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Abstract

Designing optimal perfect-reconstruction (PR) and near PR (NPR) cosine-modulated filter banks is essen-

tially a constrained nonlinear minimization problem. This paper proposes two second-order-cone-programming

based algorithms for designing NPR and practically PR cosine-modulated filter banks with improved performance

relative to several established design methods.
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I. INTRODUCTION

An M -channel, maximally decimated, cosine-modulated filter bank can be characterized by a

single prototype filter (PF), whose efficient implementation can be readily substantiated through

polyphase decomposition. In addition, optimal synthesis of a cosine-modulated multirate sys-

tem can be carried out with considerably reduced complexity compared to that of a general

M -channel system as the work in the former case is focused on designing the PF alone. These

benefits, among other things, have rendered the cosine-modulated filter banks one of the most

useful classes of multirate systems. The literature on the subject is abundant, see, for example,

[1]–[28] and the related work cited therein. Of particular interest within this filter bank class

are biorthogonal cosine-modulated (BCM) filter banks as they offer reduced system delay while

maintaining the perfect reconstruction (PR) or near PR (NPR) property. Recent progress in the

analysis and design of BCM filter banks have been reported by several authors, see, for example,

[18]–[21], [23]–[26], and [28]. Available design techniques for BCM filter banks now include

the quadratic-constrained least-squares (QCLS) method [23], [20], [6] that minimizes the stop-

band energy of the PF subject to the PR constraints expressed as quadratic equalities in terms of

the coefficients of the PF; the factorization-based method [19], [24], [25] that yields a parame-

terized realization in which the PR property is always ensured while minimizing the stopband

energy of the PF in an unconstrained optimization setting; and the sequential design method

[28] that is carried out by first designing a filter bank with a small number of channels and a

relatively short filter length and then gradually increasing the number of channels as well as the

filter length using a technique initiated in [5]. In addition, quadratic-constrained-optimization

based algorithms [10] and fast design through window function optimization [11][22] for or-

thogonal cosine-modulated (OCM) filter banks have been proposed.

In essence, the design of a cosine-modulated filter bank is a nonconvex constrained opti-

mization problem that has multiple local minimums, and it is generally agreed that which of

the above-mentioned methods would result in a better design depends largely on the choice

of optimization procedure and the complexity of the problem [25]. The focus of this paper is

primarily on developing two new optimization algorithms that are tailored to the time-domain

formulation set forth in [23] so as to obtain improved designs relative to several existing meth-

ods. In the first algorithm, the design starts with an initial point that corresponds to the PF

minimizing its stopband energy without the PR constraints. This initial point is then iteratively

updated by minimizing the upper bound of a linearized error measure of the time-domain PR
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constraints within a convex region defined by a constraint on the stopband energy of the PF. The

optimization problem so formulated turns out to be a second-order cone programming (SOCP)

problem [30]–[32] which can be solved using efficient interior-point algorithms in polynomial-

time complexity [33], [34]. By controlling the PF’s stopband energy, each iterate of the algo-

rithm corresponds to an NPR filter bank whose PR distortion is reduced at the cost of increased

stopband energy of the PF. In this way, for a given channel number and PF length, one is in

a position to make best tradeoff between the PR distortions and the stopband energy of the PF

(which is closely related to the performance of the analysis and synthesis filters). The second al-

gorithm is aimed at direct minimization of the PF’s stopband energy subject to the time-domain

PR constraints. By parameterizing a linear approximation of the PR constraints and imposing a

norm constraint on the increment vector of the design variables, it is shown that the optimiza-

tion problem at hand can also be converted into an SOCP problem. As will be demonstrated by

simulation results, the second algorithm can be used to design practically PR OCM and BCM

filter banks with improved performance compared to several established design methods.

The paper is organized as follows. Section 2 provides a brief review of cosine-modulated

filter banks and SOCP. Section 3 starts with an analysis of the time-domain PR constraints [23]

and presents an SOCP formulation for the design of NPR BCM filter banks. The second SOCP-

based algorithm for the design of PR OCM/BCM filter banks is described in Section 4, and

several design examples are presented in Section 5.

Throughout the paper, boldfaced characters denote matrices and vectors; I denotes the iden-

tity matrix of an appropriate dimension and ‖ · ‖ denotes the standard Euclidean norm; M � 0

and M � 0 denote that matrix M is positive definite and M is positive semidefinite, respec-

tively.

II. PRELIMINARIES

A. BCM filter banks

An M -channel, maximally decimated BCM filter bank is illustrated in Fig. 1, where the

coefficients of the analysis and synthesis filters are given by

hk(n) = 2h(n) cos
[

π

M

(
k +

1

2

) (
n − D

2

)
+ (−1)k π

4

]
(1a)

and

fk(n) = 2h(n) cos
[

π

M

(
k +

1

2

) (
n − D

2

)
− (−1)k π

4

]
(1b)
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for 0 ≤ k ≤ M − 1 and 0 ≤ n ≤ N − 1, respectively, {h(n)} is the impulse response of the

finite-impulse-response (FIR) PF, and D denotes the system delay.

x(n) y(n)
H0(z) 

HM-1(z) 

M M

M M

M M

. .
 .

