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Abstract—A new linear multiuser detector that directly mini-
mizes the bit-error rate (BER) subject to a set of reasonable con-
straints is proposed. It is shown that the constrained BER cost
function has a unique global minimum. This allows us to develop
an efficient barrier Newton method for finding the coefficients of
the proposed detector using information about timing, amplitudes,
channels, and the signature signals of all users. Although the new
detector cannot be shown to be optimal among linear multiuser
detectors without the constraints imposed, extensive simulations
demonstrate that it achieves the lowest BER. Furthermore, in some
cases, the BER of the proposed detector can be significantly lower
than that of the decorrelating and MMSE detectors.

Index Terms—Bit-error rate minimization, interior-point nu-
merical optimization, multiuser detection.

I. INTRODUCTION

T HE CAPACITY of direct-sequence code-division mul-
tiple-access (DS-CDMA) systems is limited primarily by

the near–far problem. This has motivated considerable effort to
develop near–far resistant multiuser detectors. Linear multiuser
detectors such as the decorrelating detector [1], [2] and the
minimum mean-squared error (MMSE) detector [3] are among
the most popular due to a number of advantages. As indicated
by their names, the decorrelating detector and the MMSE
detector minimize the multiple-access interference (MAI) and
the mean-squared error, respectively. These detectors achieve
optimal near-far resistance, and hence, both are worst-case
optimal linear multiuser detectors [2]. It has been shown that
in many cases, the output error of the MMSE detector can be
assumed to be a Gaussian random process [4]. However, there
are situations in practice where this is not a valid assumption.
For example, this will be the case when the number of simul-
taneous users in a microcell is small, or the crosscorrelation
properties among signature signals are poor, and the energy of
the interferers is small relative to that of the desired signal. In
general, the decorrelating and MMSE detectors do not provide
the lowest bit-error rate (BER) even among linear detectors.
Hence, it is of significant interest to develop a new linear
multiuser detector that minimizes BER directly.

In [5], anapproximateminimum BER criterion was proposed
for combating intersymbol interference (ISI) in single-user com-
munication systems and was shown to yield significant perfor-
mance gain over the conventional zero-forcing and MMSE cri-
teria [5]. In this paper, we study the minimum BER criterion as
applied to linear multiuser detection for binary signaling and its
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biorthogonal extensions to DS-CDMA communication systems.
Note that the BER function is highly nonlinear and several local
minima may exist. In order to avoid suboptimal local minima,
we propose aconstrainedminimum-BER (CMBER) multiuser
detector that minimizes the BER cost function directly subject
to a set of convex constraints. It is shown that if the decorrelating
detector exists, then there exist an infinite number of detectors
satisfying the constraints and that the constrained optimization
problem at hand has a unique minimizer. We focus our attention
on base stations where information about the signature signals,
timing, channels, and received amplitudes of all active users is
available or can be accurately estimated. Hence, a deterministic
approach can be taken and the linear multiuser detector that min-
imizes the BER directly can be designed prior to its application.
Adaptive methods that yield linear detectors in which approx-
imately minimum BER is achieved without knowledge of the
parameters of the interferers have been proposed recently in [6]
and [7].

To obtain the proposed detector, we convert the constrained
optimization problem to an equivalent convex programming
problem and then develop a Newton barrier method that
requires considerably less computation than that required by
the method of sequential quadratic programming [10]. Even
though the proposed detector cannot be shown to be optimal
without the constraints, our simulations demonstrate that its
BER performance is the best.

The paper is organized as follows. In Section II, the system
model considered is described, and the decorrelating and
MMSE detectors are briefly reviewed. In Section III, the
CMBER detector is proposed, and issues concerning conver-
gence are studied. In Section IV, the Newton barrier method
for designing the CMBER detector is presented. Numerical
examples are given in Section V, and conclusions are drawn in
Section VI.

II. PRELIMINARIES

We consider binary phase-shift-keying (BPSK) transmission
for a channel with additive white Gaussian noise (AWGN) in
a DS-CDMA system. For synchronous systems, user detec-
tion can be performed symbol by symbol. For asynchronous
systems, a window approach is usually adopted that results
in a symbol-by-symbol detection [8], [9]. As an alternative,
each symbol within the observation window, which usually
spans an odd number of symbol intervals [8], can be deemed
to originate from a different synchronous user. By doing this,
an asynchronous system can be interpreted as an equivalent
synchronous system [2].

