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Design of Recursive Digital Filters with Prescribed
Stability Margin: A Parameterization Approach

Wu-Sheng Lu,Senior Member, |IEEE

Abstract—A major problem in the design of recursive digital at dense grid points fromw = 0 to w = w,/2. Although
filters is stability. Although an unstable recursive filter obtained  the linearity of these constraints makes it possible to utilize

from a design algorithm can be stabilized by reciprocal sub- - ; _ ; =
stitution of the unstable factors of the filter without chang- efficient linear-programming methods, they ataficient(but

ing its amplitude response, this stabilization technique cannot NOt Necessary) stability conditions, meaning that many stable
be applied if phase response is a part of the design speci-designs are excluded when a linear programming method
fications. In this paper, we propose a new method for the is used to search an “optimal” solution. Consequently, the
desig_n of recursive _d_igital filters with a prescr_ibed stability gutcome of this method is actually a suboptimal design. In
margin by parameterizing a!l s_tab_le transfer _functlons and car- [8], the design problem was addressed using an efficient
rying out unconstrained optimization over this class of transfer . . L .
functions. Three parameterization techniques are described, and constrained nenlinear optimization method known as quadratic
closed-form formulas for the gradient functions and Hessian programming [9]-[11]. However, just as in the case of [7], the
matrices of several typical objective functions are derived. The linear stability constraints are sufficient (but not necessary),
design technique is expected to be useful in the cases whergneyjitaply leading to a certain degree of performance degra-
both amplitude and phase specifications are required in the dation. Although. in principl th trained i
design. ion. A gh, principle, other constrained nonlinear
optimization methods such as gradient projection methods,
reduced gradient methods [9]-[11], and recently developed
convex programming methods [12], [13] have the potential
of becoming effective problem solvers, “the study of con-
strained optimization is by no means as well advanced as
. INTRODUCTION for the unconstrained case,” and “the writing of software is
ECURSIVE digital filters have been extensively used much more complex task” [11, p. 139]. Another approach
in a variety of applications where high selectivity andhat several researchers have taken is to extend the concept
efficient processing of discrete signals are required [1]-[8)f eigenfilters to the IIR case [14]-[16]. However, stability
A major problem in designing recursive filters is stabilityremains an unsolved issue in this class of methods [16].
Some design methods deal with this problem by choosing anln this paper, we propose a new method for the design of
initial point which corresponds to a stable transfer functiomecursive digital filters with a prescribed stability margin by
and monitoring the stability of the transfer function generatgzhrameterizing all stable transfer functions and then carrying
in each iteration; other design methods do not verify theut unconstrainedoptimization over this class of transfer
stability of the intermediate transfer functions, but carry odtinctions. We propose three parameterization techniques. The
a stabilization step by reciprocal substitution for the unstabliest utilizes hyperbolic tangent transformations (HTT'’s) to
factors in the filter's denominator if the final transfer functiomharacterize all discrete-time, first-, and second-order trans-
turns out to be unstable. However, this stabilization technigéer functions with a prescribed stability margin. The second
cannot be used if phase response is a part of the desigohnique is similar to the first in spirit except that it uses an
specifications since the reciprocal substitution changes t&—tangent transformation (ATT). The third approach applies
phase response of the filter. a modified bilinear transfer function to map the stable first-
As an approximation problem, the design at hand camd second-order continuous-time transfer functions to their
naturally be tackled using optimization techniques. In [7], discrete counterpart with a prescribed stability margin. In these
linear-programming technique was proposed for this purposgethods, the number of parameters in the denominator remains
Stability of the infinite-impulse-response (lIR) filters obtainedqual to the order of the denominator polynomial, and the
using this technique are assured by imposing a sdineér parameters can vary over tleatire parameter space without
conditions on the real part of the denominate polynomiglolating the stability of the transfer function. Furthermore,
we derive closed-form formulas for evaluating the gradient
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expected to be of use for the cases where both amplitude and d;
phase specifications are required in the design [17]. This paper |
is organized as follows. Two methods of parameterizing Schur y,
polynomials with a prescribed stability margin using hyper- 1+dof----- A
bolic tangent and ATT’s are described in Section Il. Section IlI

proposes another parameterization method based on the MBT.