. .
 .

H1(z) 

F0(z) 

FM-1(z) 

F1(z) 

+

Fig. 1. M -channel maximally decimated filter bank

BCM filter bank structures other than that of (1) can also be generated using different DCT

modulations [23]. In this paper, however, we concentrate on the DCT-IV BCM filter banks

as specified by (1), along with the following assumptions: (i) the channel number M is even,

(ii) the filter length N assumes the form N = 2mM for some positive integer m, and (iii) the

system delay assumes the form D = 2Ms + d where s ≥ 0 is an integer and d = 2M − 1.

The rationale of these assumptions have been addressed in the literature [23], [25], [26]. In

short, these assumptions are made for the sake of system performance rather than convenience.

For example, if the value of d is specified other than 2M − 1, then some coefficients of the PF

have to be zero [23] in order for the BCM filter bank to be PR, which will severely degrade the

performance.

The input-output relation of the system in the z-domain is given by

Y (z) = T0(z)X(z) +
M−1∑
l=1

Tl(z)X(ze−j2πl/M) (2a)

where

T0(z) =
1

M

M−1∑
k=0

Fk(z)Hk(z) (2b)

is the distortion transfer function which determines the distortion caused by the system for the

unaliased component X(z), and

Tl(z) =
1

M

M−1∑
k=0

Fk(z)Hk(ze−j2πl/M) for l = 1, . . . , M − 1 (2c)

are the alias transfer functions that determine how the aliased components X(ze−j2πl/M) are
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attenuated [8], [26]. It follows that the BCM filter bank holds the PR property if and only if

T0(z) = z−D (3a)

and

Tl(z) = 0 for l = 1, . . . , M − 1 (3b)

where D is the system delay. In such a case, (2a) becomes Y (z) = z−DX(z) which implies

that y(n) = x(n − D), i.e., the output is a delayed replica of the input.

There are two types of PR characterization. In the frequency domain, the PR conditions are

characterized based on (3) as

T0(e
jω) = e−jDω for ω ∈ [0, π] (4a)

and

Tl(e
jω) = 0 for ω ∈ [0, π] and 1 ≤ l ≤ M − 1 (4b)

In the time-domain, the PR conditions can be described by the following set of quadratic equa-

tions [23]:

hT Ql,nh = cn for 0 ≤ n ≤ 2m − 2 and 0 ≤ l ≤ M − 1 (5a)

where h = [h0 h1 · · · hN−1]
T collects the coefficients of the PF, and

Ql,n = V d−lDnV
T
l + V d−M−lDnV

T
M+l (5b)

Dn(i, j) =

{
1 if i + j = n

0 otherwise
(5c)

V l(i, j) =

{
1 if i = l + 2jM

0 otherwise
(5d)

cn =
1

2M
δ(n − s) (5e)

for i = 0, 1, . . . , N − 1, and j = 0, 1 . . . , N − 1.

A filter bank that does not hold the PR property might still be useful if it is near PR (NPR).

Typically the “closeness” of a biorthogonal filter bank to the PR property is measured in the

frequency-domain by means of

(i) Amplitude distortion

em(ω) = 1 − |T0(e
jω)| for ω ∈ [0, π] (6)

(ii) Group-delay distortion

egd(ω) = D − arg[T0(e
jω)] for ω ∈ [0, π] (7)
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(iii) Worst-case aliasing error

ea(ω) = max
1≤l≤M−1

|Tl(e
jω)| for ω ∈ [0, π] (8)

A filter bank is said to be NPR if its em(ω), egd(ω) and ea(ω) are uniformly small in magnitude

for 0 ≤ ω ≤ π.

Concerning the PF, it is often desirable to construct a PR or NPR BCM filter bank with the

PF’s stopband energy

e2(h) =

π∫
ωs

|H(ejω)|2 dω (9a)

minimized, where

H(ejω) =
N−1∑
k=0

hke
−jkω (9b)

is the frequency response of the PF, and

ωs =
(1 + ρ)π

2M
with ρ > 0 (9c)

is the stopband edge of the PF. An alternative of (9a) is the peak value of |H(ejω)| over the

stopband, i.e.,

e∞(h) = max
ω∈[ωs,π]

|H(ejω)| (10)

B. Second-order cone programming

Second-order cone programming (SOCP), also known as conic quadratic programming [31],

is a subclass of well-structured convex programming problems where a linear function is min-

imized subject to a set of second-order cone constraints and possibly a set of linear equality

constraints:

minimize cT x (11a)

subject to: ‖Aix + bi‖ ≤ cT
i x + di i = 1, 2, . . . , K (11b)

Fx = g (11c)

where c ∈ Rn×1, Ai ∈ R(ni−1)×n, bi ∈ R(ni−1)×1, ci ∈ Rn×1, and di ∈ R. The term “second-

order cone” reflects the fact that each constraint in (11b) is equivalent to the following conic

constraint: [
cT

i

Ai

]
x +

[
di

bi

]
∈ Ci
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where Ci is the second-order cone in Rni:

Ci =

{[
t

u

]
: u ∈ R(ni−1)×1, t ≥ 0, ‖u‖ ≤ t

}
(12)

Fig. 2 illustrates the second-order cone in space R3.

u1

u2

t

Fig. 2. The second-order cone in R3.