Assume that there are synchronous users, and denote the
information bit of the th user and its amplitude as and

, respectively. Within the observation window, the critically
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sampled version of the received baseband signalcan be
expressed as

(1)

where

In (1), is an AWGN signal with zero mean and variance,
and is the signature signal of theth synchronous
user. It is important to note that contains user amplitudes
that need not equal each other. For asynchronous systems, if
the original signature signal of the real user, who transmitted
the th information bit, is , then will be of the form

.
Note that if the channel coefficients are known and the ISI

due to the channel’s time spread is negligible compared with
the multiuser interference, then the above model applies to fre-
quency-selective channels [10], [11]. For a frequency-selective
channel with resolvable paths, in (1) becomes

where is the th tap weight of the tapped-delay line model of
the channel [12], , and

is the th chip of the original signature signal of user.
A linear multiuser detector can be viewed as a linear filter

followed by a sampler that samples the output of the filter at
, where is the duration of the symbol interval. The

decorrelating detector attempts to completely eliminate MAI,
regardless of the presence of background noise. This so-called
zero-forcing (ZF) solution can be achieved by employing a re-
ceiving filter with the coefficient vector

(2)

where
crosscorrelation matrix among signature signals;

th coordinate vector;
index of the desired user.

Note that we have assumed that is positive definite, as is
usually the case in practice [1]; otherwise, a nearly ZF solution
can be achieved by replacing in (2) by the Moore-
Penrose pseudoinverse of .

In contrast to the decorrelating detector, the MMSE detector
attempts to minimize the mean-squared error or, equivalently,
maximize the signal-to-interference-plus-noise ratio. The coef-
ficient vector of the MMSE detector is given by

(3)

where is the identity matrix.
Both of the above two linear detectors achieve the optimal

near–far resistance and both provide significant performance
gain compared with the conventional matched-filter receiver
[1]–[3]. However, since their decision criteria are not related
to the BER directly, the possibility to develop an improved
linear detector that directly minimizes the BER exists, as will
be shown in the rest of the paper.

III. CONSTRAINEDMINIMUM -BER MULTIUSER DETECTION

Consider the BER performance of a linear multiuser receiver
with coefficient vector for a multiuser channel, and assume
that the two binary values of the signal, i.e.,1, are equally
likely. The BER of the th user can be readily found to be

(4)

where , and for is a possible
information vector with its th entry , and

Since the BER cost function with respect togiven in (4) de-
pends only on the direction of, the existence of a global min-
imum of is obvious. The detector, whose coefficient vector

minimizes (4), is optimal among linear detectors and will
be referred to as theoptimal linear detector. However, there is
no closed-form expression for as in the case of and .
Furthermore, since the BER function is highly nonlinear and
there may exist more than one local minimum, convergence to

cannot generally be guaranteed for most optimization algo-
rithms. A detailed interpretation of the minima of the BER cost
function can be found in [4].

The following proposition will be useful in the subsequent
analysis.

Proposition 1: Any local minimizer of the BER cost function
in (4) subject to

for (5)

is a global minimizer. Furthermore, with the constraint ,
the global minimizer is unique.

Proof: Since the BER cost function is independent of the
length of , it is sufficient to consider minimizing on the
set

and satisfies (6)

Let the global minimizer of the above constrained minimization
problem be , and assume that there exists another local
minimizer such that

(7)

Let be a positive constant, and assume that

(8)

Since and for , we conclude
that . Furthermore, because , we
have

(9)

Hence

(10)
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where the second inequality follows from the fact that for
is a convex function. From (4) and (10), we have

for all (11)

Since as , the inequality in (11) implies that
in any arbitrarily small neighborhood centered at, there al-
ways exists a vector such that . This contra-
dicts the fact that is a local minimizer, and hence, we have

. Since is the global minimizer, we also have

. Therefore, , and is a global
minimizer.

To show the uniqueness of the minimizer in set, we note
that any point in the set

and for (12)

is a global maximizer. Hence, it is sufficient to consider only
those points in the convex set .

