dt
or 2Df + 2Dt

df
(block processing)

2-D DFT 2 log2(NpKq) (FFT and IFFT)

MMSE O((M t
s)

3/6) +O((Mf
s )3/6) + (M t

s)
2 + (Mf

s )2 + M t
s + Mf

s
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Fig. 1. The fundamental functions of DD interpolation.
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Fig. 2. An illustrative example of the DD interpolation with D = 3 and J = 7.
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Fig. 3. Performance of PSAM 64-QAM in frequency flat Rayleigh fading with fDT = 0.03.
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Fig. 4. Performance of PSAM 64-QAM in frequency flat Rayleigh fading with fDT = 0.03, using sinc interpolator with
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Fig. 6. MSE of 64-QAM OFDM using different interpolation methods in ITU Vehicular A channels, with dt = df = 4 and

v = 120 km/h.
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Fig. 7. Performance of 64-QAM OFDM using sinc interpolator with Kaiser window in ITU Vehicular A channels, with

dt = df = 4 and v = 30 km/h.
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Fig. 8. Performance of 64-QAM OFDM using different interpolation methods in COST 259 typical urban channels, with

dt = df = 4 and v = 120 km/h.
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Fig. 9. Performance of 64-QAM OFDM using different interpolation methods in COST 259 typical urban channels, with

dt = df = 8 and v = 30 km/h.
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Fig. 10. MSE of 64-QAM OFDM using different interpolation methods in COST 259 typical urban channels, with dt = df = 8

and v = 30 km/h.
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