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Design of Recursive Digital Filters with Prescribed
Stability Margin: A Parameterization Approach
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Abstract—A major problem in the design of recursive digital
filters is stability. Although an unstable recursive filter obtained
from a design algorithm can be stabilized by reciprocal sub-
stitution of the unstable factors of the filter without chang-
ing its amplitude response, this stabilization technique cannot
be applied if phase response is a part of the design speci-
fications. In this paper, we propose a new method for the
design of recursive digital filters with a prescribed stability
margin by parameterizing all stable transfer functions and car-
rying out unconstrained optimization over this class of transfer
functions. Three parameterization techniques are described, and
closed-form formulas for the gradient functions and Hessian
matrices of several typical objective functions are derived. The
design technique is expected to be useful in the cases where
both amplitude and phase specifications are required in the
design.

Index Terms—Optimization, parameterization, recursive digi-
tal filters.

I. INTRODUCTION

RECURSIVE digital filters have been extensively used
in a variety of applications where high selectivity and

efficient processing of discrete signals are required [1]–[6].
A major problem in designing recursive filters is stability.
Some design methods deal with this problem by choosing an
initial point which corresponds to a stable transfer function,
and monitoring the stability of the transfer function generated
in each iteration; other design methods do not verify the
stability of the intermediate transfer functions, but carry out
a stabilization step by reciprocal substitution for the unstable
factors in the filter’s denominator if the final transfer function
turns out to be unstable. However, this stabilization technique
cannot be used if phase response is a part of the design
specifications since the reciprocal substitution changes the
phase response of the filter.

As an approximation problem, the design at hand can
naturally be tackled using optimization techniques. In [7], a
linear-programming technique was proposed for this purpose.
Stability of the infinite-impulse-response (IIR) filters obtained
using this technique are assured by imposing a set oflinear
conditions on the real part of the denominate polynomial
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at dense grid points from to . Although
the linearity of these constraints makes it possible to utilize
efficient linear-programming methods, they aresufficient(but
not necessary) stability conditions, meaning that many stable
designs are excluded when a linear programming method
is used to search an “optimal” solution. Consequently, the
outcome of this method is actually a suboptimal design. In
[8], the design problem was addressed using an efficient
constrained nonlinear optimization method known as quadratic
programming [9]–[11]. However, just as in the case of [7], the
linear stability constraints are sufficient (but not necessary),
inevitably leading to a certain degree of performance degra-
dation. Although, in principle, other constrained nonlinear
optimization methods such as gradient projection methods,
reduced gradient methods [9]–[11], and recently developed
convex programming methods [12], [13] have the potential
of becoming effective problem solvers, “the study of con-
strained optimization is by no means as well advanced as
for the unconstrained case,” and “the writing of software is
a much more complex task” [11, p. 139]. Another approach
that several researchers have taken is to extend the concept
of eigenfilters to the IIR case [14]–[16]. However, stability
remains an unsolved issue in this class of methods [16].

In this paper, we propose a new method for the design of
recursive digital filters with a prescribed stability margin by
parameterizing all stable transfer functions and then carrying
out unconstrainedoptimization over this class of transfer
functions. We propose three parameterization techniques. The
first utilizes hyperbolic tangent transformations (HTT’s) to
characterize all discrete-time, first-, and second-order trans-
fer functions with a prescribed stability margin. The second
technique is similar to the first in spirit except that it uses an
arc–tangent transformation (ATT). The third approach applies
a modified bilinear transfer function to map the stable first-
and second-order continuous-time transfer functions to their
discrete counterpart with a prescribed stability margin. In these
methods, the number of parameters in the denominator remains
equal to the order of the denominator polynomial, and the
parameters can vary over theentire parameter space without
violating the stability of the transfer function. Furthermore,
we derive closed-form formulas for evaluating the gradient
and Hessian matrix of leastth- and minimax-type objective
functions. An immediate advantage of the proposed method
is that the design can be accomplished using unconstrained
optimization techniques [9]–[11], and a prescribed stability
margin of the filter is guaranteed. The proposed method is
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expected to be of use for the cases where both amplitude and
phase specifications are required in the design [17]. This paper
is organized as follows. Two methods of parameterizing Schur
polynomials with a prescribed stability margin using hyper-
bolic tangent and ATT’s are described in Section II. Section III
proposes another parameterization method based on the MBT.
In Section IV, the problem of designing stable recursive digital
filters is formulated as unconstrained optimization problems,
and closed-form formulas for evaluating the gradient functions
and Hessian matrices of typical objective functions are derived.
In Section V, we present several design examples to illustrate
the proposed techniques.