Since is strictly convex for , in (4) is strictly
convex on set . Now, assume that there are two distinct global
minimizers and with . In such a case, any point

with would satisfy the inequality

(13)

Since is strictly convex on , we have

which contradicts (13). Therefore, the global minimizer is
unique.

Note that in the above proposition, we have assumed that the
set defined by (6) is not empty. This assumption is true for
most practical systems, as stated in the following proposition.

Proposition 2: If the signature signals are
linearly independent of each other, then there always exist an
infinite number of elements in.

Proof: It is easy to show that if are linearly
independent of each other, then is positive definite, and the
ZF solution can be achieved. Consequently, from (2), we have

for (14)

This means that is in set . Now, consider vector

(15)

where is a perturbation vector to be determined later. We have
and

(16)

It follows that if

(17)

then (16) implies that for . In other
words, any vector given by (15) with satisfying (17) be-
longs to set .

The CMBER multiuser detector is defined as the detector
whose coefficient vector is the global minimizer of in (4)
subject to the constraints in (5). From Proposition 2, once the ZF
solution can be achieved, the CMBER detector exists and out-
performs the decorrelating detector. Several remarks are now in
order.

a) In our simulations, we found out that for systems where
the signal-to-noise ratio (SNR) at the output of the decor-
relating detector is not very low (e.g., the SNR is greater
than 0 dB), the CMBER multiuser detector is identical
with the linear minimum-BER detector whose coefficient
vector minimizes the BER cost function (4) without any
constraints. An intuitive explanation is as follows. Since
a detector with a coefficient vector that does not sat-
isfy (5) would usually yield a poorer BER than that of the
decorrelating detector, the global minimizer most likely
satisfies (5). If so, from Proposition 1, this global mini-
mizer is the same as the coefficient vector of the CMBER
detector.

b) The above results can be readily extended to the case
of channel equalization for single-user communication
systems. Even though an exact ZF solution is not al-
ways achievable with a finite-length linear equalizer,
the channel is stillequalizablefor most cases. In other
words, set is most likely not empty, and a constrained
minimum-BER equalizer exists.

c) As will be shown in the next section, the problem of min-
imizing in (4) subject to the constraints in (5) can
be converted to a standard convex programming problem,
and an efficient constrained Newton method can be devel-
oped to obtain the CMBER solution quickly.

IV. NEWTON BARRIER METHOD FORCMBER PROBLEM

The problem of minimizing the BER in (4) subject to the
constraints in (5) is equivalent to

minimize (18a)

subject to for (18b)

(18c)

where
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and

for

Note that the problem in (18) isnot a convex programming
problem because the feasible region characterized by (18b) and
(18c) is not convex. However, it can be readily verified that the
solution of (18) coincides with the solution of the constrained
optimization problem

minimize (19a)

subject to for (19b)

(19c)

This is because for anywith , one always has
, where . In other words, the minimizer of

problem (19) always satisfies . A key distinction be-
tween the problems in (18) and (19) is that the latter one is a
convex programming problem for which a number of efficient
algorithms are available. The optimization algorithm described
below fits into the class of barrier function methods [13], [14],
but it has several additional features that are uniquely associated
with the present problem. These include a closed-form formula
for evaluating the Newton direction and an efficient line search.

By using a barrier function approach, we can further drop the
nonlinear constraint in (19c) and convert the problem in (19)
into

minimize (20a)

subject to for (20b)

where is the barrier parameter. With a strictly feasible
initial point , which strictly satisfies the constraints in (19b)
and (19c), the logarithmic term in (20a) is well defined. It is also
evident that regardless of the value of, the minimum of (20) is
the global minimum of the problem of minimizing (4) subject
to the constraints in (5). The gradient and Hessian matrixes of

are given by

(21)

(22)

where , and for . Note that
the Hessian matrix in the interior of the feasible region, i.e.,
with and , is positive definite. This
suggests that at the th iteration, can be obtained as

(23)

where the search direction is computed using

(24)

The positive scalar in (23) is determined by a linear
search step, as follows. First, note that the one-variable function

is strictly convex on the interval , where
is the largest positive scalar such that remains

feasible for . Once is determined,
is a unimodal function on , and the search for the min-
imizer of the function can be carried out using one of the
well-known methods such as quadratic or cubic interpolation,
the Golden-section method, or some direct search method [13],
[15], [16]. To find , we note that a point satisfies
the constraints in (19b) if

for (25)