In Section 1V, the problem of designing stable recursive digital 1
filters is formulated as unconstrained optimization problems,

and closed-form formulas for evaluating the gradient functions

and Hessian matrices of typical objective functions are derived.

In Section V, we present several design examples to illustrate -1
the proposed techniques.

/ \~
|

Il. PARAMETERIZATION OF SCHUR POLYNOMIALS WITH
PRESCRIBED STABILITY MARGIN By HTT'S T AND ATT'S

A monic polynomialp(z) with real coefficients is said to
be a Schur polynomial if the roots ¢f z) = 0 are located
strictly inside the unit circle. It is well known that a digital ~(l4dg |- -—-- N
filter is stable if and only if the denominator of its transfer
function is a Schur polynomial. In what follows, we describe
two methods for parameterizing all first- and second-ordE
Schur polynomials.

\
N

ilg. 1. Stability region of polynomiab(z, do,d1).

then (5) and (6) jointly define a transformation which provides

A. Parameterization Using HTT a one-to-one mapping between the entire parameter space
The hyperbolic tangent function is defined by (bo,b1) and the stability region in parameter spaeh, dy ).
. . In other words,
[ 1
w() = tanh(z) et +e? @) pa(z,bo,b1) = 2% + [1 4 tanh (bo)] tanh (b1 )z + tanh (bo)
It is a differentiable monotonically increasing function that @)
maps the entire one-dimensional (1-D) space < z <
to the open interval1 < u < 1. It follows from (1) that with —oo < b, b1 < oo characterizingll second-order Schur
olynomials where two real parametégsandb; can take an
p1(z,bo) = z + tanh (by), —oo<by<oo (2 POy b psandos y

values in the entire two-dimensional (2-D) parameter space.

characterizesll first-order Schur polynomials. Note that only

one parameterby,—is involved in (2), and it can take anyB. Parameterization Using ATT

real value over the entire 1-D parameter space.
Now consider the second-order monic polynomial

p(z,do,di) = 2>+ diz + do 3)

wheredy andd; are real parameters. It is known [1], [18] that
p(z,do,dy) is a Schur polynomial if and only if

An alternative approach to the parameterization of all first-
and second-order Schur polynomials is to use the ATT

v(z) = % tan™!(z). (8)

Note thatv(x) is a differentiable and monotonically increasing
do <1 (4a) function that maps the entire 1-D space into the interval
di—dg <1 (4b) —1<v.< 1. o - .
di +do >—1. (4c) By using an argument similar to that in Section II-A, we
can show that
Hence, the stability region fas(z, do, d1) is an open triangle

. : A 2
in the parameter space depicted in Fig. 1. q1(z,b0) = z + = tan™'(bo), —o0o < by <o (9)
If we let &
do = tanh (o), —oo < by < 00 5) characterizesill first-order Schur polynomials, and

then do varies over the interval1 < dop < 1 Wh_en parameter .. (, 5y b)) = 2> + 2 1+ 2 tan L (bo)
by varies from —oo to oco. Further, for a fixedd, with m m

—1 < do < 1, the value ofd; may vary from—(1 + do) to tan (b 2 n ) (10
1+ dp in order for the poin{dy, d; ) to be inside the stability an - (by)z + 7r an(bo)  (10)

region. Hence, if we let . .
9 with —oo > b, by < oo characterizingll second-order Schur

dy = [1+ tanh (bo)] tanh (by), —00 < bg, b1 < oo (6) polynomials.
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dy ‘ Im(s)

Re(s)

Fig. 3. The MBT maps the left-hal-plane into the disc with radiuk — 6.

doy
and to parameterize all second-order Schur polynomials with
stability marginé as
2(1 -6 2
qgé)(z, bo,b1) = 2% + ( ) [1 + - tan_l(bo)}
Qo Qo
2(1-6
tan " (by)z + ( ) tan"1(by) (14)
aw
with —co < by, b1 < oo.
Fig. 2. Stability region with a stability margif.
lll. PARAMETERIZATION BASED ON THE
C. Schur Polynomials with Prescribed Stability Margin MODIFIED BILINEAR TRANSFORMATION

When implementing a stable recursive filter, rounding or A monic real-coefficient polynomiak(s) is said to be a
truncation of the filter coefficients may lead to a unstabldurwitz polynomial if the roots ofz(s) = 0 have negative
implementation if the stability margin of the filter is too smallreal parts. It is well known that the bilinear transformation
It is, therefore, desirable to approximate a given frequency
response by a transfer function with a prescribed stability s =
margin. This means that the zero of the first-order polynomial z+1

factor in the denominator should be within interMat1 +  transforms a Hurwitz polynomial to a Schur polynomial.

