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An Improved Weighted Least-Squares Design
for Variable Fractional Delay FIR Filters

Wu-Sheng Lu,Fellow, IEEE, and Tian-Bo Deng,Member, IEEE

Abstract—Digital filters capable of changing their frequency
response characteristics are often referred to as variable digital
filters (VDF’s) and have been found useful in a number of
digital signal processing applications. An important class of
VDF’s is the class of digital filters with variable fractional
delay. This paper describes an enhanced weighted least-squares
design for variable-fractional-delay finite-impulse response filters,
which offers improved performance of the filters obtained with
considerably reduced computational complexity compared to a
recently proposed weighted least-squares (WLS) design method.
The design enhancement is achieved by deriving a closed-form
formula for evaluating the WLS objective function. The formula
facilitates accurate and efficient function evaluations as compared
to summing up a large number of discrete terms, which would be
time consuming and inevitably introduce additional errors into
the design.

Index Terms—Digital filters, variable fractional delay filters,
weighted least-squares design.

I. INTRODUCTION

DIGITAL filters capable of changing their frequency re-
sponse characteristics, such as group delay, magnitude

response, and resonance frequency, etc., are often referred to as
variable digital filters(VDF’s). Typically, the transfer function
of a VDF contains a number ofparametersthat can be used
to tune the frequency response of the VDF. Thus, the main
objective in the design of a VDF is to find aparameterized
transfer function which, in a certain sense, best approximates
a given set of frequency response characteristics that vary with
the parameters in a desired manner. Applications of VDF’s in
image processing, two- and three-dimensional signal migration
in seismic data processing, digital telecommunications, and
modeling of music instruments have been reported in, for
example, [1]–[12]. A detailed account of the basic theory,
design, and implementation of various VDF’s can be found
in the survey papers [13], [14].

In this paper, we focus our attention on the design of finite-
impulse response (FIR) VDF’s with variable fractional delay.
Digital filters with fractional delay represent an important class
of digital filters as they find many applications, and several
algorithms for the design of such filters have recently been
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proposed [14]–[18]. In [17], a weighted least-squares (WLS)
method is proposed to design a single-parameter FIR VDF,
and the method was applied to design a variable fractional
delay filter. This paper describes an enhanced WLS design
for single-parameter FIR VDF’s. The proposed algorithm is
applied to design a variable fractional delay filter that demon-
strates improved performance with reduced computational
complexity compared to that of [17]. Essentially, the improved
performance and design efficiency is achieved by deriving
a closed-form formula for evaluating the WLS objective
function in which the weighting function is assumed to be
separable and piecewise constant. It avoids using large number
of frequency and parameter grids and allows one to carry
out the needed function evaluations accurately and quickly. A
design example is included to illustrate the proposed method.

II. PROBLEM FORMULATION

We adopt the notation used in [17] to denote the transfer
function of the fractional delay FIR filter by

(1)

where is the parameter representing the fractional delay, and
( ) are polynomials of degree , i.e.,

(2)

In matrix notation, the frequency response of the filter can be
expressed as

(3)

where

and

...
...

...
...

For the design of fractional delay filters, the desired (variable)
frequency response is given by

(4)
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where is the parameter encountered in (1)–(3), and
is an integer usually chosen to be if is odd or

if is even. For a WLS design, the objective function
is set to be

(5)

and one seeks to find coefficient matrixthat minimizes
in (5).

III. CLOSED-FORM FORMULATION FOR EVALUATING

Throughout we assume a separable and piecewise constant
weighting function namely

(6)

In (6), is assumed to be a constant on interval
with , and is assumed to be a

constant on interval with
where and

are partitions of frequency interval and
parameter interval , respectively. The objective function

in (5) can be evaluated as follows.
First, we write as

Re

const. (7)

By using the property of matrix trace that
where tr() denotes matrix trace, a bilinear form can be
written as where and are vectors and is a
matrix. It then follows that term in (7) can be calculated as

(8)

where is the complex-conjugate of

(9)

with the ( , )th entry of given by

(10)

(11)

with the ( )th entry of given by

(12)

and
for

elsewhere.

From (11) and (12), we see that and, hence, are Toeplitz
matrices.

By using the same trace property, the second term in (7)
can be written as

(13)

where

(14)

and (14a), as shown at the bottom of the page. Equation (13)
leads to

tr (15)

where

(16)

with

It follows that the (, )th entry of is given by

(17)

Using (7), (8), and (15), we obtain

tr const. (18)

(14a)
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TABLE I
CONDITION NUMBER OF PPP VERSUSK

The gradient of with respect to is given by

(19)

[see Appendix for a proof of (19)]. By setting
the optimal coefficient matrix is obtained as

(20)

We now conclude this section with several remarks on the
derivation. First, (17) can be expressed as

(21)

which can be evaluated using fast and reliable numerical
integration methods, such as adaptive Simpson’s rule or adap-
tive Newton–Cotes rule [19]. Second, (20) indicates that the
design is determined by three matrices, i.e., , and .
It follows from (9)–(12) that and are symmetric and
positive definite and are entirely determined by and the
weighting function and matrix is the only entity
that depends on the desired . This suggests that the
same and can be used in the different variable filter
design as long as the same and are employed.
Third, although and are positive definite and, hence,
their inverses do exist, computer simulations have indicated
that these matrices (especially matrix ) may become ill-
conditioned even for moderate filter order and polynomial
degree . Take matrix in (9) as an example and assume

. In this case, is the symmetric
and positive-definite Hankel matrix given by

...
...