From (11), it is evident that SOCP includes linear programming and convex quadratic pro-

gramming as special cases. On the other hand, SOCP itself is a subclass of semidefinite pro-

gramming (SDP) [30], [31], [35] because each constraint in (11b) can be expressed as the linear

matrix inequality [
(cT

i x + di)I Aix + bi

(Aix + bi)
T cT

i x + di

]
� 0

Software that implement various polynomial-time interior-point optimization algorithms for

SOCP and SDP are available [33], [34], [36]. It is important to stress, however, that in general

the problem in (11) can be solved more efficiently using an SOCP solver provided, for example,

by SeDuMi [33] and SDPT3 [34] than solving it in an equivalent SDP setting [30].

III. AN SOCP FORMULATION FOR NPR FILTER BANKS

A. Remarks on the time-domain PR constraints in (5)

The constraints in (5) are second-order equalities, each defining a nonconvex set in space

RN . The feasible region, defined as a set in RN characterizing all M -channel PR BCM filter

banks of length N , is the intersection of these nonconvex sets, which is in general nonconvex.

For illustration purposes, let us consider a simple case with M = 2, m = 2, s = 0, and d = 3.

According to (5a), there are the following six constraints which can be specified using (5b)–(5e)
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as

hT Q0,0h = h0h3 + h1h2 =
1

4
(13a)

hT Q0,1h = h0h7 + h2h5 + h3h4 + h1h6 = 0 (13b)

hT Q0,2h = h4h7 + h5h6 = 0 (13c)

hT Q1,0h = h1h2 + h0h3 =
1

4
(13d)

hT Q1,1h = h1h6 + h3h4 + h2h5 + h0h7 = 0 (13e)

hT Q1,2h = h5h6 + h4h7 = 0 (13f)

Obviously, the constraints in (13d)–(13f) are redundant and, hence, the PR conditions are in

this case reduced to (13a)–(13c). The redundancy exhibited in the above example is not just

an incident. As matter of fact, with d = 2M − 1 (as we shall assume in this paper) it can be

verified that all non-redundant constraints in (5a) are given by

al,n(h) = hT Ql,nh − cn = 0 for 0 ≤ n ≤ 2m − 2 and 0 ≤ l ≤ M/2 − 1 (14)

thereby reducing the total number of constraints from M(2m − 1) to M(2m − 1)/2 = (N −
M)/2. Since there are N coefficients in the PF, the “degrees of freedom” in the design is

N − (N − M)/2 = (N + M)/2 that is proportional to both the channel number and filter

length. Consequently, for a given channel number M (thus fixed stopband, see (9c)), improved

designs are expected as the filter length increases.

As an additional remark, note that in the above example we have assigned the value of d to

d = 2M − 1 = 3. To see the effect of having a different value for d, let d = 2 which leads the

six constraints in (5a) (here we are dealing with a case with d �= 2M − 1 and the constraints in

(5a) are in general not redundant):

hT Q0,0h = 2h0h2 =
1

4
(15a)

hT Q0,1h = 2(h0h6 + h2h4) = 0 (15b)

hT Q0,2h = 2h4h6 = 0 (15c)

hT Q1,0h = h2
1 =

1

4
(15d)

hT Q1,1h = h2
3 + 2h1h5 = 0 (15e)

hT Q1,2h = h2
5 + 2h3h7 = 0 (15f)

Equation (15a) implies that both h0 and h2 are nonzero, which in conjunction with (15b) and

(15c) leads to h4 = 0 and h6 = 0. In addition, (15d) implies that h1 is forced to be either 0.5 or
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−0.5. With h1, h4, and h6 fixed and three remaining constraints in (15a), (15e), and (15f), it

is rather difficult for the PF of length 8 to generate a good BCM filter bank. This explains why

the use of d less than 2M − 1 is not preferred.

In the rest of this paper, d = 2M − 1 is always assumed, which leads (5b) to

Ql,n = V 2M−l−1DnV
T
l + V M−l−1DnV

T
M+l (16)

and we shall use (14) and (16), instead of (5a) and (5b), as the PR constraints for BCM filter

banks.

When the PF has a linear phase response, the system delay of the filter bank is D = N − 1

where N is the length of the PF, and the impulse responses of the synthesis filters become

fk(n) = hk(N − n − 1) for 0 ≤ k ≤ M − 1 and the filter bank in this case is said to be

orthogonal [26]. The design variables in this case are the components in the first half of the

PF’s impulse response, i.e., h = [h0 h1 · · ·hmM−1]
T , and the time-domain PR constraints

become [15]

al,n(h) = hT Ql,nh − cn = 0 for 0 ≤ n ≤ m − 1, 0 ≤ l ≤ M/2 − 1 (17a)

where

Ql,n = V lJDnV
T
l + V M+lJDnV

T
M+l (17b)

and Dn, V l, and cn are defined in (5c)–(5e). It follows that there is a total of mM/2 PR

constraints, hence the degrees of freedom in the design of OCM filter banks is N/2−mM/2 =

N/4.