6,1 — &) with someé > 0, and that the zeros of all secondpefining the modified bilinear transformation (MBT) as
order polynomial factors in the denominators should be within

the darker region shown in Fig. 2, whete> 0 defines a kind z—146 0<6<1 (15)

z—1

of stability margin for the polynomial in (3). ST +1-§

Since the function it follows that the MBT maps the imaginary axis to the circle

w®(z) = (1 — §) tanh (z) centereq at the or_igin_with radius— ¢. A graphic illustration
of (15) is shown in Fig. 3. We see that the MBT transforms

maps the entire 1-D spacesc < x < 00 to the open interval @& Hurwitz pOIynomial into a Schur pOIynomiaI with Stablllty
(=1 + 6,1 — §), the HTT can be used to parameterize alPargin é.
first-order Schur polynomials with stability margéas

A. First-Order Schur Polynomials

(6) _ _ _
pr (z,bo) = 2 + (1 — §) tanh (bo), 20 < bo < o0 It is quite obvious that all first-order Hurwitz polynomials

(11)  can be characterized tiys, by ) = s+b2 whereb, is anonzero

) ) real parameter.
and to parameterize all second-order Schur polynomials WIthUSing the MBT. we obtain

stability marginé as

b -1
pé‘s)(z, bo,b1) = 2% 4 (1 — 8)[1 + tanh (by)] tanh (by)2 s b 7+ (1-0) 21
+(1—¢)tanh (bo) (12) 1 bo) s=(2—1+65/2+1—6) B (z+1- 5)/(5(2) +1)

with —oco < bo, b1 < o0. Hence, the family of polynomials given by

Similarly, the ATT can be used to parameterize all first-order 2
Schur polynomials with stability margié as () _ -1

poly o y 9 r1(z,bp) =2+ (1= 6) b§+1 (16)
(8) _ - -1 _
q (2, bp) =2+ — tan (bo), 20 <bo <o With —so < by < o0 characterizing all first-order Schur

(13) polynomials with stability margird.
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B. Second-Order Schur Polynomials An important quantity required in many unconstrained opti-

It is well known that all second-order Hurwitz polynomialdMization algorithms such as the quasi-Newton algorithms and

can be characterized s, by, by) of the form the conjugate gradient algorithms [11], [19] is the gradient of
’ the objective function. For the weighted leatt optimization,

h(s,bo,b1) = s> + bys + b} (17) the objective function is defined by
where by and b; are nonzero real parameters. Applying the M
MBT to (17), we obtain E(z) = Z w;e; (x)[? (26)
=1
h(S, bo, bl) ) ) . A
s=(2—146/241—5) wherep > 0 is an integer, andw;,1 < ¢ < M} are weights
L, 21— &) —1) (18 p2—p2+1  at frequencies. The gradient ofE(x) can be evaluated as
7 4 4+1 iR +1 follows:
B z+1-8)2/03+ 0 +1 ' M ‘ z,
( SO VEE) =2 3 wilex)? [a(@ ) it —a‘g@}
Hence, the family of polynomialsl” (=, by, b1) given by 2 z z
M
(8) _ 2, 2080 - 1) _ . —on |-, Ocilx)
5 ' (2,b0,b1) = 2° + TR R+l =p ; wi|ei(z)["""Re |e;(z) . (27)
, bI - +1 ,
2+ (1-6) RN (18) where g;(x) denotes the complex conjugate ef(x), and
1 0