II. PARAMETERIZATION OF SCHUR POLYNOMIALS WITH

PRESCRIBEDSTABILITY MARGIN BY HTT’S T AND ATT’ S

A monic polynomial with real coefficients is said to
be a Schur polynomial if the roots of are located
strictly inside the unit circle. It is well known that a digital
filter is stable if and only if the denominator of its transfer
function is a Schur polynomial. In what follows, we describe
two methods for parameterizing all first- and second-order
Schur polynomials.

A. Parameterization Using HTT

The hyperbolic tangent function is defined by

(1)

It is a differentiable monotonically increasing function that
maps the entire one-dimensional (1-D) space
to the open interval . It follows from (1) that

(2)

characterizesall first-order Schur polynomials. Note that only
one parameter——is involved in (2), and it can take any
real value over the entire 1-D parameter space.

Now consider the second-order monic polynomial

(3)

where and are real parameters. It is known [1], [18] that
is a Schur polynomial if and only if

(4a)

(4b)

(4c)

Hence, the stability region for is an open triangle
in the parameter space depicted in Fig. 1.

If we let

(5)

then varies over the interval when parameter
varies from to . Further, for a fixed with

, the value of may vary from to
in order for the point to be inside the stability

region. Hence, if we let

(6)

Fig. 1. Stability region of polynomialp(z; d0; d1).

then (5) and (6) jointly define a transformation which provides
a one-to-one mapping between the entire parameter space

and the stability region in parameter space .
In other words,

(7)

with , characterizingall second-order Schur
polynomials where two real parametersand can take any
values in the entire two-dimensional (2-D) parameter space.

B. Parameterization Using ATT

An alternative approach to the parameterization of all first-
and second-order Schur polynomials is to use the ATT

(8)

Note that is a differentiable and monotonically increasing
function that maps the entire 1-D space into the interval

By using an argument similar to that in Section II–A, we
can show that

(9)

characterizesall first-order Schur polynomials, and

(10)

with , characterizingall second-order Schur
polynomials.
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Fig. 2. Stability region with a stability margin�.

C. Schur Polynomials with Prescribed Stability Margin

When implementing a stable recursive filter, rounding or
truncation of the filter coefficients may lead to a unstable
implementation if the stability margin of the filter is too small.
It is, therefore, desirable to approximate a given frequency
response by a transfer function with a prescribed stability
margin. This means that the zero of the first-order polynomial
factor in the denominator should be within interval

with some , and that the zeros of all second-
order polynomial factors in the denominators should be within
the darker region shown in Fig. 2, where defines a kind
of stability margin for the polynomial in (3).

Since the function

maps the entire 1-D space to the open interval
, the HTT can be used to parameterize all

first-order Schur polynomials with stability marginas

(11)

and to parameterize all second-order Schur polynomials with
stability margin as

(12)

with , .
Similarly, the ATT can be used to parameterize all first-order

Schur polynomials with stability margin as

(13)

Fig. 3. The MBT maps the left-halfs-plane into the disc with radius1� �.

and to parameterize all second-order Schur polynomials with
stability margin as

(14)

with , .

III. PARAMETERIZATION BASED ON THE

MODIFIED BILINEAR TRANSFORMATION

A monic real-coefficient polynomial is said to be a
Hurwitz polynomial if the roots of have negative
real parts. It is well known that the bilinear transformation

transforms a Hurwitz polynomial to a Schur polynomial.
Defining the modified bilinear transformation (MBT) as

(15)

it follows that the MBT maps the imaginary axis to the circle
centered at the origin with radius . A graphic illustration
of (15) is shown in Fig. 3. We see that the MBT transforms
a Hurwitz polynomial into a Schur polynomial with stability
margin .

A. First-Order Schur Polynomials

It is quite obvious that all first-order Hurwitz polynomials
can be characterized by where is anonzero
real parameter.

Using the MBT, we obtain

Hence, the family of polynomials given by

(16)

with characterizing all first-order Schur
polynomials with stability margin .
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B. Second-Order Schur Polynomials

It is well known that all second-order Hurwitz polynomials
can be characterized as of the form

(17)

where and are nonzero real parameters. Applying the
MBT to (17), we obtain

Hence, the family of polynomials given by

(18)

with , characterizing all second-order Schur
polynomials with stability margin .

IV. DESIGN OF STABLE RECURSIVE DIGITAL FILTERS

A. Typical Objective Functions and Their Gradients

Let the transfer function of a th-order digital filter be
expressed as

(19)

where

(20)

for HTT
for ATT
for MBT

(21a)
(21b)
(21c)

where , , and are defined by (12), (14), and (18),
respectively.