B. Stopband energy of the prototype filter

The frequency response of the PF can be expressed as

H(ejω) =
N−1∑
k=0

hke
−jkω = hT p(ω)

with p(ω) = [1 e−jω · · · e−j(N−1)ω]T . Using (17), the stopband energy becomes

e2(h) =

π∫
ωs

hT L(ω)h dω

where for each fixed ω, L(ω) is a symmetric, positive-semidefinite Toeplitz matrix [37] deter-

mined by its first row [1 cos ω cos 2ω · · · cos(N − 1)ω]. Therefore, we have

e2(h) = hT Ph (18)
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where

P =

π∫
ωs

L(ω) dω

is a symmetric positive-definite Toeplitz matrix determined by its first row [π − ωs − sin ωs

− sin 2ωs/2 · · · − sin(N − 1)ωs/(N − 1)]. The positive definiteness of matrix P in (18)

implies that function e2(h) is globally convex in the entire space RN [38], which turns out to

be instrumental in the subsequent development.

C. The underlying idea: An intuitive description

The design of BCM filter banks can be stated in the time-domain as follows [23]:

minimize e2(h) = hT Ph (19a)

subject to: constraints in (14) (19b)

A difference between the above formulation and the one in [23] is that the number of the con-

straints involved in (19b) is only a half of that in Eq. (65) of [23].

Suppose we start with an initial design that minimizes the stopband energy e2(h) in (19a)

without the PR constraints in (19b) but impose a coefficient normalization condition (to avoid

the trivial zero solution):

minimize e2(h) = hT Ph (20a)

subject to:
N−1∑
i=0

hi = 1 (20b)

and denote the solution of (20) by h0. Because of the freedom from the PR constraints, the

value e2(h0) is considerably smaller than what a PR prototype filter can achieve. If we define a

contour of e2(h) at level value c as

Sc = {h : e2(h) = c} (21)

then point h0 lies on the contour Sc0 with c0 = e2(h0) and the global convexity of function

e2(h) implies that (i) the entire feasible region F = {h : h satisfies all constraints in (14)} lies

outside region Ac0 which is the region enclosed with contour Sc0 (see Fig. 3), and (ii) as the

level value c grows, the family of contours {Sc} grows accordingly and will eventually meet

and then intersect with F , see Fig. 3 for an illustration.

Because of the nonconvexity of F , multiple minimizers likely exist (in Fig. 3, there are two

minimizers: a global minimizer h∗ and a local minimizer h̃). From Fig. 3, it is intuitively
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c0 < c*
 < c1

F

Ac0Sc0

Sc*

Sc1 h*

h0

~
h

Fig. 3. A growing family of contours for the objective function e2(h) meets the nonconvex feasible region F , and

a global minimizer h∗ and a local minimizer h̃ are identified.

clear that if one lets the contours grow from Sc0 gradually in small steps, then the family of

contours will meet the global minimizer h∗ first. This idea of approaching the global minimizer

can be substantiated in the context of optimization as follows. First, we define an appropriate

measure of closeness of the PF to the PR property. A convenient least-squares measure can be

constructed based on the PR constraints in (14) as follows:

f(h) =

M
2
−1∑

l=0

2m−2∑
n=0

(hT Ql,nh − cn)2 (22)

Because f(h) = 0 if and only if h ∈ F , a point h with a smaller f(h) is regarded as “closer”

to F . Now consider a scenario where point h0 is updated to h1 by minimizing f(h) within the

region bounded by a contour Sc with c moderately larger than c0. The situation is illustrated in

Fig. 4, where the shaded region Ac = {h : e2(h) ≤ c} is convex with Sc as its boundary and

the minimization process is indicated with a dashed curve connecting points h0 and h1.

Once point h1 is obtained, the frontier of region Ac further advances towards F by modifying

its boundary Sc with a slightly increased c. Within the enlarged region, point h1 is updated to a

new point h2 in a similar manner. In analytical terms, in the kth iteration of the process, point

hk is updated to hk+1 = hk + δ where δ solves the constrained optimization problem

minimize
δ

f(hk + δ) (23a)

subject to: e2(hk + δ) ≤ c (23b)

with c a constant whose value gradually (and monotonically) increases as the iteration contin-

ues. The above process is terminated when the minimized value f(hk+1) falls below a pre-

scribed threshold, and the point hk+1 is then taken as the impulse response of the PF of an NPR
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F

Ac
Sc0

Sc

h*

h0

h1

~
h

Fig. 4. Point h0 is updated to h1 within the convex region Ac by minimizing the PR error measure f(h) in (22).

The dashed curve connecting the two points is a typical trajectory when an SOCP is applied.

BCM filter bank. In what follows, we develop an SOCP formulation for the problem in (23).