_ o de;(x)/0x is given by (28)—(33c), shown at the bottom of
with —oo < g, by < oo characterizing all second-order Schuthe following page, whereosh(bo) denotes the hyperbolic

polynomials with stability margirS. cosine ofbg defined bycosh (box) = (ebor + e=bor) /2,
For the case where the transfer function has odd order
IV. DESIGN OF STABLE RECURSIVE DIGITAL FILTERS 2K + 1, we write the transfer function as
A. Typical Objective Functi d Their Gradi 5 M) [Nreqa(2)
. Typical Objective Functions an eir Gradients H(z):HO[H Dk 2 |:Dk+1 2 } (34)
Let the transfer function of @ Kth-order digital filter be s Du(2) w+1(7)

expressed as
P where Ny, (#) and Dy (z) for 1 < k < K are defined by (20),

(21), and

—~
I
~—

(19)

—~
™
~—

K
N,
z) = Ho H Dk
1 k pu—
k=1 Nipt1(z) =2+ a0, k1
where z+ (1 — &) tanh (bo g +1), for HTT

2(1 -6
Nk(z) 222 + a1x2 + aok (20) D ( ) z 4+ ( ) tan’l(b07K+1), for ATT
§ K+1\2) =
p(%é))(z, bor.bix),  for HTT  (21a) s T A——
Dy, (7) q5 (Z, bor, blk)a for ATT (21b) ~ b(Q) K41 +1’ '
7’56)(7 b()k, blk) for MBT (21C)
) ) It follows that
wherepy ™/, q2 , andr;” are defined by (12), (14), and (18),
; Oe;(x) F(x,w;)
espectively. = T (35)
LetQ = {w;,1 <4 < M} be the set of frequencies at which dao, k41 Niqr(e?«?))
the frequency response of the filter is evaluated, and defm%“ong with (36a)—(36¢), shown at the bottom of the following

ei(z) = F(z,w;) — Fo(w;) (22) page.
) ) As an alternative, recursive digital filters can be designed
where Fo(w;) is the desired frequency response.atand using efficient minimax algorithms developed in [20]-[22],

K where the objective function is defined by

Nk 61“' T
F(x,w;) = Ho H Dy (= T (23)
K U(x, N, &) = Z)\d)Q:cS Z¢2x§ (37)
If a linear phase response is required, then i€ i€l
Fo(w;) = e My (w;) (24) where¢ and ); for i = 1,2,---, M are constants,
where My(w;) is the desired amplitude at; and = is the Pi(x, &) =lei(z)| — & (38)
group delay. The parameter vectorcollects the coefficients I ={i: ¢;(z,6) >0 and ) > 0} (39)

of H(z) and the group delay as follows:

. and
z=[Hy 7 an a1 - ar K

bor bin - box bik]t. (25) I = {i: ¢i(x,£) >0 and \; =0}. (40)
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In this case, the gradient df(z, A, §) is given by then the gradient of function; in (22) with respect tac can
VU(x, A\, &) be expressed as
€l icl

where V¢;(z) is the gradient ofe;(x) with respect toy,
where which is given by (28)-(31) and

Viei@)| = Vie(@ei@)]? = Re[ ei() -aci(‘”)} (42)

de; F(x, /@)