Since is feasible, we have for . Hence,
for those indices such that , any non-negative
will satisfy (25). In other words, only those constraints in (19b)
whose indices are in the set

(26)

will affect the largest value of that satisfies (25), and the
largest value of can be computed as

(27)

In order to satisfy the constraint in (19c), we solve
for , and the solution is given by

with

(28)

The value of can now be taken as , . In practice,
one must keep the next iterate strictly inside the feasible region
to ensure that the barrier function in (21) is well defined. To this
end, we use

(29)

This iterative optimization procedure continues until the dif-
ference between two successive solutions is less than a pre-
scribed tolerance. Even though, with a strictly feasible initial
point the barrier Newton method described above always con-
verges to the global minimizer for an arbitrary positive, the
value of does affect the behavior of the algorithm. A small

would lead to an ill-conditioned Hessian matrix, whereas a
large would lead to slow convergence. Hence, ain the in-
terval [0.001, 0.1], which would guarantee a well-conditioned
Hessian matrix and allow a fast convergence, is desirable.

V. NUMERICAL EXAMPLES

A. Example 1

As a first example, we consider a two-user system. The
main purpose of the example is to illustrate how and when the
CMBER detector outperforms the MMSE detector. Assume
that the signature signals multiplied by the corresponding
amplitudes are and , as depicted in Fig. 1, and the desired
user is user 0. From the figure, the normalized signature
crosscorrelation can be found to be 0.894. The corresponding
coefficient vector of the decorrelating detector must be
orthogonal to , as illustrated in Fig. 1. Clearly, in this case,
the CMBER detector is equivalent to the optimal linear detector
since the energy of the desired signal is stronger than the
energy of the interferer. If a linear detector is used and the
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Fig. 1. Signature signals and multiuser detectors for a two-user system.

TABLE I
BERS FOR ATWO-USERSYSTEM (SNR= 15 dB)

angle between its coefficient vector and is , the BER for
this example can be obtained as

(30)

Hence, the BER of the decorrelating detector is

(31)

and the BER of the matched-filter receiver (MFR) with coeffi-
cient vector is

(32)

Comparing (31) with (32), we can see that the MFR, in this
case, outperforms the decorrelating detector regardless of the
SNR because the crosscorrelation of the two signature signals
is large, whereas the MAI is sufficiently small relative to the
desired signal energy. Under these circumstances, the loss of
signal energy inherent in the decorrelating detection is always
larger than the loss of signal energy due to signal cancellation
when the MFR is employed. Even though the MMSE detector
can to some extent balance the effects of MAI and AWGN, its
performance is still close to that of the decorrelating detector
since it treats the residual MAI and AWGN as equally harmful.
On the other hand, the optimal linear detector can better balance
the effects of MAI and AWGN, and as a result, its performance
is always better than that of the MFR. For a given , the
coefficient vector of the MMSE detector and the coefficient
vector of the optimal linear detector are illustrated in Fig. 1.
The BER’s of the decorrelating detector, MMSE, MFR, and op-
timal linear detectors are given in Table I. As can be observed
from the table, for user 0, the optimal linear detector and even
the MFR significantly outperform the decorrelating and MMSE
detectors. However, this occurs only when the power the user
of interest is sufficiently high compared with the power of the
interferers.

Fig. 2. Performance comparison of linear multiuser detectors: Ten
equal-power users.

B. Example 2

As a second example, we compare the performance of
the CMBER with that of the optimal linear detector. Only
synchronous systems were considered. The BER curves of
different detectors for a system with ten equal-power users
are shown in Fig. 2. The optimal linear detector was taken as
the best solution of 40 runs of a quasi-Newton optimization
algorithm. In order to test a case in which the CMBER detector
differs from the optimal linear multiuser detector, the user
signature signals were randomly selected, and the SNR was
chosen to be unrealistically small. As can be seen in Fig. 2,
the BER curve of the CMBER detector and that of the optimal
linear detector are indistinguishable. In fact, these two detectors
have approximately the same coefficient vector when the SNR
is greater than 3 dB. From the figure, it is also evident that the
MMSE detector achieves very similar performance as that of
the optimal linear detector, whereas the decorrelating detector
yields a considerably poorer performance.