D. An iterative SOCP formulation

The function f(h) in (22) is a smooth, fourth-order function of h with its Hessian given by

∇2f(h) = 8
∑

l

∑
n

Ql,n(hhT )QT
l,n + 2

∑
l

∑
n

(hT Ql,nh − cn)(Ql,n + QT
l,n) (24)

The first term in (24) is positive definite but the second term is not. Hence f(h) is in general not

a convex function. However, when point h is sufficiently close to region F , terms hT Ql,nh−cn

become near zero and the first term in (24) dominates ∇2f(h). Consequently, as h is near region

F , f(h) behaves like a convex function. A linear approximation of f(h) in the vicinity of hk

is given by

f(hk + δ) ≈ f(hk) + gT
k δ (25a)

where gk is the gradient of f(h) at hk that can be evaluated as

gk = 4

M
2
−1∑

l=0

2m−2∑
n=0

(hT
k Ql,nhk − cn)Ql,nhk (25b)

Note that the approximation in (25a) is valid provided that

‖δ‖ is small (25c)

Under these circumstances, the problem in (23) can be converted into the following form:

minimize η (26a)

subject to: |f(hk) + gT
k δ| ≤ η (26b)
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‖δ‖ ≤ β1 (26c)

e2(hk + δ) ≤ c (26d)

where η is the absolute bound of the linearized PR error function, which can be treated as an

auxiliary variable, and β1 is a small positive scalar.

Defining

x =

[
η

δ

]
and c =




1

0
...

0




(27)

the objective function in (26a) can be expressed as cT x. Next, we write the constraint in (26b)

as the following two one-side linear inequalities:

f(hk) + gT
k δ ≤ η

and

−f(hk) − gT
k δ ≤ η

which lead to

Gkx ≤ dk

with

Gk =

[−1 gT
k

−1 −gT
k

]
and dk =

[−f(hk)

f(hk)

]
(28)

The norm constraint in (26c) can be expressed as

‖Ĩx‖ ≤ β1

where Ĩ = [0 I]. Based on (18), the constraint in (26d) can be written as

‖P̃ x + b̃k‖ ≤ β2 (29)

where

P̃ = [0 P 1/2], b̃k = P 1/2hk, β2 = c1/2 (30)

and P 1/2 denotes the symmetric square root of matrix P . Problem (26) now becomes

minimize cT x (31a)

subject to: Gkx ≤ dk (31b)

‖Ĩx‖ ≤ β1 (31c)

‖P̃ x + b̃k‖ ≤ β2 (31d)
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which is obviously an SOCP problem (see (11)). The above problem involves N + 1 variables,

two linear inequality constraints, and two conic constraints.

E. A summary of the design method

The proposed design method, which is aimed at a satisfactory NPR BCM filter bank, can now

be summarized as follows.

It consists of an outer loop and an inner loop of iterations. The outer loop is to

(i) determine whether or not the optimization process should continue and, if yes,

(ii) provide the inner loop with an “ initial point” h0 and the values of bounds β1 and β2,

while the inner loop consists of

(i) start with an h0 provided by the outer loop and set counter k = 0 and a tolerance ε;

(ii) use (28) and (30) to evaluate Gk, dk, and b̃k;

(iii) apply an SOCP solver to problem (31) for the optimal xk;

(iv) obtain δk = xk(2 : N + 1) and update hk to hk+1 = hk + δk;

(v) examine a convergence criterion such as ‖δk‖ < ε (or e2(hk) − e2(hk+1) < ε, or

the number of iterations exceeds a given bound K); if yes, terminate the inner loop

and go back to the outer loop with hk+1 as the new initial point in the next round of

inner-loop iterations, otherwise set k := k + 1 and repeat from step (ii).

A flowchart that explains the interplay between the two loops is shown in Fig. 5.

F. The first initial point h0

The initial point for the inner-loop is provided by the output of the preceding round of inner-

loop iterations except the very first h0 which cannot be provided by the inner loop. This h0 can

be obtained by solving problem (20). We first parameterize all vectors h satisfying constraint

(20b) as

h = uN + Îξ (32)

where

uN =




0
...

0

1




, Î =




1 0
. . . 0

...

0 1 0

−1 · · · −1 −1




N×(N−1)
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Convergent?

f(hk+1) < threshold?

Yes No
k:= k+1

Update  hk+1 =  hk + δk

Set h0 =  hk+1,
new bounds  β1, β2
and k = 0

Solve (31) for δk

Claim hk+1 as 
an NPR solution

Outer loop

Inner loop

1st initial point h0

Yes

No

Fig. 5. A flowchart to illustrate how the two loops operate.

and ξ is an (N−1)-dimensional parameter vector. By substituting (32) into (20a), problem (20)

is converted into the unconstrained problem

minimize
ξ

(uN + Îξ)T P (uN + Îξ)

which has a unique global minimizer

ξ∗ = −(Î
T
P Î)−1Î

T
PuN

Using (32), the solution of problem (20) is obtained as

h0 = [I − (Î
T
P Î)−1Î

T
P ]uN (33)

which is merely the last column of matrix I − (ÎP Î)−1Î
T
P .