ex ox - ' 47
| o |ei(=)] Do De(=T) (47)
and the gradient o¢;(x) is given by (28)—(36). de, i T F (g, i)
=— — (48)
) ) . . Odyx Dy (e3+iT)
B. Evaluating Gradient by Transformation Jacobian
As an alternative, gradient can be evaluated using traf@t & = 1,---, K, and J = dy/9z is the transformation
formation Jacobian. Conventionally, the polynomialsHifz) Jacobianthat is a(4K + 2) x (4K + 2) matrix determined
are expressed as by the parameterization transformation used. In effdcis a
) block—diagonal matrix given by
Ni(z) = 2% + a1z + aok
Di(2) =22 + dupz + dog. (44) Tzic42
J1 0
If we define a parameter vector that colleéfs, = and allag; J = Ja (49)
anddy forl =0,1andk =1,---,K as 0
y= [Ho 7 ap a1+ aox air doi din - dox dir]’  (45) JK
dei(x)  Flxz,w;)
= 28
dH, H, (28)
dei(x .
% = jwi Fo(ws) (29)
Oe;(x) Flz,w;)
= - 30
dagr,  Np(edwT) (30)
. JjoiT .
o) r e -
daix Nk(CJ“”T)
( (6 — 1)[1 + tanh Jei T P2, w;
(=1l +m( )(b”“)e (@@ o 1T (32a)
COSh (bok) ( J“”'T, bo]?, bjlk)
dei(e) _ J 26 = Vi + m;) u)e™ TP w) g oy (32b)
Fbor. m2(1 4+ 05,005 (7T ok, buk)
_ _ Jjw; T _ 2 .
4(1 — &)box[(b2,, — e (—;—)(1' D[RR LACA) — (320
\ (146, + bék)“’zg (7% T bog, i)
( (6 — D[1 + tanh (bog)e?= T F(z, w;
(6 )[2 + tfm(é)(bo'k)e |F(z,w )7 for HTT (332)
cosh”(bix)ps ((3]1“7? bok: lek)
. — an— Nelwi i
de;(x) _ 2(6 1)[7r+2tfuz§) (b'Ok)C |F(z,w )7 tor ATT (33b)
by (1 + b2 ) (Cjwa, b()k, blk)
_ _ Jwi; T _ 2 .
4(1 — 8)bui[(b2, — e (Jg)(l D[RR LACA) — (330
[ (1+ 02, + 02,02 (0T by, byy,)
(— G 1)5)(‘”’,”1‘) ., for HTT (36a)
cosh (bO,Kg—l)pl F(GJ“”T, bo,k+1)
dei  _ 28— 1()6) (2, wi) . for ATT (36b)
9bo K +1 14+ 05 )@ (€T bo req1)
40— 1)b°(§)+1F @) for MBT (36¢)
L8 geqr + D27 (7T bo K1)
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wherels k2 is the identity matrix of dimensioBK + 2, and whereV ¢;(x) is the gradient o€; () with respect tac given
Jy. is the 2 x 2 matrix by (28)—(33) or (46)—(50), an¥2¢;(x) is the Hessian matrix
of ¢;(x) with respect taz, which is to be derived shortly. For

oy Oy the least squares case, i+ 2, (52) is quite simple:
g - Obor.  Obox
"7 | odor  adu H' (z) = Re[e; (x)V2ei(z) + V.2 (2)Vie(z)].  (53)
Oby.  Obyy

For the objective functiod’(x, A, ) defined by (37), it follows
which depends on the transformation used, shown ffpm (41) and (42) that

(50a)—(50c), at the bottom of this page.
As will be shown shortly, the transformation Jacobidn V24 (x, A, &)

will be of use in the derivation of a closed-form formula for .y Z Ailei

the Hessian matrix of the objective functidi(z) defined by o

€1y

(26) and W (x, A, &) defined by (37). _
-Re[ei(2) Voei(2)|Re[ei(2) Vy ei(2)]

C. Hessian Matrix + Z Aeill = €lei(@)| THL ()

€1y

The importance of having the Hessian matrix of the ob- ©

jective function calculated lies in the fact that if the Hessian +< Z |ei(@)|Reei(2) Vaci(w)]
matrix is positive definite, then the classic Newton method el
can be used to update the filter coefficient and the value of the -Re[ei(x)VEe(x)] + Z [1—¢&lei(x)|” 1]H(€ (x)
objective function will be reduced at a second-order rate. If i€l
the Hessian matrix is not positive definite, then the modified (54)

Newton (MN) method can be used to find a good descent
direction with a satisfactory reduction rate [10], [11]. ThewhereH(e)(:c) is given by (53). Note that the key quantity
design efficiency of the MN method as compared to sevethiat needs to be formulated in order to evaluste®(x) and
quasi-Newton optimization algorithms was investigated W24 (x, \x, &) is VZe;(x).
detail by Bose and Chen [23]. In what follows, we derive
expressions of the Hessian matrix that can be used in the legsta Formula for V2e;(x)
pth and minimax optimization.