We now consider more practical situations where the SNR
is greater than 0 dB and the near–far effect needs to be taken
into account. Figs. 3 and 4 show the BER curves for ten-user
single-path and multipath systems, respectively. In both types
of systems, the powers of interferers were chosen to be in the
range 0 to 10 dB below the power of the user of interest, and the
interferers’ powers were approximately uniformly distributed.
The number of resolvable paths was assumed to be six for Fig. 4.
For the multipath system, the tap weights were assumed to be
known. Hence, the single-path model in (1) applies, as described
in Section II. Only conditional BER curves were evaluated, and
the SNR for a particular user is defined as the ratio of the total
received signal energy of the user to the energy of the Gaussian
noise. As can be observed, in both cases, the CMBER detector
outperforms the decorrelating and MMSE detectors. For the
single-path system, the crosscorrelation among signature sig-
nals is small, and the three BER curves are close to each other.
On the other hand, for the multipath system, where the crosscor-
relation properties are relatively poorer, the performance gain
of the CMBER detector over those of the decorrelating and the
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Fig. 3. Performance comparison of linear multiuser detectors: 31-chip Gold
codes and single path.

Fig. 4. Performance comparison of linear multiuser detectors: 31-chip Gold
codes and multipaths.

MMSE detectors is significant. Note that the coefficient vector
of the CMBER detector was equal to that of the optimal linear
detector, but its performance curve is not shown in the figures.

C. Example 3

As a last example, we applied the proposed CMBER detector,
the ZF equalizer, and the MMSE equalizer to a single-user
system over a dispersive channel with impulse response

. The detector and equalizers
were assumed to be of three taps, and the detection delay was
assumed to be 2. The BER curves of the ZF equalizer, the
MMSE equalizer, and the CMBER detector are illustrated in
Fig. 5. As can be seen in the figure, the performance of the ZF
equalizer is similar to that of the MMSE equalizer, whereas the
CMBER detector offers a performance gain as much as 5 dB
over the MMSE equalizer.

Fig. 5. Performance comparison of linear equalizers for a dispersive channel.

D. Use of MATLAB

We have also compared the proposed barrier Newton
method with the constrained optimization method provided by
MATLAB routine constrin terms of computational complexity.
We found out that for a system with ten users and signature
signals of length 31 chips, the MATLAB routine required 40
to 100 times more flops than the barrier Newton method that
converged after about 10 to 20 iterations. As the number of
users and the length of signature signals increase, the barrier
Newton method becomes increasingly more efficient in terms
of computation than the MATLAB routine. It was noted that
most of the performance gain is usually achieved in the first
couple of iterations. This implies that only a few iterations
would be needed in practice.

E. Adaptive Implementation

In principle, one needs to perform the optimization again
when the channel changes. Since the proposed optimization-
based algorithm converges as long as the initial point satisfies
the constraints in (19b) and (19c), it is possible to develop an
adaptive version of the algorithm to accommodate channel vari-
ations. For a slowly varying channel, the optimization will con-
verge quickly by using the previous coefficient vector as the ini-
tial point.

VI. CONCLUSIONS

We have studied the minimum BER criterion as applied
to multiuser detection as well as channel equalization for
single-user systems and proposed a constrained minimum-BER
multiuser detector. The proposed detector minimizes the
BER cost function directly subject to the constraint that the
corresponding eye pattern is open independently of the in-
formation bits transmitted by the interferers. We have shown
that under this constraint, the BER cost function has a unique
minimizer. Consequently, we were able to use a Newton barrier
method to find the coefficients of the proposed detector, which
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requires only a very small amount of computation relative to
that required by the popular method of sequential quadratic
programming. The analysis and numerical examples presented
demonstate that, in many practical situations, the proposed
detector offers a significant performance advantage over the
decorrelating and MMSE detectors.

The analysis and results presented in this paper, especially
the identification of the convergence region defined by the set
of convex constraints, are also useful for adaptive implemen-
tations of the proposed algorithm. Even though identifying the
proposed convergence region exactly would need information
about the interferers, it is possible to identify a closely related
convergence region without such information. For example, a
constraint on the angle between the coefficient vector to be op-
timized and the coefficient vector of the decorrelator can be used
to define such a region.
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