Although the PF associated with h0 in (33) has the least stopband energy, by minimizing

e2(h) in (18) the PF’s behavior over the passband is not under control and, more importantly, the



16

low group-delay requirement of the design cannot be easily taken into account. An alternative

that alleviates these problems can be obtained by minimizing the weighted last-squares objective

function

e2(h, w) = (1 − w)

ωp∫
0

|H(ejω) − e−jD̂ω|2dω + w

π∫
ωa

|H(ejω)|2dω (34)

where passband edge ωp and stopband edge ωa are related to ωs as given by (9b) in a manner to

be described later, w ∈ (0, 1) is a scalar weight, D̂ = D/2, and D is the system’s group delay.

This quadratic function e2(h, w) can be expressed in terms of h as

e2(h, w) = hT Qh − 2hT p + q

where

Q = (1 − w)L(v1) + wL(v2)

p = (1 − α)




sin D̂ωp/D̂

sin(D̂ − 1)ωp/(D̂ − 1)
...

sin(D̂ − N + 1)ωp/(D̂ − N + 1)




v1 =




ωp

sin ωp

...

sin(N − 1)ωp/N − 1




v2 =




π − ωa

− sin ωa

...

sin(N − 1)ωa/N − 1




L(v1) and L(v2) are symmetric and positive-definite Toeplitz matrices whose first columns are

v1 and v2, respectively. The initial point h0 can be chosen as the unique global minimizer of

e2(h, w) and is given by

h0 = Q−1p (35)

Since the stopband energy is one of our primary concerns, the value of weight w is usually taken

to be very close to one. In our computer simulations, it was found that the choices ωp = 0.5ωs

and ωa = 0.9ωs work quite well.
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G. Design of OCM filter banks

The algorithm described above can be used for the design of OCM filter banks with straight-

forward modifications. Since the PR constraints in this case are characterized by (17), the

objective function in (22) needs to be modified to

f(h) =

M
2
−1∑

l=0

m−1∑
n=0

(hT Ql,nh − cn) (36)

where Ql,n is defined by (17b) and h = [h0 h1 · · · hmN−1]
T . In addition, the stopband energy

in (18) becomes

e2(h) = 4hT P Lh (37a)

where

P L =
∫ π

ωs

c(ω)cT (ω) dω (37b)

c(ω) =
[
cos

(
N − 1

2

)
ω cos

(
N − 3

2

)
ω · · · cos

(
ω

2

)]T

(37c)

IV. AN SOCP FORMULATION FOR PRACTICALLY PR FILTER BANKS

The best the SOCP-based algorithm proposed in Sec. 3 can offer is a satisfactory NPR filter

bank, but not a PR filter bank (see Remark (2) in Sec. 4.E). In this section, we describe a

different algorithm that directly minimizes the stopband energy of the PF subject to the PR

constraints.

A. Parameterization of approximated PR constraints

Suppose we are in the kth iteration and seek an increment vector δ to update hk to hk+1 =

hk + δ such that the PR constraints in (14) are better satisfied. For δ with ‖δ‖ small, the PR

constraints can be approximated linearly and the requirement becomes

al,n(hk + δ) ≈ al,n(hk) + gT
l,nδ = 0 for 0 ≤ n ≤ 2m − 2 and 0 ≤ l ≤ M/2 − 1 (38)

where gl,n = 2Ql,nhk is the gradient of al,n(h) at hk. The system of linear equations in (38)

can be written as

Gkδ = −ak (39)

where Gk ∈ R(N−M)/2×N collects the (N − M)/2 rows gT
l,n and ak ∈ R(N−M)/2 consists of

components al,n(hk). It is well known that all solutions of the underdetermined linear system
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(39) can be parameterized as

δ = V eφ + δs (40)

where δs = −G†
kak is a special solution of (39), V e ∈ RN×(N+M)/2 is matrix composed of

(N + M)/2 basis column vectors of the null space of Gk, and φ ∈ R(N+M)/2 is a parameter

vector. A numerically reliable way to compute matrix V e in (40) is through the singular-value

decomposition [37] of Gk, i.e., Gk = UΣV T from which V e is formed by the last (N +M)/2

columns of V .

B. An iterative SOCP formulation

The stopband energy of the PF in the kth iteration can be expressed as

e(hk + δ) = (hk + δ)T P (hk + δ) = ‖P 1
2 (hk + δ)‖2

For δ approximating the PR constraints, we use (40) to rewrite the stopband energy at hk + δ

as

e(hk + δ) = ‖P 1
2 V eφ + bk‖2 (41)

where bk = P
1
2 (hk + δs). The optimization problem in (19) can now be converted to

minimize η (42a)

subject to: ‖P 1
2 V eφ + bk‖ ≤ η (42b)

‖V eφ + δs‖ ≤ β (42c)

where β is a small positive scalar to control the magnitude of δ in (40). If we let x = [η δT ]T ,

c = [1 0 · · · 0]T , P̃ = [0 P 1/2V e], and Ṽ e = [0 V e], then problem (42) can be expressed as

minimize cT x (43a)

subject to: ‖P̃ x + bk‖ ≤ cT x (43b)