Let be the set of frequencies at which
the frequency response of the filter is evaluated, and define

(22)

where is the desired frequency response at, and

(23)

If a linear phase response is required, then

(24)

where is the desired amplitude at and is the
group delay. The parameter vectorcollects the coefficients
of and the group delay as follows:

(25)

An important quantity required in many unconstrained opti-
mization algorithms such as the quasi-Newton algorithms and
the conjugate gradient algorithms [11], [19] is the gradient of
the objective function. For the weighted leastth optimization,
the objective function is defined by

(26)

where is an integer, and are weights
at frequencies . The gradient of can be evaluated as
follows:

(27)

where denotes the complex conjugate of , and
is given by (28)–(33c), shown at the bottom of

the following page, where denotes the hyperbolic
cosine of defined by .

For the case where the transfer function has odd order
, we write the transfer function as

(34)

where and for are defined by (20),
(21), and

for HTT

for ATT

for MBT.

It follows that

(35)

along with (36a)–(36c), shown at the bottom of the following
page.

As an alternative, recursive digital filters can be designed
using efficient minimax algorithms developed in [20]–[22],
where the objective function is defined by

(37)

where and for are constants,

(38)

and (39)

and

and (40)
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In this case, the gradient of is given by

(41)

where

(42)

and the gradient of is given by (28)–(36).

B. Evaluating Gradient by Transformation Jacobian

As an alternative, gradient can be evaluated using trans-
formation Jacobian. Conventionally, the polynomials in
are expressed as

(43)

(44)

If we define a parameter vector that collects, and all
and for and as

(45)

then the gradient of function in (22) with respect to can
be expressed as

(46)

where is the gradient of with respect to ,
which is given by (28)–(31) and

(47)

(48)

for , and is the transformation
Jacobianthat is a matrix determined
by the parameterization transformation used. In effect,is a
block–diagonal matrix given by

...
(49)

(28)

(29)

(30)

(31)

for HTT

for ATT

for MBT

(32a)

(32b)

(32c)

for HTT

for ATT

for MBT

(33a)

(33b)

(33c)

for HTT

for ATT

for MBT

(36a)

(36b)

(36c)
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where is the identity matrix of dimension , and
is the 2 2 matrix

which depends on the transformation used, shown in
(50a)–(50c), at the bottom of this page.

As will be shown shortly, the transformation Jacobian
will be of use in the derivation of a closed-form formula for
the Hessian matrix of the objective function defined by
(26) and defined by (37).

C. Hessian Matrix

The importance of having the Hessian matrix of the ob-
jective function calculated lies in the fact that if the Hessian
matrix is positive definite, then the classic Newton method
can be used to update the filter coefficient and the value of the
objective function will be reduced at a second-order rate. If
the Hessian matrix is not positive definite, then the modified
Newton (MN) method can be used to find a good descent
direction with a satisfactory reduction rate [10], [11]. The
design efficiency of the MN method as compared to several
quasi-Newton optimization algorithms was investigated in
detail by Bose and Chen [23]. In what follows, we derive
expressions of the Hessian matrix that can be used in the least
th and minimax optimization.
For the objective function defined by (26), it follows

from (27) that the Hessian matrix of is given by

(51)

with

(52)

where is the gradient of with respect to given
by (28)–(33) or (46)–(50), and is the Hessian matrix
of with respect to , which is to be derived shortly. For
the least squares case, i.e., , (52) is quite simple:

(53)

For the objective function defined by (37), it follows
from (41) and (42) that

(54)

where is given by (53). Note that the key quantity
that needs to be formulated in order to evaluate and

is .

D. A Formula for

From (48), we write

where denotes theth row of the transformation Jacobian
. Straightforward calculations then lead to

(55)

where

(56)

for HTT (50a)

for ATT (50b)

for MBT (50c)
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and is the Hessian matrix of with respect to .
It follows from (49) that

for (57a)

and

...

...

for (57b)

where is the 2 2 block in (49) with
for even and for odd .

V. DESIGN EXAMPLES

In this section, we present two design examples to illustrate
the proposed method. The first example is to design a low-pass
IIR filter to meet the following specifications:

1) normalized passband edge ;
2) normalized stopband edge ;
3) maximum passband ripple 0.1 dB;
4) minimum stopband attenuation 45 dB;
5) maximum deviation in the group delay in the passband

5%;
6) stability margin 0.05.

As will be seen below, one can apply the proposed methods
to achieve these design specifications with a tenth-order IIR
transfer function.