...
...

As can be seen from Table I, the condition number of
denoted by cond(), is fairly large, even for small values of.
This indicates that numerical difficulties may be encountered
when (20) is used to compute the solution. We shall address
this issue in the next section when presenting a design example
using the proposed method.

TABLE II
COMPARISONS OF THEPROPOSEDMETHOD WITH THE METHOD OF [17]

IV. A N ILLUSTRATIVE EXAMPLE

In this section, we illustrate the proposed algorithm by
applying it to design a variable fractional delay filter with
the same specifications as adopted in [17]:
and the cutoff frequency . The design of variable
fractional delay filters were considered in [14] using the
Lagrange interpolation method and other methods [15]. It
appears that the best result achieved so far was that reported
in [17]: by using a set carefully selected weights, the design
obtained in [17] was able to keep the frequency-domain error

(22)

below dB in the entire region and
.

The comparisons of the proposed method with that of [17]
were made in terms of the maximum error defined by

with the -error defined by

the number of floating point operations (flops), and the central
processing unit (CPU) time used.

With for and

for
for
for

where and both the method [17]
and the proposed method were implemented using MATLAB 5
on a SUN Ultrasparc I. The results are summarized in Table II.
Fig. 1 shows the error function defined in (22). The
group delays of the filter in frequency range for
different are depicted in Fig. 2, and the error in group delay
for and is shown in Fig. 3.

It is observed that the proposed design leads to reduced
and and needs only a small fraction of computations

required by the method of [17]. This is mainly attributed to
the closed-form evaluation of the matrices that are involved
in (20). The integrals in (21) were evaluated numerically
using MATLAB command which makes use of an
adaptive Newton–Cotes 8-panel rule [19]. As mentioned in the
preceding section, the condition numbers of matricesand
are fairly large ( for and for in the present
design). An effective remedy for dealing with ill-conditioned
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Fig. 1. Error function e(!; p).

Fig. 2. Fractional delay response ofH(!; p).

matrices is to perform the Cholesky decomposition [20] of
matrices and i.e.,

(23)

where and are upper triangular matrices, and then
multiplying the matrices involved in (20) in a right order

(24)

where grouping with turns out critical in obtain-
ing a numerically stable solution. The role of the Cholesky
decomposition in (23) is to obtain matrices and
whose condition numbers are significantly reduced to
and respectively. This, in conjunction with the fact
that most entries in are small in magnitude ( ),
suggests that the multiplication of with would largely
“cancel out” the large-magnitude entries in which in turn
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Fig. 3. Absolute error in passband fractional delay.

considerably eases off the numerical instability. Alternatively,
other matrix decompositions, such as the orthogonal-upper-
triangular (known as QR) decomposition and the singular
value decomposition, have also been tried with similar design
results. But in the present case, the Cholesky decomposition
offers a slightly reduced computational complexity compared
to other matrix decompositions.

We now conclude this section with some remarks on the
choice of the weighting functions. First, the separability of

as assumed in (6) is primarily for the sake of
computational feasibility: a nonseparable would lead
to a far more complex solution procedure, in which the nice
structure as seen in (20) would not exist. In addition, it seems
quite hard to explicitly specify a nonseparable in the
design so as to obtain a considerably better design compared
to the one which utilizes a separable . Second, if one
agrees to employ a separable as in (6), then which
types of and should one use? Our numerical
experiences indicated that the use of piecewise constant
and a constant is a reasonable point to start. As one may
notice from the above example, the function used there
has zero value for as this is the do-not-care frequency
region, and assumes value 1 for most part of the frequency
region of interest. There is only a small interval, in
which assumes a larger value in order to handle the
frequency boundary at . We had also tried a number
of more sophisticated piecewise constant weights, which in-
evitably led to more computations, yet with little performance
improvement. As for since no “do-not-care” region is
specified, all values of between zero and one are considered
equally important. This leads to a . As can be
observed from Fig. 1, the frequency response appears to be
pretty flat across the entire region . Of course,

one is always in a position to make a further improvement if
is modified from constant to piecewise constant based

on the current design result, but the minor improvement is
obtained at the cost of increased computational complexity. It
is therefore a tradeoff the designer has to make to generate a
satisfactory design with a minimum amount of computations.

V. CONCLUSION

An algorithm for the weighted-least-squares design of vari-
able fractional delay FIR filters has been proposed. The design
is accomplished by developing a closed-form formula that
can be used to evaluate the WLS error function accurately
and quickly, which leads to improved filter performance with
reduced computational complexity.

APPENDIX

Proposition: Let
and with and symmetric, then

tr (25)

Proof: Denote and let be a small perturbation
of . Denote by the matrix with its entry perturbed
by . We can then write

where is the th coordinate vector, and

tr
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Hence

i.e.,

tr

which implies that

tr (26)

Similarly, one can show that

tr (27)

See also [21, ch. 6] for (27). Together, (26) and (27) lead to
(25).
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