For the objective functiorZ(x) defined by (26), it follows
from (27) that the Hessian matrix df(z) is given by V2e(x) = Va(Vie) = vm(vgeﬂ)

=[Va(Vyer) - Va(Vy eitipyo)]

where+y, denotes theth row of the transformation Jacobian
J. Straightforward calculations then lead to

From (48), we write

M
z)=7p Z w7H§€)($) (51)

with
© Viei(z) = J[Viei(@)]J? +[D1Vye - Dyg2Vye] (55)
= (p — 2)les(@)|"*Re[ei(x) Vaci(@)|Re[ea (€) Vi es(x)]  Where
. P—2RalE. 2,. ) T,
+ plei(z) [P 2 Refei(z) V2ei () + Va7 (2)V ei()] Y &)
(52) dz;
r 1-46 (1 — 6) tanh (byy)
_ | cosh? (boy) cosh? (bog,)
L cosh? (bir)
r2(1—6) 4(1 — &) tanh (b,
_ | T+ 03) m2(1+b3y)
Ji = . 2(1— 8)[1 4+ tanh " (bor)] |” for ATT (50b)
L m2(1+b2,)
r—4(1 — 8)%bor (1 + b3,) 4( — §)bor(b3), — 1)
_ (1467, +b3,.)2 (14 b3 +05,)2
Te= a0 =6yt a1 — &)b(b2y w2y |0 TorMBT (50¢)
L (1407, + 05,7 (14045, +b3,)?
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andVZe;(z) is the Hessian matrix of;(z) with respect tay. TABLE |
It follows from (49) that DESIGN RESULTS OF EXAMPLE 1
Optimization BFGS Modified Newton
D;=0, for1<i<2K+2 (57a) lgorithm
Parameterization HTT ATT MBT HTT ATT MBT
Number of 99 164 126 74 91 90
and iterations
Flops (M) 66.69 99.46 81.09 147.93 | 166.61 | 172.07
o i Maximum modulus | 0.8715 | 0.8636 | 0.9139 | 0.9448 | 0.8496 | 0.9150
0 0 of poles
Maximum passband | 0.0818 | 0.0663 | 0.0311 [ 0.0773 | 0.0389 | 0.0785
0 ripple (dB)
D; = ad. J Minimum stopband | 47.5156 | 49.3101 | 46.5222 || 48.4584 | 45.7446 | 46.9811
0 A 0 attenuation (dB)
Maximum relative
' deviation of group | 4.19% | 3.63% | 4.90% || 1.89% | 4.78% | 1.80%
- 0. delay in passband

for 2K +3<i<4K +2 (57b)

whereJ; is the 2x 2 block in (49) withl = (i — 2K — 2)/2

frequency values that are evenly placed in the normalized
for eveni andl = (i — 2K — 3)/2 for odd . q y y P

frequency band [0, 0.5]. The leagth objective function (69)
was used withp = 2 and the weights

V. DESIGN EXAMPLES

1, for <i<40,59 <i <100

In this section, we present two design examples to illustrate 0.75, for i = 41, 58

the proposed method. The first example is to design a low-pass Wi=19 0.5 fori = 42. 57

lIR filter to meet the following specifications: 0, 7 for 43 < 4 < 56.
1) normalized passband edgg = 0.2;
2) normalized stopband edge, = 0.3; To implement the BFGS algorithm, (28)—(33) were used
3) maximum passband ripple 0.1 dB; to evaluate the gradient functions required. Evaluation of the
4) minimum stopband attenuation 45 dB,; Hessian matrices required by the MN algorithm was carried
5) maximum deviation in the group delay in the passbamit using (51), (52), and (55)—(57). Convergence was claimed

< 5%; when the two-norm difference between two consecutive points

6) stability marginé > 0.05. obtained by the algorithm was less than a given tolerance