Although local solutions obtained by the proposed design
algorithm with any initial points are always stable, the high
degree of nonlinearity of (either the leastth type or the
minimax type) objective function implies that many local
solutions do not represent satisfactory designs. An effective
way to find a good initial point is to apply the well-known bal-
anced truncation method [24] to a higher order finite-impulse-
response (FIR) filter that approximates the desired frequency
response. Such an FIR transfer function can be obtained using
a conventional design method [1]. The balanced truncation
usually yields a reduced-order IIR transfer function with good
approximation accuracy and guaranteed stability [25], [26].
For the purpose of our design, a 20th-order half-band linear-
phase FIR filter was designed using the window method. A
tenth-order IIR approximation of the FIR filter was obtained
by the balanced truncation method. The three proposed param-
eterization methods were employed in the design, which was
carried out using a quasi-Newton optimization method known
as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
[10], [11] and the MN method [10]. The set contains 100

TABLE I
DESIGN RESULTS OF EXAMPLE 1

frequency values that are evenly placed in the normalized
frequency band [0, 0.5]. The leastth objective function (69)
was used with and the weights

for
for

for
for

To implement the BFGS algorithm, (28)–(33) were used
to evaluate the gradient functions required. Evaluation of the
Hessian matrices required by the MN algorithm was carried
out using (51), (52), and (55)–(57). Convergence was claimed
when the two-norm difference between two consecutive points
obtained by the algorithm was less than a given tolerance.
In all the designs, was set to be 10 . With the same initial
point obtained by balanced truncation, both the BFGS and MN
algorithms converge for all three parameterization methods.
The design results are summarized in Table I.

It is observed that all six designs are stable and have met
the design specifications. However, the design efficiency as
well as the performance of filters obtained varies. In general,
the BFGS algorithm requires more iterations than the MN
algorithm does for the algorithm to converge, but the MN
algorithm usually requires more floating-point operations per
iteration as the Hessian matrix has to be evaluated. The six
designs achieve similar minimum stopband attenuation, but
the BFGS/MBT combination achieves the smallest maximum
passband ripple (0.0311 dB) while the MN/HTT and MN/MBT
combinations offer less than 2% maximum relative deviation
of group delay in the passband. The amplitude response,
passband ripple, and phase response of the tenth-order IIR
filter obtained with BFGS/MBT are depicted in Figs. 4–6.

As the second example, we consider approximating the
desired amplitude shown in Fig. 7 by a tenth-order stable
IIR filter. Design problems of this kind may be encountered
when one employs a singular-value-decomposition approach
to designing a circular symmetric 2-D low-pass filter [17].
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Fig. 4. Amplitude response of the tenth-order IIR filter (Example 1).

Fig. 5. Passband ripple of the filter (Example 1).

(a)

(b)

Fig. 6. Phase response of the filter (Example 1).

Fig. 7. Desired amplitude response (Example 2).

TABLE II
DESIGN RESULTS OF EXAMPLE 2

If the 2-D filter is required to have a linear phase response,
then we need to design a stable IIR filter to approximate the
desired magnitude response in Fig. 7, whose phase response
in the passband is required to be linear. The BFGS and MN
algorithms were used to carry out six designs where the
proposed parameterization methods were employed to ensure
stability of the designs. As the desired amplitude response is
not a standard low-pass type, we use the two-norm measure

to evaluate the approximation accuracy where and
are defined by (23) and (24). With

and the weights given by

elsewhere
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Fig. 8. Amplitude response of the IIR filter as compared to the desired one
(Example 2).

(a)

(b)

Fig. 9. Phase response of the filter (Example 2).

both the BFGS and MN algorithms converge, and the design
results are summarized in Table II. It is observed that all the
designs obtained are stable and have comparable performances
with the MN/HTT combination achieving the smallest
and largest stopband attenuation. As with the first example,
the MN method requires less iterations, but more floating-
point operations. Since digital filters are commonly designed
off-line, computational complexity is not as important as the
performance of the filter. In this regard, the MN method in
conjunction with the proposed parameterization techniques
deserve to be considered as “the method of choice.” The am-
plitude and phase responses of the filter designed by MN/HTT
approach are shown in Figs. 8 and 9.

VI. CONCLUDING REMARKS

We have proposed a parameterization approach to the
design of IIR filters with a prescribed stability margin.

The parameterization of all stable IIR transfer functions
allows one to carry out the design by using well-established
unconstrained optimization methods. The examples presented
in Section V have demonstrated that stable low-order IIR
filters with desirable amplitude/phase characteristics can
effectively be designed using the proposed techniques.
The concept of stable parameterization is expected to be
of use in other digital signal-processing (DSP) problems,
including adaptive IIR filtering [27], where filter coeffi-
cients are updated to achieve specific filtering tasks while
preserving stability.
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