‖Ṽ ex + δs‖ ≤ β (43c)

which is obviously an SOCP problem. Solving (43), vector φ is obtained as the last (N +M)/2

components of solution x and vector δ is calculated using (40). Point hk is then updated to

hk+1 = hk + δ. The iteration continues until a prescribed number of iterations is complete or

‖δ‖ is smaller than a given tolerance.
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C. Obtaining a practically PR BCM filter bank

The error in the PR conditions that is introduced by the linear approximation (38) will vanish

as ‖δ‖ → 0. This suggests an iterative design method as follows. An SOCP solver is applied

to problem (43) with a fixed β and an initial point h0 obtained either by using the algorithm

described in Sec. 3 or by (35). To ensure fast convergence, the initial value of β should not be too

small. The solution obtained then serves as the initial point for the subsequent iteration where

a reduced value of β is adopted. The iteration continues in this way until a solution associated

with a sufficiently small β is obtained. Based on (38), we see that the PF so generated practically

satisfies the PR constraints while minimizing its stopband energy.

D. Design of OCM filter banks

Like the design algorithm in Sec. 3, the algorithm described above can be readily extended

to OCM filter banks with two simple modifications. First, the linear approximation of the

PR constraints in this case applies to (17). Consequently, matrix Gk in (39) has a size of

N/4 × N/2 whose rows are gT
ln = 2hT

k QT
l,n where Ql,n are given by (17b), and vector ak in

(39) has a dimension of N/4 whose components are al,n(hk) obtained using (17a). In addition,

the expression for the stopband energy of the PF in (41) now becomes

e(hk + δ) = ‖2P 1/2
L V eφ + b̃k‖ (44)

where P L is given by (37b) and b̃k = 2P
1/2
L (hk + δs).

E. Two remarks

We now conclude this section with two remarks.

(1) The algorithmic core of the proposed design methods is SOCP optimization. As a well

structured class of convex programming problems, the solution of an SOCP problem is always

a global solution which can be identified using an interior-point solver with polynomial-time

computational complexity [21]. Having said that, we stress that the design problem itself as

formulated in (19) is not a convex programming problem because the feasible region defined by

the PR constraints is nonconvex, and a solution obtained by the algorithm can only be deemed

local. Our approach to the solution may be interpreted as an iterative strategy that allows one

to accomplish the design by solving a series of sub-problems that are convex, well-structured,

and can be solved efficiently. Although a theoretical proof of the convergence property of

the proposed algorithms is presently not available, in quite a number of simulations we had
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not detected a single failure of convergence. One might attribute the success of the proposed

methods to (i) the global convergence of each SOCP sub-problem, and (ii) the use of constraint

(31c) (for the algorithm in Sec. 3) and constraint (43c) (for the algorithm in Sec. 4) that validate

the key linear approximations in (25a) and (38), respectively.

(2) The two SOCP-based algorithms proposed in the paper have distinct roles. The first algo-

rithm is aimed at a satisfactory NPR BCM/OCM filter bank. As explained in Figs. 3 and 4,

there is a strong likelihood for the algorithm to achieve a globally optimital solution. However,

this is accomplished at the cost of reduced design efficiency because the bound β2 in (31d) can

only grow with small increments. As such, the algorithm is only suitable for NPR designs. On

the other hand, the second algorithm (in Sec. 4) can accomplish a design significantly more effi-

ciently because it minimizes the stopband energy of the PF directly and allows large increment

steps at the beginning of the algorithm. Therefore, it is suitable for the design of practically PR

BCM and OCM filter banks. A problem with using a large initial value of β in (42c) is that the

“ trajectory” of the iterates generated by the algorithm does not offer intermediate results that

would correspond to good NPR designs. For these reasons, the two proposed algorithms are

considered complementary to each other and should be utilized for different design tasks.

V. EXAMPLES

Example 1: This example is concerned with the design of an NPR OCM filter bank with

M = 32 and m = 7. The length of the linear-phase PF is N = 448. The algorithm in Sec. 3

was applied with an initial h0 obtained by minimizing e2(h, w) in (34) with w = 1 − 10−9,

ωp = 0.5ωs, and ωa = 0.9ωs where ωs is given by (9c) with ρ = 1. The initial values of β1

and β2 were set to β1 = 10−3 and β2 = 2 × 10−6. The algorithm was implemented using

SeDuMi1.05 [33] on a Pentium 4 3.06 GHz PC with MATLAB version 6.5. It took the algo-

rithm 287 iterations (with average CPU time of 0.7104 seconds per iteration) to converge to an

NPR OCM filter bank whose performance is illustrated in Fig. 6 and Table I. For comparison

purposes, the design is compared to the NPR PCM filter bank presented in [22]. The filter bank

also has M = 32 channels and the length of the PF is N = 467. Its performance is illustrated

in Fig. 7 and Table I. As in [22], the total aliasing distortion defined by [8]

eta(ω) =

[
M−1∑
i=1

|Tl(e
jω)|2

]1/2

was also used in the comparison, see Table I and Figs. 6(d), 7(d). An attractive feature of the

method in [22] is that it offers fast design of good NPR OCM filter banks. The present method,
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on the other hand, offers still improved designs at the cost of increased amount of computation.