As will be seen below, one can apply the proposed methodisall the designss was set to be 16P. With the same initial
to achieve these design specifications with a tenth-order IRRINt obtained by balanced truncation, both the BFGS and MN
transfer function. algorithms converge for all three parameterization methods.
Although local solutions obtained by the proposed desigihe design results are summarized in Table I.
algorithm with any initial points are always stable, the high It is observed that all six designs are stable and have met
degree of nonlinearity of (either the leagth type or the the design specifications. However, the design efficiency as
minimax type) objective function implies that many locawell as the performance of filters obtained varies. In general,
solutions do not represent satisfactory designs. An effectitke BFGS algorithm requires more iterations than the MN
way to find a good initial point is to apply the well-known bal-algorithm does for the algorithm to converge, but the MN
anced truncation method [24] to a higher order finite-impulse!gorithm usually requires more floating-point operations per
response (FIR) filter that approximates the desired frequeritgration as the Hessian matrix has to be evaluated. The six
response. Such an FIR transfer function can be obtained usitggigns achieve similar minimum stopband attenuation, but
a conventional design method [1]. The balanced truncatitihe BFGS/MBT combination achieves the smallest maximum
usually yields a reduced-order IIR transfer function with gooplassband ripple (0.0311 dB) while the MN/HTT and MN/MBT
approximation accuracy and guaranteed stability [25], [26}ombinations offer less than 2% maximum relative deviation
For the purpose of our design, a 20th-order half-band lineaf group delay in the passband. The amplitude response,
phase FIR filter was designed using the window method. passband ripple, and phase response of the tenth-order IIR
tenth-order 1IR approximation of the FIR filter was obtainefilter obtained with BFGS/MBT are depicted in Figs. 4—6.
by the balanced truncation method. The three proposed paramAs the second example, we consider approximating the
eterization methods were employed in the design, which wdssired amplitude shown in Fig. 7 by a tenth-order stable
carried out using a quasi-Newton optimization method knowiR filter. Design problems of this kind may be encountered
as the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithmihen one employs a singular-value-decomposition approach
[10], [11] and the MN method [10]. The sét contains 100 to designing a circular symmetric 2-D low-pass filter [17].
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Normalized frequency 0 i i i i

[¢] 0.1 0.2 0.3 0.4 0.5

Fig. 4. Amplitude response of the tenth-order IIR filter (Example 1). Normalized frequency

Fig. 7. Desired amplitude response (Example 2).

-0.02
Minimum stopband | 29.7957 | 29.8884 | 30.0251 || 34.8266 | 34.5718 | 32.4356

attenuation (dB)

TABLE I
: DESIGN RESULTS OF EXAMPLE 2
Optimization BFGS Modified Newton
algorithm

0.01 Parameterization HTT ATT MBT HTT ATT MBT
Number of 205 | 156 | 216 93 93 93

0 iterations

Flops (M) 150.41 | 107.79 | 151.14 212.08 | 198.51 | 205.01

001k Maximum modulus | 0.9522 | 0.9348 | 0.9186 || 0.9592 | 0.9538 | 0.9200
: of poles
E, 0.0484 | 0.0487 | 0.0441 0.0437 | 0.0439 | 0.0440
i

Maximum relative

0 002 004 o006 008 01 012 014 016 018 02 deviation of group | 3.40% | 3.04% | 2.77% | 4.04% | 3.86% | 2.97%
Fig. 5. Passband ripple of the filter (Example 1). delay in passband
0 g : : g i T T ; ; If the 2-D filter is required to have a linear phase response,
_ ; } ; : ; j ; : then we need to design a stable IIR filter to approximate the
T S ....... ....... ........ ......... ......... ......... RRRRERERE: .......... ....... 4 desired magnitude response in Flg 7, whose phase response
5 5 ; : : : ; ; in the passband is required to be linear. The BFGS and MN
- SRR ........ ..... Lo ..... .......... ......... e a|gOf|tth Were used to Carry out SIX deSIgnS Where the
j } 5 : proposed parameterization methods were employed to ensure
BT 005 o1 015 oz o025 o3 o5 os o4 o5 Stability of the designs. As the desired amplitude response is
@ not a standard low-pass type, we use the two-norm measure
. . . T T T , . . ; 1 M
Er=7 S IF (@ w)| — [Fo(w)l]
=1

to evaluate the approximation accuracy whétéer,w;) and
Fo(w;) are defined by (23) and (24). With= 2,e = 10~°
and the weights given by

0 002 004 006 0.08 0.1 0.12 014 016 0.18 0.2
b 2, 49<i<54
(b) w; =
1 elsewhere

7

Fig. 6. Phase response of the filter (Example 1).
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1.2 . T : : The parameterization of all stable IIR transfer functions

: : : : allows one to carry out the design by using well-established
unconstrained optimization methods. The examples presented
in Section V have demonstrated that stable low-order IIR
: : : : filters with desirable amplitude/phase characteristics can
08 R e, ] effectively be designed using the proposed techniques.

i : The concept of stable parameterization is expected to be

: : : of use in other digital signal-processing (DSP) problems,
] R e including adaptive IR filtering [27], where filter coeffi-

' : : cients are updated to achieve specific filtering tasks while
preserving stability.
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