TABLE I

PERFORMANCE COMPARISON OF THE DESIGN IN EXAMPLE 1

M N e2(h) max |em(ω)| max |ea(ω)| max |eta(ω)|

Method of [22] 32 467 6.95 · 10−12 2.42 · 10−3 2.67 · 10−7 3.86 · 10−7

Proposed Method 32 448 4.22 · 10−12 1.09 · 10−3 1.40 · 10−7 1.99 · 10−7

Example 2: This example is concerned with the design of a practically PR OCM filter bank

with M = 16, m = 12, and N = 384. The algorithm in Sec. 4 was applied with initial value

of β in (43c) set to 0.001. Two distinct initial h0 were used to test the algorithm’s sensitivity

to the choice of initial point. The first h0 was obtained by minimizing e2(h, w) in (34) with

w = 1 − 10−9, ωp = 0.5ωs, and ωa = 0.9ωs where ωs is determined by (9c) with ρ = 1. The

second h0 was obtained by applying the algorithm in Sec. 3. The performance of the resulting

designs turned out to be almost identical, except that the number of iterations when the second

h0 was used (147 iterations) was considerably less than that when the first h0 was used (211

iterations). The average CPU time per each iteration was 0.3751 seconds. The performance

of the filter bank is evaluated in terms of the amplitude responses of the PF (Fig. 8a), the

analysis filters (Fig. 8b), the overall distortion T0(e
jω), and the alias transfer function Tl(e

jω)

for 1 ≤ l ≤ M − 1. The PF as well as the analysis (and synthesis) filters have approximately

−100 dB stopband attenuation. The reconstruction error was found below −134.80 dB and all

amplitude responses of Tl(e
jω) were found below −144.61 dB. An OCM filter bank with the

same parameter values M = 16 and m = 12 was presented in [10] (as Example 2) and its

performance was evaluated in Fig. 3 of [10]. By comparison, it is observed that the present

design demonstrates improved performance. In addition, the time-domain PR conditions are

satisfied with error bound (defined by Eq. (54) in [10]) η ≤ 4.34 × 10−19 which compares

favorably with the bound η ≤ 1 × 10−13 for the design in [10].

Example 3: This example considers the design of a 16-channel practically PR BCM filter bank

with a system delay considerably lower than what an OCM filter bank counterpart can offer. The

design parameters are M = 16, m = 3, s = 0, and d = 31, which imply N = 96 and D = 31.

The initial point h0 was obtained by minimizing e2(h, w) in (34) with w = 1 − 10−9 and

the initial value of β in (43c) was 0.001. The algorithm in Sec. 4 was applied and converged

to a solution after 246 iterations with an average CPU time of 0.0627 seconds per iteration.
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The stopband energy of the PF was found to be 1.82 × 10−4, the maximum PR distortion

max |em(ω)|, maximum group-delay distortion max |egd(ω)|, and maximum worst-case aliasing

error max |ea(ω)| were found to be 1.32× 10−14, 4.80× 10−12, and 1.70× 10−14, respectively.

The amplitude response of the PF, amplitudes of the analysis filters, amplitude distortion em(ω),

group-delay distortion egd(ω), and worst-case aliasing error ea(ω) are depicted in Fig. 9. Based

on above evaluation results, it is evident that the BCM filter bank designed is practically PR. A

design of a PR BCM filter bank with M = 16, N = 96, and D = 63 was presented in [23] with

its amplitude response of the PF shown in Fig. 5 of [23]. Bearing in mind the present design

has the same M and N but a much lower system delay, this example demonstrates the ability

of the proposed algorithm to offer satisfactory design of PR BCM filter banks with low system

delays.

VI. CONCLUSIONS

We have described two SOCP-based algorithms for the design of NPR/PR OCM/BCM fil-

ter banks. Although at the moment no theoretical arguments are available to show the global

optimality of the designs obtained, computer simulations have demonstrated that the proposed

algorithms yield satisfactory NPR and PR designs that are compared favorably with several

existing design methods.
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Fig. 6. A 32-channel NPR OCM filter bank with N = 448. (a) Amplitude responses of the PF. (b) Amplitude

responses of analysis filters. (c) Amplitude of T0(ejω) on [0, π/M ]. (d) Total aliasing error eta(ω).
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Fig. 7. A 32-channel NPR OCM filter bank with N = 467 presented in [22]. (a) Amplitude responses of the PF.

(b) Amplitude responses of analysis filters. (c) Amplitude of T0(ejω) on [0, π/M ]. (d) Total aliasing error

eta(ω).
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Fig. 8. A 16-channel PR OCM filter bank with N = 384. (a) Amplitude response of the PF. (b) Amplitude

responses of the analysis filters. (c) Reconstruction error in dB. (d) Amplitude responses of the alias transfer

functions Tl(z) for 1 ≤ l ≤ 15.
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Fig. 9. A 16-channel PR BCM filter bank with N = 96 and D = 31. (a) Amplitude response of the PF. (b)

Amplitude responses of the analysis filters. (c) Amplitude distortion. (d) Group-delay distortion. (e) Worst-

case aliasing error.


